Skip to main content
Top
Published in: Inflammation 6/2015

01-12-2015

Hypertonic Saline (NaCl 7.5 %) Reduces LPS-Induced Acute Lung Injury in Rats

Authors: Ricardo Costa Petroni, Paolo Jose Cesare Biselli, Thais Martins de Lima, Mariana Cardillo Theobaldo, Elia Tamaso Caldini, Rosângela Nascimento Pimentel, Hermes Vieira Barbeiro, Suely Ariga Kubo, Irineu Tadeu Velasco, Francisco Garcia Soriano

Published in: Inflammation | Issue 6/2015

Login to get access

Abstract

Acute respiratory distress syndrome (ARDS) is the most severe lung inflammatory manifestation and has no effective therapy nowadays. Sepsis is one of the main illnesses among ARDS causes. The use of fluid resuscitation is an important treatment for sepsis, but positive fluid balance may induce pulmonary injury. As an alternative, fluid resuscitation with hypertonic saline ((HS) NaCl 7.5 %) has been described as a promising therapeutical agent in sepsis-induced ARDS by the diminished amount of fluid necessary. Thus, we evaluated the effect of hypertonic saline in the treatment of LPS-induced ARDS. We found that hypertonic saline (NaCl 7.5 %) treatment in rat model of LPS-induced ARDS avoided pulmonary function worsening and inhibited type I collagen deposition. In addition, hypertonic saline prevented pulmonary injury by decreasing metalloproteinase 9 (MMP-9) activity in tissue. Focal adhesion kinase (FAK) activation was reduced in HS group as well as neutrophil infiltration, NOS2 expression and NO content. Our study shows that fluid resuscitation with hypertonic saline decreases the progression of LPS-induced ARDS due to inhibition of pulmonary remodeling that is observed when regular saline is used.
Literature
1.
go back to reference Del Sorbo, L., and A.S. Slutsky. 2010. Acute respiratory distress syndrome and multiple organ failure. Current Opinion in Critical Care 17: 1–6.CrossRef Del Sorbo, L., and A.S. Slutsky. 2010. Acute respiratory distress syndrome and multiple organ failure. Current Opinion in Critical Care 17: 1–6.CrossRef
2.
go back to reference Ranieri, V.M., G.D. Rubenfeld, B.T. Thompson, N.D. Ferguson, E. Caldwell, E. Fan, et al. 2012. Acute respiratory distress syndrome: the Berlin Definition. JAMA 307: 2526–2533.PubMed Ranieri, V.M., G.D. Rubenfeld, B.T. Thompson, N.D. Ferguson, E. Caldwell, E. Fan, et al. 2012. Acute respiratory distress syndrome: the Berlin Definition. JAMA 307: 2526–2533.PubMed
4.
go back to reference Sime, P.J., and K.M. O’Reilly. 2001. Fibrosis of the lung and other tissues: new concepts in pathogenesis and treatment. Clinical Immunology 99: 308–319.CrossRefPubMed Sime, P.J., and K.M. O’Reilly. 2001. Fibrosis of the lung and other tissues: new concepts in pathogenesis and treatment. Clinical Immunology 99: 308–319.CrossRefPubMed
5.
go back to reference Steinberg, J., J. Halter, H.J. Schiller, M. Dasilva, S. Landas, L.A. Gatto, et al. 2003. Metalloproteinase inhibition reduces lung injury and improves survival after cecal ligation and puncture in rats. Journal of Surgical Research 111: 185–195.CrossRefPubMed Steinberg, J., J. Halter, H.J. Schiller, M. Dasilva, S. Landas, L.A. Gatto, et al. 2003. Metalloproteinase inhibition reduces lung injury and improves survival after cecal ligation and puncture in rats. Journal of Surgical Research 111: 185–195.CrossRefPubMed
6.
go back to reference Davey, A., D.F. McAuley, and C.M. O’Kane. 2011. Matrix metalloproteinases in acute lung injury: mediators of injury and drivers of repair. European Respiratory Journal 38: 959–970.CrossRefPubMed Davey, A., D.F. McAuley, and C.M. O’Kane. 2011. Matrix metalloproteinases in acute lung injury: mediators of injury and drivers of repair. European Respiratory Journal 38: 959–970.CrossRefPubMed
7.
go back to reference Petroni, R.C., W.R. Teodoro, M.C. Guido, H.V. Barbeiro, F. Abatepaulo, M.C. Theobaldo, et al. 2012. Role of focal adhesion kinase in lung remodeling of endotoxemic rats. Shock 37: 524–530.CrossRefPubMed Petroni, R.C., W.R. Teodoro, M.C. Guido, H.V. Barbeiro, F. Abatepaulo, M.C. Theobaldo, et al. 2012. Role of focal adhesion kinase in lung remodeling of endotoxemic rats. Shock 37: 524–530.CrossRefPubMed
8.
go back to reference Lagares, D., O. Busnadiego, R.A. Garcia-Fernandez, M. Kapoor, S. Liu, D.E. Carter, et al. 2012. Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation. Arthritis and Rheumatism 64: 1653–1664.PubMedCentralCrossRefPubMed Lagares, D., O. Busnadiego, R.A. Garcia-Fernandez, M. Kapoor, S. Liu, D.E. Carter, et al. 2012. Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation. Arthritis and Rheumatism 64: 1653–1664.PubMedCentralCrossRefPubMed
9.
go back to reference Zeisel, M.B., V.A. Druet, J. Sibilia, J.P. Klein, V. Quesniaux, and D. Wachsmann. 2005. Cross talk between MyD88 and focal adhesion kinase pathways. Journal of Immunology 174: 7393–7397.CrossRef Zeisel, M.B., V.A. Druet, J. Sibilia, J.P. Klein, V. Quesniaux, and D. Wachsmann. 2005. Cross talk between MyD88 and focal adhesion kinase pathways. Journal of Immunology 174: 7393–7397.CrossRef
10.
go back to reference Mu, E., R. Ding, X. An, X. Li, S. Chen, and X. Ma. 2011. Heparin attenuates lipopolysaccharide-induced acute lung injury by inhibiting nitric oxide synthase and TGF-beta/Smad signaling pathway. Thrombosis Research 129: 479–485.CrossRefPubMed Mu, E., R. Ding, X. An, X. Li, S. Chen, and X. Ma. 2011. Heparin attenuates lipopolysaccharide-induced acute lung injury by inhibiting nitric oxide synthase and TGF-beta/Smad signaling pathway. Thrombosis Research 129: 479–485.CrossRefPubMed
11.
go back to reference Khan, R., L.A. Kirschenbaum, C. Larow, and M.E. Astiz. 2011. The effect of resuscitation fluids on neutrophil-endothelial cell interactions in septic shock. Shock 36: 440–444.CrossRefPubMed Khan, R., L.A. Kirschenbaum, C. Larow, and M.E. Astiz. 2011. The effect of resuscitation fluids on neutrophil-endothelial cell interactions in septic shock. Shock 36: 440–444.CrossRefPubMed
12.
go back to reference Vincent, J.L., and L. Gottin. 2011. Type of fluid in severe sepsis and septic shock. Minerva Anestesiologica 77: 1190–1196.PubMed Vincent, J.L., and L. Gottin. 2011. Type of fluid in severe sepsis and septic shock. Minerva Anestesiologica 77: 1190–1196.PubMed
13.
go back to reference Bihari, S., Prakash, S., Bersten, A.D. 2013. Post Resuscitation fluid boluses in severe sepsis or septic shock: prevalence and efficacy (Price Study). Shock. Bihari, S., Prakash, S., Bersten, A.D. 2013. Post Resuscitation fluid boluses in severe sepsis or septic shock: prevalence and efficacy (Price Study). Shock.
14.
go back to reference Yu, G., X. Chi, Z. Hei, N. Shen, J. Chen, W. Zhang, et al. 2012. Small volume resuscitation with 7.5% hypertonic saline, hydroxyethyl starch 130/0.4 solution and hypertonic sodium chloride hydroxyethyl starch 40 injection reduced lung injury in endotoxin shock rats: comparison with saline. Pulmonary Pharmacology & Therapeutics 25: 27–32.CrossRef Yu, G., X. Chi, Z. Hei, N. Shen, J. Chen, W. Zhang, et al. 2012. Small volume resuscitation with 7.5% hypertonic saline, hydroxyethyl starch 130/0.4 solution and hypertonic sodium chloride hydroxyethyl starch 40 injection reduced lung injury in endotoxin shock rats: comparison with saline. Pulmonary Pharmacology & Therapeutics 25: 27–32.CrossRef
15.
go back to reference Velasco, I.T., V. Pontieri, M. Rocha e Silva Jr., and O.U. Lopes. 1980. Hyperosmotic NaCl and severe hemorrhagic shock. American Journal of Physiology 239: H664–H673.PubMed Velasco, I.T., V. Pontieri, M. Rocha e Silva Jr., and O.U. Lopes. 1980. Hyperosmotic NaCl and severe hemorrhagic shock. American Journal of Physiology 239: H664–H673.PubMed
16.
go back to reference Theobaldo, M.C., F. Llimona, R.C. Petroni, E.C. Rios, I.T. Velasco, and F.G. Soriano. 2013. Hypertonic saline solution drives neutrophil from bystander organ to infectious site in polymicrobial sepsis: a cecal ligation and puncture model. PloS One 8: e74369.PubMedCentralCrossRefPubMed Theobaldo, M.C., F. Llimona, R.C. Petroni, E.C. Rios, I.T. Velasco, and F.G. Soriano. 2013. Hypertonic saline solution drives neutrophil from bystander organ to infectious site in polymicrobial sepsis: a cecal ligation and puncture model. PloS One 8: e74369.PubMedCentralCrossRefPubMed
17.
go back to reference Hantos, Z., B. Daroczy, B. Suki, S. Nagy, and J.J. Fredberg. 1992. Input impedance and peripheral inhomogeneity of dog lungs. Journal of Applied Physiology (1985) 72: 168–178. Hantos, Z., B. Daroczy, B. Suki, S. Nagy, and J.J. Fredberg. 1992. Input impedance and peripheral inhomogeneity of dog lungs. Journal of Applied Physiology (1985) 72: 168–178.
19.
go back to reference Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25: 402–408.CrossRefPubMed Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25: 402–408.CrossRefPubMed
20.
go back to reference van Haren, F.M., J. Sleigh, E.C. Boerma, M. La Pine, M. Bahr, P. Pickkers, et al. 2011. Hypertonic fluid administration in patients with septic shock: a prospective randomized controlled pilot study. Shock 37: 268–275.CrossRef van Haren, F.M., J. Sleigh, E.C. Boerma, M. La Pine, M. Bahr, P. Pickkers, et al. 2011. Hypertonic fluid administration in patients with septic shock: a prospective randomized controlled pilot study. Shock 37: 268–275.CrossRef
21.
go back to reference Angle, N., D.B. Hoyt, R. Coimbra, F. Liu, C. Herdon-Remelius, W. Loomis, et al. 1998. Hypertonic saline resuscitation diminishes lung injury by suppressing neutrophil activation after hemorrhagic shock. Shock 9: 164–170.CrossRefPubMed Angle, N., D.B. Hoyt, R. Coimbra, F. Liu, C. Herdon-Remelius, W. Loomis, et al. 1998. Hypertonic saline resuscitation diminishes lung injury by suppressing neutrophil activation after hemorrhagic shock. Shock 9: 164–170.CrossRefPubMed
22.
go back to reference Staudenmayer, K.L., R.V. Maier, S. Jelacic, and E.M. Bulger. 2005. Hypertonic saline modulates innate immunity in a model of systemic inflammation. Shock 23: 459–463.CrossRefPubMed Staudenmayer, K.L., R.V. Maier, S. Jelacic, and E.M. Bulger. 2005. Hypertonic saline modulates innate immunity in a model of systemic inflammation. Shock 23: 459–463.CrossRefPubMed
23.
go back to reference Oliveira, R.P., I. Velasco, F.G. Soriano, and G. Friedman. 2002. Clinical review: hypertonic saline resuscitation in sepsis. Critical Care 6: 418–423.PubMedCentralCrossRefPubMed Oliveira, R.P., I. Velasco, F.G. Soriano, and G. Friedman. 2002. Clinical review: hypertonic saline resuscitation in sepsis. Critical Care 6: 418–423.PubMedCentralCrossRefPubMed
24.
go back to reference Kabir, K., J.P. Gelinas, M. Chen, D. Chen, D. Zhang, X. Luo, et al. 2002. Characterization of a murine model of endotoxin-induced acute lung injury. Shock 17: 300–303.CrossRefPubMed Kabir, K., J.P. Gelinas, M. Chen, D. Chen, D. Zhang, X. Luo, et al. 2002. Characterization of a murine model of endotoxin-induced acute lung injury. Shock 17: 300–303.CrossRefPubMed
25.
go back to reference Yamasawa, H., Y. Ishii, and S. Kitamura. 1999. Cytokine-induced neutrophil chemoattractant in a rat model of lipopolysaccharide-induced acute lung injury. Inflammation 23: 263–274.PubMed Yamasawa, H., Y. Ishii, and S. Kitamura. 1999. Cytokine-induced neutrophil chemoattractant in a rat model of lipopolysaccharide-induced acute lung injury. Inflammation 23: 263–274.PubMed
26.
go back to reference Gueders, M.M., J.M. Foidart, A. Noel, and D.D. Cataldo. 2006. Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in the respiratory tract: potential implications in asthma and other lung diseases. European Journal of Pharmacology 533: 133–144.CrossRefPubMed Gueders, M.M., J.M. Foidart, A. Noel, and D.D. Cataldo. 2006. Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in the respiratory tract: potential implications in asthma and other lung diseases. European Journal of Pharmacology 533: 133–144.CrossRefPubMed
27.
go back to reference Faffe, D.S., V.R. Seidl, P.S. Chagas, V.L. Goncalves de Moraes, V.L. Capelozzi, P.R. Rocco, et al. 2000. Respiratory effects of lipopolysaccharide-induced inflammatory lung injury in mice. European Respiratory Journal 15: 85–91.CrossRefPubMed Faffe, D.S., V.R. Seidl, P.S. Chagas, V.L. Goncalves de Moraes, V.L. Capelozzi, P.R. Rocco, et al. 2000. Respiratory effects of lipopolysaccharide-induced inflammatory lung injury in mice. European Respiratory Journal 15: 85–91.CrossRefPubMed
28.
go back to reference Hagiwara, S., H. Iwasaka, S. Matsumoto, T. Noguchi, and H. Yoshioka. 2007. Coexpression of HSP47 gene and type I and type III collagen genes in LPS-induced pulmonary fibrosis in rats. Lung 185: 31–37.CrossRefPubMed Hagiwara, S., H. Iwasaka, S. Matsumoto, T. Noguchi, and H. Yoshioka. 2007. Coexpression of HSP47 gene and type I and type III collagen genes in LPS-induced pulmonary fibrosis in rats. Lung 185: 31–37.CrossRefPubMed
29.
go back to reference Parra, E.R., W.R. Teodoro, A.P. Velosa, C.C. de Oliveira, N.H. Yoshinari, and V.L. Capelozzi. 2006. Interstitial and vascular type V collagen morphologic disorganization in usual interstitial pneumonia. Journal of Histochemistry and Cytochemistry 54: 1315–1325.PubMedCentralCrossRefPubMed Parra, E.R., W.R. Teodoro, A.P. Velosa, C.C. de Oliveira, N.H. Yoshinari, and V.L. Capelozzi. 2006. Interstitial and vascular type V collagen morphologic disorganization in usual interstitial pneumonia. Journal of Histochemistry and Cytochemistry 54: 1315–1325.PubMedCentralCrossRefPubMed
30.
go back to reference Uhlig, S., F. Brasch, L. Wollin, H. Fehrenbach, J. Richter, and A. Wendel. 1995. Functional and fine structural changes in isolated rat lungs challenged with endotoxin ex vivo and in vitro. American Journal of Pathology 146: 1235–1247.PubMedCentralPubMed Uhlig, S., F. Brasch, L. Wollin, H. Fehrenbach, J. Richter, and A. Wendel. 1995. Functional and fine structural changes in isolated rat lungs challenged with endotoxin ex vivo and in vitro. American Journal of Pathology 146: 1235–1247.PubMedCentralPubMed
31.
go back to reference Cely, C.M., J.T. Rojas, D.A. Maldonado, R.M. Schein, and A.A. Quartin. 2010. Use of intensive care, mechanical ventilation, both, or neither by patients with acute lung injury. Critical Care Medicine 38: 1126–1134.CrossRefPubMed Cely, C.M., J.T. Rojas, D.A. Maldonado, R.M. Schein, and A.A. Quartin. 2010. Use of intensive care, mechanical ventilation, both, or neither by patients with acute lung injury. Critical Care Medicine 38: 1126–1134.CrossRefPubMed
32.
go back to reference Wiedemann, H.P., A.P. Wheeler, G.R. Bernard, B.T. Thompson, D. Hayden, B. deBoisblanc, et al. 2006. Comparison of two fluid-management strategies in acute lung injury. New England Journal of Medicine 354: 2564–2575.CrossRefPubMed Wiedemann, H.P., A.P. Wheeler, G.R. Bernard, B.T. Thompson, D. Hayden, B. deBoisblanc, et al. 2006. Comparison of two fluid-management strategies in acute lung injury. New England Journal of Medicine 354: 2564–2575.CrossRefPubMed
33.
go back to reference Yuan, S.Y., Q. Shen, R.R. Rigor, and M.H. Wu. 2011. Neutrophil transmigration, focal adhesion kinase and endothelial barrier function. Microvascular Research 83: 82–88.PubMedCentralCrossRefPubMed Yuan, S.Y., Q. Shen, R.R. Rigor, and M.H. Wu. 2011. Neutrophil transmigration, focal adhesion kinase and endothelial barrier function. Microvascular Research 83: 82–88.PubMedCentralCrossRefPubMed
34.
go back to reference Hsu, Y.C., L.F. Wang, and Y.W. Chien. 2007. Nitric oxide in the pathogenesis of diffuse pulmonary fibrosis. Free Radical Biology and Medicine 42: 599–607.CrossRefPubMed Hsu, Y.C., L.F. Wang, and Y.W. Chien. 2007. Nitric oxide in the pathogenesis of diffuse pulmonary fibrosis. Free Radical Biology and Medicine 42: 599–607.CrossRefPubMed
Metadata
Title
Hypertonic Saline (NaCl 7.5 %) Reduces LPS-Induced Acute Lung Injury in Rats
Authors
Ricardo Costa Petroni
Paolo Jose Cesare Biselli
Thais Martins de Lima
Mariana Cardillo Theobaldo
Elia Tamaso Caldini
Rosângela Nascimento Pimentel
Hermes Vieira Barbeiro
Suely Ariga Kubo
Irineu Tadeu Velasco
Francisco Garcia Soriano
Publication date
01-12-2015
Publisher
Springer US
Published in
Inflammation / Issue 6/2015
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-015-0183-4

Other articles of this Issue 6/2015

Inflammation 6/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine