Skip to main content
Top
Published in: Inflammation 5/2020

01-10-2020 | Cardiomyopathy | Original Article

Overexpression of Peroxisome Proliferator-Activated Receptor γ Coactivator 1-α Protects Cardiomyocytes from Lipopolysaccharide-Induced Mitochondrial Damage and Apoptosis

Authors: Tao Zhang, Chun-Feng Liu, Tie-Ning Zhang, Ri Wen, Wen-Liang Song

Published in: Inflammation | Issue 5/2020

Login to get access

Abstract

Mitochondrial damage is considered one of the main pathogenetic mechanisms in septic cardiomyopathy. Peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) is critical for maintaining energy homeostasis in different organs and in various physiological and pathological states. It is also a key regulator gene in mitochondrial metabolism. In this study, we investigated whether regulation of the PGC-1α gene had protective effects on septic cardiomyopathy. We developed a rat model of septic cardiomyopathy. H9c2 myocardiocytes were treated with lipopolysaccharide (LPS) and PGC-1α expression measured. PGC-1α-overexpressing lentivirus was used to transfect H9c2 cells. ZLN005 was used to activate PGC-1α. The effect of the inhibition of PGC-1α expression on myocardial cell injury and its underlying mechanisms were also explored. Cell viability was measured by CCK-8 assay. Mitochondrial damage was determined by measuring cellular ATP, reactive oxygen species, and the mitochondrial membrane potential. An apoptosis analysis kit was used to measure cellular apoptosis. Mitochondrial DNA was extracted and real-time PCR performed. LC3B, mitochondrial transcription factor A (TFA), P62, Bcl2, and Bax were determined by immunofluorescence. LC3B, TFA, P62, Parkin, PTEN-induced putative kinase 1, and PGC-1α proteins were determined by Western blotting. We found mitochondrial damage and apoptotic cells in the myocardial tissue of rats with septic cardiomyopathy and in LPS-treated cardiomyocytes. PGC-1α expression was decreased in the late phase of septic cardiomyopathy and in LPS-treated cardiomyocytes. PGC-1α activation by ZLN005 and PGC- overexpression reduced apoptosis in myocardiocytes after LPS incubation. PGC- gene overexpression alleviated LPS-induced cardiomyocyte mitochondrial damage by activating mitochondrial biogenesis and autophagy functions. Our study indicated that mitochondrial damage and apoptosis occurred in septic cardiomyopathy and LPS-treated cardiomyocytes. The low expression level of PGC-1α protein may have contributed to this damage. By activating the expression of PGC-1α, apoptosis was reduced in cardiomyocytes. The underlying mechanism may be that PGC-1α can activate mitochondrial biogenesis and autophagy functions, reducing mitochondrial damage and thereby reducing apoptosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jonckheere, A.I., J.A. Smeitink, and R.J. Rodenburg. 2012. Mitochondrial ATP synthase: architecture, function and pathology. Journal of Inherited Metabolic Disease 35: 211–225.CrossRef Jonckheere, A.I., J.A. Smeitink, and R.J. Rodenburg. 2012. Mitochondrial ATP synthase: architecture, function and pathology. Journal of Inherited Metabolic Disease 35: 211–225.CrossRef
2.
go back to reference Narendra, D.P., and R.J. Youle. 2011. Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. Antioxidants & Redox Signaling 14: 1929–1938.CrossRef Narendra, D.P., and R.J. Youle. 2011. Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. Antioxidants & Redox Signaling 14: 1929–1938.CrossRef
3.
go back to reference Koene, S., and J. Smeitink. 2011. Metabolic manipulators: a well founded strategy to combat mitochondrial dysfunction. Journal of Inherited Metabolic Disease 34: 315–325.CrossRef Koene, S., and J. Smeitink. 2011. Metabolic manipulators: a well founded strategy to combat mitochondrial dysfunction. Journal of Inherited Metabolic Disease 34: 315–325.CrossRef
4.
go back to reference Chistiakov, D.A., T.P. Shkurat, A.A. Melnichenko, A.V. Grechko, and A.N. Orekhov. 2018. The role of mitochondrial dysfunction in cardiovascular disease: a brief review. Annals of Medicine 50: 121–127.CrossRef Chistiakov, D.A., T.P. Shkurat, A.A. Melnichenko, A.V. Grechko, and A.N. Orekhov. 2018. The role of mitochondrial dysfunction in cardiovascular disease: a brief review. Annals of Medicine 50: 121–127.CrossRef
5.
go back to reference Cimolai, M.C., S. Alvarez, C. Bode, and H. Bugger. 2015. Mitochondrial mechanisms in septic cardiomyopathy. International Journal of Molecular Sciences 16: 17763–17778.CrossRef Cimolai, M.C., S. Alvarez, C. Bode, and H. Bugger. 2015. Mitochondrial mechanisms in septic cardiomyopathy. International Journal of Molecular Sciences 16: 17763–17778.CrossRef
6.
go back to reference Disatnik, M.H., S. Hwang, J.C. Ferreira, and D. Mochly-Rosen. 2015. New therapeutics to modulate mitochondrial dynamics and mitophagy in cardiac diseases. Journal of Molecular Medicine 93: 279–287.CrossRef Disatnik, M.H., S. Hwang, J.C. Ferreira, and D. Mochly-Rosen. 2015. New therapeutics to modulate mitochondrial dynamics and mitophagy in cardiac diseases. Journal of Molecular Medicine 93: 279–287.CrossRef
7.
go back to reference Li, S., Q. Yu, G.X. Wang, and J.D. Lin. 2013. The biological clock is regulated by adrenergic signaling in brown fat but is dispensable for cold-induced thermogenesis. PLoS One 8: e70109.CrossRef Li, S., Q. Yu, G.X. Wang, and J.D. Lin. 2013. The biological clock is regulated by adrenergic signaling in brown fat but is dispensable for cold-induced thermogenesis. PLoS One 8: e70109.CrossRef
8.
go back to reference Festuccia, W.T., P.G. Blanchard, T.B. Oliveira, J. Magdalon, V.A. Paschoal, D. Richard, and Y. Deshaies. 2012. PPARgamma activation attenuates cold-induced upregulation of thyroid status and brown adipose tissue PGC-1alpha and D2. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 303: R1277–R1285.CrossRef Festuccia, W.T., P.G. Blanchard, T.B. Oliveira, J. Magdalon, V.A. Paschoal, D. Richard, and Y. Deshaies. 2012. PPARgamma activation attenuates cold-induced upregulation of thyroid status and brown adipose tissue PGC-1alpha and D2. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 303: R1277–R1285.CrossRef
9.
go back to reference Rowe, G.C., A. Jiang, and Z. Arany. 2010. PGC-1 coactivators in cardiac development and disease. Circulation Research 107: 825–838.CrossRef Rowe, G.C., A. Jiang, and Z. Arany. 2010. PGC-1 coactivators in cardiac development and disease. Circulation Research 107: 825–838.CrossRef
10.
go back to reference Cheng, C.F., H.C. Ku, and H. Lin. 2018. PGC-1alpha as a pivotal factor in lipid and metabolic regulation. International Journal of Molecular Sciences 19. Cheng, C.F., H.C. Ku, and H. Lin. 2018. PGC-1alpha as a pivotal factor in lipid and metabolic regulation. International Journal of Molecular Sciences 19.
11.
go back to reference Ventura-Clapier, R., A. Garnier, and V. Veksler. 2008. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovascular Research 79(2): 208–217. Ventura-Clapier, R., A. Garnier, and V. Veksler. 2008. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovascular Research 79(2): 208–217.
12.
go back to reference Patten, I.S., and Z. Arany. 2012. PGC-1 coactivators in the cardiovascular system. Trends in Endocrinology and Metabolism 23: 90–97.CrossRef Patten, I.S., and Z. Arany. 2012. PGC-1 coactivators in the cardiovascular system. Trends in Endocrinology and Metabolism 23: 90–97.CrossRef
13.
go back to reference Settembre, C., C. Di Malta, V.A. Polito, A.M. Garcia, F. Vetrini, S. Erdin, S.U. Erdin, T. Huynh, D. Medina, P. Colella, et al. 2011. TFEB links autophagy to lysosomal biogenesis. Science 332: 1429–1433.CrossRef Settembre, C., C. Di Malta, V.A. Polito, A.M. Garcia, F. Vetrini, S. Erdin, S.U. Erdin, T. Huynh, D. Medina, P. Colella, et al. 2011. TFEB links autophagy to lysosomal biogenesis. Science 332: 1429–1433.CrossRef
14.
go back to reference Kim, H.K., I.S. Song, S.Y. Lee, S.H. Jeong, S.R. Lee, H.J. Heo, V.T. Thu, N. Kim, K.S. Ko, B.D. Rhee, D.H. Jeong, Y.N. Kim, and J. Han. 2014. B7-H4 downregulation induces mitochondrial dysfunction and enhances doxorubicin sensitivity via the cAMP/CREB/PGC1-alpha signaling pathway in HeLa cells. Pflügers Archiv 466: 2323–2338.CrossRef Kim, H.K., I.S. Song, S.Y. Lee, S.H. Jeong, S.R. Lee, H.J. Heo, V.T. Thu, N. Kim, K.S. Ko, B.D. Rhee, D.H. Jeong, Y.N. Kim, and J. Han. 2014. B7-H4 downregulation induces mitochondrial dysfunction and enhances doxorubicin sensitivity via the cAMP/CREB/PGC1-alpha signaling pathway in HeLa cells. Pflügers Archiv 466: 2323–2338.CrossRef
15.
go back to reference Koka, S., H.S. Aluri, L. Xi, E.J. Lesnefsky, and R.C. Kukreja. 2014. Chronic inhibition of phosphodiesterase 5 with tadalafil attenuates mitochondrial dysfunction in type 2 diabetic hearts: potential role of NO/SIRT1/PGC-1alpha signaling. American Journal of Physiology. Heart and Circulatory Physiology 306: H1558–H1568.CrossRef Koka, S., H.S. Aluri, L. Xi, E.J. Lesnefsky, and R.C. Kukreja. 2014. Chronic inhibition of phosphodiesterase 5 with tadalafil attenuates mitochondrial dysfunction in type 2 diabetic hearts: potential role of NO/SIRT1/PGC-1alpha signaling. American Journal of Physiology. Heart and Circulatory Physiology 306: H1558–H1568.CrossRef
16.
go back to reference Lai, L., M. Wang, O.J. Martin, T.C. Leone, R.B. Vega, X. Han, and D.P. Kelly. 2014. A role for peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1) in the regulation of cardiac mitochondrial phospholipid biosynthesis. The Journal of Biological Chemistry 289: 2250–2259.CrossRef Lai, L., M. Wang, O.J. Martin, T.C. Leone, R.B. Vega, X. Han, and D.P. Kelly. 2014. A role for peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1) in the regulation of cardiac mitochondrial phospholipid biosynthesis. The Journal of Biological Chemistry 289: 2250–2259.CrossRef
17.
go back to reference Ping, Z., L.F. Zhang, Y.J. Cui, Y.M. Chang, C.W. Jiang, Z.Z. Meng, P. Xu, H.Y. Liu, D.Y. Wang, and X.B. Cao. 2015. The protective effects of salidroside from exhaustive exercise-induced heart injury by enhancing the PGC-1 alpha -NRF1/NRF2 pathway and mitochondrial respiratory function in rats. Oxidative Medicine and Cellular Longevity 2015: 876825.CrossRef Ping, Z., L.F. Zhang, Y.J. Cui, Y.M. Chang, C.W. Jiang, Z.Z. Meng, P. Xu, H.Y. Liu, D.Y. Wang, and X.B. Cao. 2015. The protective effects of salidroside from exhaustive exercise-induced heart injury by enhancing the PGC-1 alpha -NRF1/NRF2 pathway and mitochondrial respiratory function in rats. Oxidative Medicine and Cellular Longevity 2015: 876825.CrossRef
18.
go back to reference Carre, J.E., J.C. Orban, L. Re, K. Felsmann, W. Iffert, M. Bauer, H.B. Suliman, C.A. Piantadosi, T.M. Mayhew, P. Breen, et al. 2010. Survival in critical illness is associated with early activation of mitochondrial biogenesis. American Journal of Respiratory and Critical Care Medicine 182: 745–751.CrossRef Carre, J.E., J.C. Orban, L. Re, K. Felsmann, W. Iffert, M. Bauer, H.B. Suliman, C.A. Piantadosi, T.M. Mayhew, P. Breen, et al. 2010. Survival in critical illness is associated with early activation of mitochondrial biogenesis. American Journal of Respiratory and Critical Care Medicine 182: 745–751.CrossRef
19.
go back to reference Kim, H.J., K.G. Park, E.K. Yoo, Y.H. Kim, Y.N. Kim, H.S. Kim, H.T. Kim, J.Y. Park, K.U. Lee, W.G. Jang, J.G. Kim, B.W. Kim, and I.K. Lee. 2007. Effects of PGC-1alpha on TNF-alpha-induced MCP-1 and VCAM-1 expression and NF-kappaB activation in human aortic smooth muscle and endothelial cells. Antioxidants & Redox Signaling 9: 301–307.CrossRef Kim, H.J., K.G. Park, E.K. Yoo, Y.H. Kim, Y.N. Kim, H.S. Kim, H.T. Kim, J.Y. Park, K.U. Lee, W.G. Jang, J.G. Kim, B.W. Kim, and I.K. Lee. 2007. Effects of PGC-1alpha on TNF-alpha-induced MCP-1 and VCAM-1 expression and NF-kappaB activation in human aortic smooth muscle and endothelial cells. Antioxidants & Redox Signaling 9: 301–307.CrossRef
20.
go back to reference Wegner, A., D. Pavlovic, S. Haussmann-Vopel, and C. Lehmann. 2018. Impact of lipid modulation on the intestinal microcirculation in experimental sepsis. Microvascular Research 120: 41–46.CrossRef Wegner, A., D. Pavlovic, S. Haussmann-Vopel, and C. Lehmann. 2018. Impact of lipid modulation on the intestinal microcirculation in experimental sepsis. Microvascular Research 120: 41–46.CrossRef
21.
go back to reference Tang, G., H. Yang, J. Chen, M. Shi, L. Ge, X. Ge, and G. Zhu. 2017. Metformin ameliorates sepsis-induced brain injury by inhibiting apoptosis, oxidative stress and neuroinflammation via the PI3K/Akt signaling pathway. Oncotarget 8: 97977–97989.CrossRef Tang, G., H. Yang, J. Chen, M. Shi, L. Ge, X. Ge, and G. Zhu. 2017. Metformin ameliorates sepsis-induced brain injury by inhibiting apoptosis, oxidative stress and neuroinflammation via the PI3K/Akt signaling pathway. Oncotarget 8: 97977–97989.CrossRef
22.
go back to reference Vaez, H., M. Rameshrad, M. Najafi, J. Barar, A. Barzegari, and A. Garjani. 2016. Cardioprotective effect of metformin in lipopolysaccharide-induced sepsis via suppression of toll-like receptor 4 (TLR4) in heart. European Journal of Pharmacology 772: 115–123.CrossRef Vaez, H., M. Rameshrad, M. Najafi, J. Barar, A. Barzegari, and A. Garjani. 2016. Cardioprotective effect of metformin in lipopolysaccharide-induced sepsis via suppression of toll-like receptor 4 (TLR4) in heart. European Journal of Pharmacology 772: 115–123.CrossRef
23.
go back to reference Yang, N., X.L. Shi, B.L. Zhang, J. Rong, T.N. Zhang, W. Xu, and C.F. Liu. 2018. The trend of beta3-adrenergic receptor in the development of septic myocardial depression: a lipopolysaccharide-induced rat septic shock model. Cardiology 139: 234–244.CrossRef Yang, N., X.L. Shi, B.L. Zhang, J. Rong, T.N. Zhang, W. Xu, and C.F. Liu. 2018. The trend of beta3-adrenergic receptor in the development of septic myocardial depression: a lipopolysaccharide-induced rat septic shock model. Cardiology 139: 234–244.CrossRef
24.
go back to reference Zhang, T.N., N. Yang, J.E. Goodwin, K. Mahrer, D. Li, J. Xia, R. Wen, H. Zhou, T. Zhang, W.L. Song, and C.F. Liu. 2019. Characterization of circular RNA and microRNA profiles in septic myocardial depression: a lipopolysaccharide-induced rat septic shock model. Inflammation 42: 1990–2002.CrossRef Zhang, T.N., N. Yang, J.E. Goodwin, K. Mahrer, D. Li, J. Xia, R. Wen, H. Zhou, T. Zhang, W.L. Song, and C.F. Liu. 2019. Characterization of circular RNA and microRNA profiles in septic myocardial depression: a lipopolysaccharide-induced rat septic shock model. Inflammation 42: 1990–2002.CrossRef
25.
go back to reference Zhang, T.N., J.E. Goodwin, B. Liu, D. Li, R. Wen, N. Yang, J. Xia, H. Zhou, T. Zhang, W.L. Song, and C.F. Liu. 2019. Characterization of long noncoding RNA and mRNA profiles in sepsis-induced myocardial depression. Molecular Therapy--Nucleic Acids 17: 852–866.CrossRef Zhang, T.N., J.E. Goodwin, B. Liu, D. Li, R. Wen, N. Yang, J. Xia, H. Zhou, T. Zhang, W.L. Song, and C.F. Liu. 2019. Characterization of long noncoding RNA and mRNA profiles in sepsis-induced myocardial depression. Molecular Therapy--Nucleic Acids 17: 852–866.CrossRef
26.
go back to reference Arulkumaran, N., C.S. Deutschman, M.R. Pinsky, B. Zuckerbraun, P.T. Schumacker, H. Gomez, A. Gomez, P. Murray, and J.A. Kellum. 2016. Mitochondrial function in sepsis. Shock 45: 271–281.CrossRef Arulkumaran, N., C.S. Deutschman, M.R. Pinsky, B. Zuckerbraun, P.T. Schumacker, H. Gomez, A. Gomez, P. Murray, and J.A. Kellum. 2016. Mitochondrial function in sepsis. Shock 45: 271–281.CrossRef
27.
go back to reference Pan, P., X. Wang, and D. Liu. 2018. The potential mechanism of mitochondrial dysfunction in septic cardiomyopathy. The Journal of International Medical Research 46: 2157–2169.CrossRef Pan, P., X. Wang, and D. Liu. 2018. The potential mechanism of mitochondrial dysfunction in septic cardiomyopathy. The Journal of International Medical Research 46: 2157–2169.CrossRef
28.
go back to reference Singer, M. 2014. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence 5: 66–72.CrossRef Singer, M. 2014. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence 5: 66–72.CrossRef
29.
go back to reference Ho, J., J. Yu, S.H. Wong, L. Zhang, X. Liu, W.T. Wong, C.C. Leung, G. Choi, M.H. Wang, T. Gin, et al. 2016. Autophagy in sepsis: degradation into exhaustion? Autophagy 12: 1073–1082.CrossRef Ho, J., J. Yu, S.H. Wong, L. Zhang, X. Liu, W.T. Wong, C.C. Leung, G. Choi, M.H. Wang, T. Gin, et al. 2016. Autophagy in sepsis: degradation into exhaustion? Autophagy 12: 1073–1082.CrossRef
30.
go back to reference Maurer, K., T. Reyes-Robles, F.R. Alonzo, J. Durbin, V.J. Torres, and K. Cadwell. 2015. Autophagy mediates tolerance to Staphylococcus aureus alpha-toxin. Cell Host & Microbe 17: 429–440.CrossRef Maurer, K., T. Reyes-Robles, F.R. Alonzo, J. Durbin, V.J. Torres, and K. Cadwell. 2015. Autophagy mediates tolerance to Staphylococcus aureus alpha-toxin. Cell Host & Microbe 17: 429–440.CrossRef
31.
go back to reference Laval, J., A. Singh, and D. Hartl. 2017. Autophagy traps neutrophils into a protective alliance during sepsis. American Journal of Respiratory and Critical Care Medicine 196: 537–538.CrossRef Laval, J., A. Singh, and D. Hartl. 2017. Autophagy traps neutrophils into a protective alliance during sepsis. American Journal of Respiratory and Critical Care Medicine 196: 537–538.CrossRef
32.
go back to reference Sun, Y., X. Yao, Q.J. Zhang, M. Zhu, Z.P. Liu, B. Ci, Y. Xie, D. Carlson, B.A. Rothermel, Y. Sun, B. Levine, J.A. Hill, S.E. Wolf, J.P. Minei, and Q.S. Zang. 2018. Beclin-1-dependent autophagy protects the heart during sepsis. Circulation 138: 2247–2262.CrossRef Sun, Y., X. Yao, Q.J. Zhang, M. Zhu, Z.P. Liu, B. Ci, Y. Xie, D. Carlson, B.A. Rothermel, Y. Sun, B. Levine, J.A. Hill, S.E. Wolf, J.P. Minei, and Q.S. Zang. 2018. Beclin-1-dependent autophagy protects the heart during sepsis. Circulation 138: 2247–2262.CrossRef
33.
go back to reference Chung, K.W., K.M. Kim, Y.J. Choi, H.J. An, B. Lee, D.H. Kim, E.K. Lee, E. Im, J. Lee, D.S. Im, B.P. Yu, and H.Y. Chung. 2017. The critical role played by endotoxin-induced liver autophagy in the maintenance of lipid metabolism during sepsis. Autophagy 13: 1113–1129.CrossRef Chung, K.W., K.M. Kim, Y.J. Choi, H.J. An, B. Lee, D.H. Kim, E.K. Lee, E. Im, J. Lee, D.S. Im, B.P. Yu, and H.Y. Chung. 2017. The critical role played by endotoxin-induced liver autophagy in the maintenance of lipid metabolism during sepsis. Autophagy 13: 1113–1129.CrossRef
Metadata
Title
Overexpression of Peroxisome Proliferator-Activated Receptor γ Coactivator 1-α Protects Cardiomyocytes from Lipopolysaccharide-Induced Mitochondrial Damage and Apoptosis
Authors
Tao Zhang
Chun-Feng Liu
Tie-Ning Zhang
Ri Wen
Wen-Liang Song
Publication date
01-10-2020
Publisher
Springer US
Keyword
Cardiomyopathy
Published in
Inflammation / Issue 5/2020
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-020-01255-4

Other articles of this Issue 5/2020

Inflammation 5/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine