Skip to main content
Top
Published in: Inflammation 3/2012

01-06-2012

Pyranocoumarins Isolated from Peucedanum praeruptorum Dunn Suppress Lipopolysaccharide-Induced Inflammatory Response in Murine Macrophages Through Inhibition of NF-κB and STAT3 Activation

Authors: Peng-Jiu Yu, Hong Jin, Jun-Yan Zhang, Guang-Fa Wang, Jing-Rong Li, Zheng-Guang Zhu, Yuan-Xin Tian, Shao-Yu Wu, Wei Xu, Jia-Jie Zhang, Shu-Guang Wu

Published in: Inflammation | Issue 3/2012

Login to get access

Abstract

Praeruptorin C, D, and E (PC, PD, and PE) are three pyranocoumarins isolated from the dried root of Peucedanum praeruptorum Dunn of Umbelliferae. In the present study, we investigated the anti-inflammatory effect of these compounds in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Pyranocoumarins significantly inhibited LPS-induced production of nitric oxide, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). The mRNA and protein expressions of inducible nitric oxide synthase, IL-6, and TNF-α were also suppressed by these compounds. Both PD and PE exhibited greater anti-inflammatory activities than PC. Further study showed that pyranocoumarins suppressed the cytoplasmic loss of inhibitor κB-α protein and inhibited the translocation of NF-κB from cytoplasm to nucleus. In addition, pyranocoumarins suppressed LPS-induced STAT3 tyrosine phosphorylation. Taken together, the results suggest that pyranocoumarins may exert anti-inflammatory effects in LPS-stimulated RAW 264.7 macrophages through the inhibition of NF-κB and STAT3 activation.
Literature
2.
go back to reference Poltorak, A., X. He, I. Smirnova, M.Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, M. Freudenberg, P. Ricciardi-Castagnoli, B. Layton, and B. Beutler. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science 282: 2085–2088.PubMedCrossRef Poltorak, A., X. He, I. Smirnova, M.Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, M. Freudenberg, P. Ricciardi-Castagnoli, B. Layton, and B. Beutler. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science 282: 2085–2088.PubMedCrossRef
3.
go back to reference Qureshi, S.T., L. Lariviere, G. Leveque, S. Clermont, K.J. Moore, P. Gros, and D. Malo. 1999. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med 189: 615–625.PubMedCrossRef Qureshi, S.T., L. Lariviere, G. Leveque, S. Clermont, K.J. Moore, P. Gros, and D. Malo. 1999. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med 189: 615–625.PubMedCrossRef
4.
go back to reference Ulevitch, R.J., and P.S. Tobias. 1995. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 13: 437–457.PubMedCrossRef Ulevitch, R.J., and P.S. Tobias. 1995. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 13: 437–457.PubMedCrossRef
5.
go back to reference Laskin, D.L., and K.J. Pendino. 1995. Macrophages and inflammatory mediators in tissue injury. Annu Rev Pharmacol Toxicol 35: 655–677.PubMedCrossRef Laskin, D.L., and K.J. Pendino. 1995. Macrophages and inflammatory mediators in tissue injury. Annu Rev Pharmacol Toxicol 35: 655–677.PubMedCrossRef
8.
go back to reference Fujihara, M., M. Muroi, K. Tanamoto, T. Suzuki, H. Azuma, and H. Ikeda. 2003. Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: Roles of the receptor complex. Pharmacol Ther 100: 171–194.PubMedCrossRef Fujihara, M., M. Muroi, K. Tanamoto, T. Suzuki, H. Azuma, and H. Ikeda. 2003. Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: Roles of the receptor complex. Pharmacol Ther 100: 171–194.PubMedCrossRef
9.
go back to reference Pahl, H.L. 1999. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18: 6853–6866.PubMedCrossRef Pahl, H.L. 1999. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18: 6853–6866.PubMedCrossRef
10.
go back to reference Sethi, G., and V. Tergaonkar. 2009. Potential pharmacological control of the NF-kappaB pathway. Trends Pharmacol Sci 30: 313–321.PubMedCrossRef Sethi, G., and V. Tergaonkar. 2009. Potential pharmacological control of the NF-kappaB pathway. Trends Pharmacol Sci 30: 313–321.PubMedCrossRef
11.
go back to reference Guha, M., and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cell Signal 13: 85–94.PubMedCrossRef Guha, M., and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cell Signal 13: 85–94.PubMedCrossRef
12.
go back to reference Tamiya, T., I. Kashiwagi, R. Takahashi, H. Yasukawa, and A. Yoshimura. 2011. Suppressors of cytokine signaling (SOCS) proteins and JAK/STAT pathways: Regulation of T-cell inflammation by SOCS1 and SOCS3. Arterioscler Thromb Vasc Biol 31: 980–985.PubMedCrossRef Tamiya, T., I. Kashiwagi, R. Takahashi, H. Yasukawa, and A. Yoshimura. 2011. Suppressors of cytokine signaling (SOCS) proteins and JAK/STAT pathways: Regulation of T-cell inflammation by SOCS1 and SOCS3. Arterioscler Thromb Vasc Biol 31: 980–985.PubMedCrossRef
13.
go back to reference Yu, H., D. Pardoll, and R. Jove. 2009. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat Rev Cancer 9: 798–809.PubMedCrossRef Yu, H., D. Pardoll, and R. Jove. 2009. STATs in cancer inflammation and immunity: A leading role for STAT3. Nat Rev Cancer 9: 798–809.PubMedCrossRef
14.
go back to reference Rawlings, J.S., K.M. Rosler, and D.A. Harrison. 2004. The JAK/STAT signaling pathway. J Cell Sci 117: 1281–1283.PubMedCrossRef Rawlings, J.S., K.M. Rosler, and D.A. Harrison. 2004. The JAK/STAT signaling pathway. J Cell Sci 117: 1281–1283.PubMedCrossRef
15.
go back to reference Gao, J.J., M.B. Filla, M.J. Fultz, S.N. Vogel, S.W. Russell, and W.J. Murphy. 1998. Autocrine/paracrine IFN-alphabeta mediates the lipopolysaccharide-induced activation of transcription factor Stat1alpha in mouse macrophages: Pivotal role of Stat1alpha in induction of the inducible nitric oxide synthase gene. J Immunol 161: 4803–4810.PubMed Gao, J.J., M.B. Filla, M.J. Fultz, S.N. Vogel, S.W. Russell, and W.J. Murphy. 1998. Autocrine/paracrine IFN-alphabeta mediates the lipopolysaccharide-induced activation of transcription factor Stat1alpha in mouse macrophages: Pivotal role of Stat1alpha in induction of the inducible nitric oxide synthase gene. J Immunol 161: 4803–4810.PubMed
16.
go back to reference Jacobs, A.T., and L.J. Ignarro. 2001. Lipopolysaccharide-induced expression of interferon-beta mediates the timing of inducible nitric-oxide synthase induction in RAW 264.7 macrophages. J Biol Chem 276: 47950–47957.PubMed Jacobs, A.T., and L.J. Ignarro. 2001. Lipopolysaccharide-induced expression of interferon-beta mediates the timing of inducible nitric-oxide synthase induction in RAW 264.7 macrophages. J Biol Chem 276: 47950–47957.PubMed
17.
go back to reference Lee, C., H.K. Lim, J. Sakong, Y.S. Lee, J.R. Kim, and S.H. Baek. 2006. Janus kinase-signal transducer and activator of transcription mediates phosphatidic acid-induced interleukin (IL)-1beta and IL-6 production. Mol Pharmacol 69: 1041–1047.PubMed Lee, C., H.K. Lim, J. Sakong, Y.S. Lee, J.R. Kim, and S.H. Baek. 2006. Janus kinase-signal transducer and activator of transcription mediates phosphatidic acid-induced interleukin (IL)-1beta and IL-6 production. Mol Pharmacol 69: 1041–1047.PubMed
18.
go back to reference Samavati, L., R. Rastogi, W. Du, M. Huttemann, A. Fite, and L. Franchi. 2009. STAT3 tyrosine phosphorylation is critical for interleukin 1 beta and interleukin-6 production in response to lipopolysaccharide and live bacteria. Mol Immunol 46: 1867–1877.PubMedCrossRef Samavati, L., R. Rastogi, W. Du, M. Huttemann, A. Fite, and L. Franchi. 2009. STAT3 tyrosine phosphorylation is critical for interleukin 1 beta and interleukin-6 production in response to lipopolysaccharide and live bacteria. Mol Immunol 46: 1867–1877.PubMedCrossRef
19.
go back to reference Wu, J.Y., W.F. Fong, J.X. Zhang, C.H. Leung, H.L. Kwong, M.S. Yang, D. Li, and H.Y. Cheung. 2003. Reversal of multidrug resistance in cancer cells by pyranocoumarins isolated from Radix Peucedani. Eur J Pharmacol 473: 9–17.PubMedCrossRef Wu, J.Y., W.F. Fong, J.X. Zhang, C.H. Leung, H.L. Kwong, M.S. Yang, D. Li, and H.Y. Cheung. 2003. Reversal of multidrug resistance in cancer cells by pyranocoumarins isolated from Radix Peucedani. Eur J Pharmacol 473: 9–17.PubMedCrossRef
20.
go back to reference Kumar, A., R.A. Maurya, S. Sharma, P. Ahmad, A.B. Singh, G. Bhatia, and A.K. Srivastava. 2009. Pyranocoumarins: A new class of anti-hyperglycemic and anti-dyslipidemic agents. Bioorg Med Chem Lett 19: 6447–6451.PubMedCrossRef Kumar, A., R.A. Maurya, S. Sharma, P. Ahmad, A.B. Singh, G. Bhatia, and A.K. Srivastava. 2009. Pyranocoumarins: A new class of anti-hyperglycemic and anti-dyslipidemic agents. Bioorg Med Chem Lett 19: 6447–6451.PubMedCrossRef
21.
go back to reference Xu, Z.Q., K. Pupek, W.J. Suling, L. Enache, and M.T. Flavin. 2006. Pyranocoumarin, a novel anti-TB pharmacophore: Synthesis and biological evaluation against Mycobacterium tuberculosis. Bioorg Med Chem 14: 4610–4626.PubMedCrossRef Xu, Z.Q., K. Pupek, W.J. Suling, L. Enache, and M.T. Flavin. 2006. Pyranocoumarin, a novel anti-TB pharmacophore: Synthesis and biological evaluation against Mycobacterium tuberculosis. Bioorg Med Chem 14: 4610–4626.PubMedCrossRef
22.
go back to reference Garcia-Argaez, A.N., T.O. Ramirez Apan, H. Parra Delgado, G. Velazquez, and M. Martinez-Vazquez. 2000. Anti-inflammatory activity of coumarins from Decatropis bicolor on TPA ear mice model. Planta Med 66: 279–281.PubMedCrossRef Garcia-Argaez, A.N., T.O. Ramirez Apan, H. Parra Delgado, G. Velazquez, and M. Martinez-Vazquez. 2000. Anti-inflammatory activity of coumarins from Decatropis bicolor on TPA ear mice model. Planta Med 66: 279–281.PubMedCrossRef
23.
go back to reference Kim, J.H., J.H. Jeong, S.T. Jeon, H. Kim, J. Ock, K. Suk, S.I. Kim, K.S. Song, and W.H. Lee. 2006. Decursin inhibits induction of inflammatory mediators by blocking nuclear factor-kappaB activation in macrophages. Mol Pharmacol 69: 1783–1790.PubMedCrossRef Kim, J.H., J.H. Jeong, S.T. Jeon, H. Kim, J. Ock, K. Suk, S.I. Kim, K.S. Song, and W.H. Lee. 2006. Decursin inhibits induction of inflammatory mediators by blocking nuclear factor-kappaB activation in macrophages. Mol Pharmacol 69: 1783–1790.PubMedCrossRef
24.
go back to reference Yu, P.J., W. Ci, G.F. Wang, J.Y. Zhang, S.Y. Wu, W. Xu, H. Jin, Z.G. Zhu, J.J. Zhang, J.X. Pang, and S.G. Wu. 2010. Praeruptorin a inhibits lipopolysaccharide-induced inflammatory response in murine macrophages through inhibition of NF-kappaB pathway activation. Phytother Res 25: 550–556.PubMedCrossRef Yu, P.J., W. Ci, G.F. Wang, J.Y. Zhang, S.Y. Wu, W. Xu, H. Jin, Z.G. Zhu, J.J. Zhang, J.X. Pang, and S.G. Wu. 2010. Praeruptorin a inhibits lipopolysaccharide-induced inflammatory response in murine macrophages through inhibition of NF-kappaB pathway activation. Phytother Res 25: 550–556.PubMedCrossRef
25.
go back to reference Chen, Z.X., B.S. Huang, Q.L. She, and G.F. Zeng. 1979. The chemical constituents of Bai-Hua-Qian-Hu, the root of Peucedanum praeruptorum Dunn. (Umbelliferae)—Four new coumarins (author’s transl). Yao Xue Xue Bao 14: 486–496.PubMed Chen, Z.X., B.S. Huang, Q.L. She, and G.F. Zeng. 1979. The chemical constituents of Bai-Hua-Qian-Hu, the root of Peucedanum praeruptorum Dunn. (Umbelliferae)—Four new coumarins (author’s transl). Yao Xue Xue Bao 14: 486–496.PubMed
26.
go back to reference Ye, J.S., H.Q. Zhang, and C.Q. Yuan. 1982. Isolation and identification of coumarin praeruptorin E from the root of the Chinese drug Peucedanum praeruptorum Dunn (Umbelliferae). Yao Xue Xue Bao 17: 431–434.PubMed Ye, J.S., H.Q. Zhang, and C.Q. Yuan. 1982. Isolation and identification of coumarin praeruptorin E from the root of the Chinese drug Peucedanum praeruptorum Dunn (Umbelliferae). Yao Xue Xue Bao 17: 431–434.PubMed
27.
go back to reference Bauche, F., J.P. Stephan, A.M. Touzalin, and B. Jegou. 1998. In vitro regulation of an inducible-type NO synthase in the rat seminiferous tubule cells. Biol Reprod 58: 431–438.PubMedCrossRef Bauche, F., J.P. Stephan, A.M. Touzalin, and B. Jegou. 1998. In vitro regulation of an inducible-type NO synthase in the rat seminiferous tubule cells. Biol Reprod 58: 431–438.PubMedCrossRef
28.
go back to reference Bogdan, C., M. Rollinghoff, and A. Diefenbach. 2000. The role of nitric oxide in innate immunity. Immunol Rev 173: 17–26.PubMedCrossRef Bogdan, C., M. Rollinghoff, and A. Diefenbach. 2000. The role of nitric oxide in innate immunity. Immunol Rev 173: 17–26.PubMedCrossRef
29.
go back to reference Korhonen, R., A. Lahti, H. Kankaanranta, and E. Moilanen. 2005. Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy 4: 471–479.PubMedCrossRef Korhonen, R., A. Lahti, H. Kankaanranta, and E. Moilanen. 2005. Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy 4: 471–479.PubMedCrossRef
30.
go back to reference Pautz, A., J. Art, S. Hahn, S. Nowag, C. Voss, and H. Kleinert. 2010. Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide. 23: 75–93.PubMedCrossRef Pautz, A., J. Art, S. Hahn, S. Nowag, C. Voss, and H. Kleinert. 2010. Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide. 23: 75–93.PubMedCrossRef
31.
go back to reference Kleinert, H., A. Pautz, K. Linker, and P.M. Schwarz. 2004. Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol 500: 255–266.PubMedCrossRef Kleinert, H., A. Pautz, K. Linker, and P.M. Schwarz. 2004. Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol 500: 255–266.PubMedCrossRef
32.
go back to reference Kim, H.J., K. Tsoyi, J.M. Heo, Y.J. Kang, M.K. Park, Y.S. Lee, J.H. Lee, H.G. Seo, H.S. Yun-Choi, and K.C. Chang. 2007. Regulation of lipopolysaccharide-induced inducible nitric-oxide synthase expression through the nuclear factor-kappaB pathway and interferon-beta/tyrosine kinase 2/Janus tyrosine kinase 2-signal transducer and activator of transcription-1 signaling cascades by 2-naphthylethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (THI 53), a new synthetic isoquinoline alkaloid. J Pharmacol Exp Ther 320: 782–789.PubMedCrossRef Kim, H.J., K. Tsoyi, J.M. Heo, Y.J. Kang, M.K. Park, Y.S. Lee, J.H. Lee, H.G. Seo, H.S. Yun-Choi, and K.C. Chang. 2007. Regulation of lipopolysaccharide-induced inducible nitric-oxide synthase expression through the nuclear factor-kappaB pathway and interferon-beta/tyrosine kinase 2/Janus tyrosine kinase 2-signal transducer and activator of transcription-1 signaling cascades by 2-naphthylethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (THI 53), a new synthetic isoquinoline alkaloid. J Pharmacol Exp Ther 320: 782–789.PubMedCrossRef
33.
go back to reference Jung, H.J., S.J. Kim, W.K. Jeon, B.C. Kim, K. Ahn, K. Kim, Y.M. Kim, E.H. Park, and C.J. Lim. 2010. Anti-inflammatory activity of n-propyl gallate through down-regulation of NF-kappaB and JNK pathways. Inflammation 34: 352–361.CrossRef Jung, H.J., S.J. Kim, W.K. Jeon, B.C. Kim, K. Ahn, K. Kim, Y.M. Kim, E.H. Park, and C.J. Lim. 2010. Anti-inflammatory activity of n-propyl gallate through down-regulation of NF-kappaB and JNK pathways. Inflammation 34: 352–361.CrossRef
34.
go back to reference Tak, P.P., and G.S. Firestein. 2001. NF-kappaB: A key role in inflammatory diseases. J Clin Invest 107: 7–11.PubMedCrossRef Tak, P.P., and G.S. Firestein. 2001. NF-kappaB: A key role in inflammatory diseases. J Clin Invest 107: 7–11.PubMedCrossRef
35.
go back to reference Thalhamer, T., M.A. McGrath, and M.M. Harnett. 2008. MAPKs and their relevance to arthritis and inflammation. Rheumatology (Oxford) 47: 409–414.CrossRef Thalhamer, T., M.A. McGrath, and M.M. Harnett. 2008. MAPKs and their relevance to arthritis and inflammation. Rheumatology (Oxford) 47: 409–414.CrossRef
36.
go back to reference Huang, W.L., H.H. Yeh, C.C. Lin, W.W. Lai, J.Y. Chang, W.T. Chang, and W.C. Su. 2010. Signal transducer and activator of transcription 3 activation up-regulates interleukin-6 autocrine production: A biochemical and genetic study of established cancer cell lines and clinical isolated human cancer cells. Mol Cancer 9: 309.PubMedCrossRef Huang, W.L., H.H. Yeh, C.C. Lin, W.W. Lai, J.Y. Chang, W.T. Chang, and W.C. Su. 2010. Signal transducer and activator of transcription 3 activation up-regulates interleukin-6 autocrine production: A biochemical and genetic study of established cancer cell lines and clinical isolated human cancer cells. Mol Cancer 9: 309.PubMedCrossRef
37.
go back to reference Huang, C., J. Cao, K.J. Huang, F. Zhang, T. Jiang, L. Zhu, and Z.J. Qiu. 2006. Inhibition of STAT3 activity with AG490 decreases the invasion of human pancreatic cancer cells in vitro. Cancer Sci 97: 1417–1423.PubMedCrossRef Huang, C., J. Cao, K.J. Huang, F. Zhang, T. Jiang, L. Zhu, and Z.J. Qiu. 2006. Inhibition of STAT3 activity with AG490 decreases the invasion of human pancreatic cancer cells in vitro. Cancer Sci 97: 1417–1423.PubMedCrossRef
38.
go back to reference Akifusa, S., N. Kamio, Y. Shimazaki, N. Yamaguchi, K. Nonaka, and Y. Yamashita. 2010. Involvement of the JAK-STAT pathway and SOCS3 in the regulation of adiponectin-generated reactive oxygen species in murine macrophage RAW 264 cells. J Cell Biochem 111: 597–606.PubMedCrossRef Akifusa, S., N. Kamio, Y. Shimazaki, N. Yamaguchi, K. Nonaka, and Y. Yamashita. 2010. Involvement of the JAK-STAT pathway and SOCS3 in the regulation of adiponectin-generated reactive oxygen species in murine macrophage RAW 264 cells. J Cell Biochem 111: 597–606.PubMedCrossRef
39.
go back to reference Kimura, A., T. Naka, T. Muta, O. Takeuchi, S. Akira, I. Kawase, and T. Kishimoto. 2005. Suppressor of cytokine signaling-1 selectively inhibits LPS-induced IL-6 production by regulating JAK-STAT. Proc Natl Acad Sci U S A 102: 17089–17094.PubMedCrossRef Kimura, A., T. Naka, T. Muta, O. Takeuchi, S. Akira, I. Kawase, and T. Kishimoto. 2005. Suppressor of cytokine signaling-1 selectively inhibits LPS-induced IL-6 production by regulating JAK-STAT. Proc Natl Acad Sci U S A 102: 17089–17094.PubMedCrossRef
40.
go back to reference Han, S.H., J.H. Kim, H.S. Seo, M.H. Martin, G.H. Chung, S.M. Michalek, and M.H. Nahm. 2006. Lipoteichoic acid-induced nitric oxide production depends on the activation of platelet-activating factor receptor and Jak2. J Immunol 176: 573–579.PubMed Han, S.H., J.H. Kim, H.S. Seo, M.H. Martin, G.H. Chung, S.M. Michalek, and M.H. Nahm. 2006. Lipoteichoic acid-induced nitric oxide production depends on the activation of platelet-activating factor receptor and Jak2. J Immunol 176: 573–579.PubMed
41.
go back to reference Scherle, P.A., E.A. Jones, M.F. Favata, A.J. Daulerio, M.B. Covington, S.A. Nurnberg, R.L. Magolda, and J.M. Trzaskos. 1998. Inhibition of MAP kinase kinase prevents cytokine and prostaglandin E2 production in lipopolysaccharide-stimulated monocytes. J Immunol 161: 5681–5686.PubMed Scherle, P.A., E.A. Jones, M.F. Favata, A.J. Daulerio, M.B. Covington, S.A. Nurnberg, R.L. Magolda, and J.M. Trzaskos. 1998. Inhibition of MAP kinase kinase prevents cytokine and prostaglandin E2 production in lipopolysaccharide-stimulated monocytes. J Immunol 161: 5681–5686.PubMed
42.
go back to reference van der Bruggen, T., S. Nijenhuis, E. van Raaij, J. Verhoef, and B.S. van Asbeck. 1999. Lipopolysaccharide-induced tumor necrosis factor alpha production by human monocytes involves the raf-1/MEK1-MEK2/ERK1-ERK2 pathway. Infect Immun 67: 3824–3829.PubMed van der Bruggen, T., S. Nijenhuis, E. van Raaij, J. Verhoef, and B.S. van Asbeck. 1999. Lipopolysaccharide-induced tumor necrosis factor alpha production by human monocytes involves the raf-1/MEK1-MEK2/ERK1-ERK2 pathway. Infect Immun 67: 3824–3829.PubMed
Metadata
Title
Pyranocoumarins Isolated from Peucedanum praeruptorum Dunn Suppress Lipopolysaccharide-Induced Inflammatory Response in Murine Macrophages Through Inhibition of NF-κB and STAT3 Activation
Authors
Peng-Jiu Yu
Hong Jin
Jun-Yan Zhang
Guang-Fa Wang
Jing-Rong Li
Zheng-Guang Zhu
Yuan-Xin Tian
Shao-Yu Wu
Wei Xu
Jia-Jie Zhang
Shu-Guang Wu
Publication date
01-06-2012
Publisher
Springer US
Published in
Inflammation / Issue 3/2012
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-011-9400-y

Other articles of this Issue 3/2012

Inflammation 3/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine