Skip to main content
Top
Published in: Inflammation 5/2011

01-10-2011

Acute Lung Inflammation in Klebsiella pneumoniae B5055-Induced Pneumonia and Sepsis in BALB/c Mice: A Comparative Study

Authors: Vijay Kumar, Sanjay Chhibber

Published in: Inflammation | Issue 5/2011

Login to get access

Abstract

Lungs play an important role in the body's defense against a variety of pathogens, but this network of immune system-mediated defense can be deregulated during acute pulmonary infections. The present study compares acute lung inflammation occurring during Klebsiella pneumoniae B5055-induced pneumonia and sepsis in BALB/c mice. Pneumonia was induced by intranasal instillation of bacteria (104 cfu), while sepsis was developed by placing the fibrin-thrombin clot containing known amount of bacteria (102 cfu) into the peritoneal cavity of animals. Mice with sepsis showed 100% mortality within five post-infection days, whereas all the animals with pneumonia survived. In animals suffering from K. pneumoniae B5055-induced pneumonia, all the inflammatory parameters (TNF-α, IL-1α, MPO, MDA, and NO) were found to be maximum till third post-infection day, after that, a decline was observed, whereas in septic animals, all the above-mentioned markers of inflammation kept on increasing. Histopathological study showed presence of alternatively activated alveolar macrophages (or foam cells) in lungs of mice with pneumonia after third post-infection day, which might have contributed to the induction of resolution of inflammation, but no such observation was made in lungs of septic mice. Hence, during pneumonia, controlled activation of macrophages may lead to resolution of inflammation.
Literature
1.
go back to reference Ware, L.B., and M.A. Matthay. 2000. The acute respiratory distress syndrome. The New England Journal of Medicine 342: 1334–1349.PubMedCrossRef Ware, L.B., and M.A. Matthay. 2000. The acute respiratory distress syndrome. The New England Journal of Medicine 342: 1334–1349.PubMedCrossRef
2.
go back to reference Sesler, C.N., G.L. Bloomfield, and A.A. Fowler. 1996. Current concepts of sepsis and acute lung injury. Clinics in Chest Medicine 17: 213–235.CrossRef Sesler, C.N., G.L. Bloomfield, and A.A. Fowler. 1996. Current concepts of sepsis and acute lung injury. Clinics in Chest Medicine 17: 213–235.CrossRef
3.
go back to reference Weiland, J.E., W.B. Davis, J.F. Holter, J.R. Mohammed, P.M. Dorinsky, and J.E. Gadek. 1986. Lung neutrophils in the adult respiratory distress syndrome: Clinical and pathophysiologic significance. The American Review of Respiratory Disease 133: 218–235.PubMed Weiland, J.E., W.B. Davis, J.F. Holter, J.R. Mohammed, P.M. Dorinsky, and J.E. Gadek. 1986. Lung neutrophils in the adult respiratory distress syndrome: Clinical and pathophysiologic significance. The American Review of Respiratory Disease 133: 218–235.PubMed
4.
go back to reference Bernard, J.W., M.G. Biro, S.K. Lo, S. Ohno, M.A. Caroza, M. Moyle, H.R. Soule, and A.B. Malik. 1995. Neutrophil inhibitory factor prevents neutrophil-dependent lung injury. Journal of Immunology 155: 4876–4881. Bernard, J.W., M.G. Biro, S.K. Lo, S. Ohno, M.A. Caroza, M. Moyle, H.R. Soule, and A.B. Malik. 1995. Neutrophil inhibitory factor prevents neutrophil-dependent lung injury. Journal of Immunology 155: 4876–4881.
5.
go back to reference DeMarsh, P.L., G.I. Wells, T.F. Lewandowski, C.L. Frey, P.K. Bhatnagar, and E.J.R. Ostovic. 1996. Treatment of experimental gram-negative and gram positive bacterial sepsis with the hemoregulatory peptide SK&F 107647. The Journal of Infectious Diseases 173: 203–211.PubMedCrossRef DeMarsh, P.L., G.I. Wells, T.F. Lewandowski, C.L. Frey, P.K. Bhatnagar, and E.J.R. Ostovic. 1996. Treatment of experimental gram-negative and gram positive bacterial sepsis with the hemoregulatory peptide SK&F 107647. The Journal of Infectious Diseases 173: 203–211.PubMedCrossRef
6.
go back to reference Toky, V., S. Sharma, B.B. Arora, and S. Chhibber. 2003. Establishment of sepsis model following implantation of Klebsiella pneumoniae-infected fibrin clot into the peritoneal cavity of mice. Folia Microbiologica 48(5): 665–669.PubMedCrossRef Toky, V., S. Sharma, B.B. Arora, and S. Chhibber. 2003. Establishment of sepsis model following implantation of Klebsiella pneumoniae-infected fibrin clot into the peritoneal cavity of mice. Folia Microbiologica 48(5): 665–669.PubMedCrossRef
7.
go back to reference Held, T.K., M.E.A. Mielke, M. Chedid, M. Unger, M. Trautman, D. Huhn, and A.S. Cross. 1998. Granulocyte colony-stimulating factor worsens the outcome the outcome of the experimental Klebsiella pneumoniae pneumonia through direct interaction with the bacteria. Blood 91: 2525–2533.PubMed Held, T.K., M.E.A. Mielke, M. Chedid, M. Unger, M. Trautman, D. Huhn, and A.S. Cross. 1998. Granulocyte colony-stimulating factor worsens the outcome the outcome of the experimental Klebsiella pneumoniae pneumonia through direct interaction with the bacteria. Blood 91: 2525–2533.PubMed
8.
go back to reference Yadav, V., S. Sharma, K. Harjai, H. Mohan, and S. Chhibber. 2003. Induction and resolution of lobar pneumonia following intranasal instillation with Klebsiella pneumoniae in the mice. Indian Journal of Medical Research 118: 47–52.PubMed Yadav, V., S. Sharma, K. Harjai, H. Mohan, and S. Chhibber. 2003. Induction and resolution of lobar pneumonia following intranasal instillation with Klebsiella pneumoniae in the mice. Indian Journal of Medical Research 118: 47–52.PubMed
9.
go back to reference Greenberger, M.J., R.M. Strieter, S.L. Kunkel, J.M. Danforth, R.E. Goodman, and T.J. Standiford. 1995. Neutralization of IL-10 increases survival in a murine model of Klebsiella pneumoniae. Journal of Immunology 155: 722–729. Greenberger, M.J., R.M. Strieter, S.L. Kunkel, J.M. Danforth, R.E. Goodman, and T.J. Standiford. 1995. Neutralization of IL-10 increases survival in a murine model of Klebsiella pneumoniae. Journal of Immunology 155: 722–729.
10.
go back to reference Ohkawa, H., N. Ohishi, and K. Yagi. 1979. Assay of lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 95: 351–358.PubMedCrossRef Ohkawa, H., N. Ohishi, and K. Yagi. 1979. Assay of lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 95: 351–358.PubMedCrossRef
11.
go back to reference Tsai, W.C., R.M. Strieter, D.A. Zisman, J.M. Wilkowski, K.A. Bucknell, G. Chen, and T.J. Standiford. 1997. Nitric oxide is required for effective innate immunity against Klebsiella pneumoniae. Infection and Immunity 65: 1870–1875.PubMed Tsai, W.C., R.M. Strieter, D.A. Zisman, J.M. Wilkowski, K.A. Bucknell, G. Chen, and T.J. Standiford. 1997. Nitric oxide is required for effective innate immunity against Klebsiella pneumoniae. Infection and Immunity 65: 1870–1875.PubMed
12.
go back to reference Bhatia, M., and S. Moochhala. 2004. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. The Journal of Pathology 133: 913–927. Bhatia, M., and S. Moochhala. 2004. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. The Journal of Pathology 133: 913–927.
13.
go back to reference Chabot, F., J.A. Mitchell, J.M. Gutteridge, and T.W. Evans. 1998. Reactive oxygen species in acute lung injury. The European Respiratory Journal 11: 745–757.PubMed Chabot, F., J.A. Mitchell, J.M. Gutteridge, and T.W. Evans. 1998. Reactive oxygen species in acute lung injury. The European Respiratory Journal 11: 745–757.PubMed
14.
go back to reference Rabinovici, R., P.J. Bugelski, K. Eesser, L.M. Hillegass, J. Vernick, and G. Feuerstein. 1993. ARDS-like lung injury produced by endotoxin in platelet-activating factor-primed rats. Journal of Applied Physiology 74: 1791–1802.PubMed Rabinovici, R., P.J. Bugelski, K. Eesser, L.M. Hillegass, J. Vernick, and G. Feuerstein. 1993. ARDS-like lung injury produced by endotoxin in platelet-activating factor-primed rats. Journal of Applied Physiology 74: 1791–1802.PubMed
15.
go back to reference Goya, T., M. Abe, H. Shimura, and M. Torisu. 1992. Characteristics of alveolar macrophages in experimental septic lung. Journal of Leukocyte Biology 52: 236–243.PubMed Goya, T., M. Abe, H. Shimura, and M. Torisu. 1992. Characteristics of alveolar macrophages in experimental septic lung. Journal of Leukocyte Biology 52: 236–243.PubMed
16.
go back to reference Harris, S.E., S. Nelson, C.L. Astry, B.G. Bainton, and W.R. Summer. 1988. Endotoxin-induced suppression of pulmonary antibacterial defenses against Staphylococcus aureus. The American Review of Respiratory Disease 138: 1439–1443.PubMed Harris, S.E., S. Nelson, C.L. Astry, B.G. Bainton, and W.R. Summer. 1988. Endotoxin-induced suppression of pulmonary antibacterial defenses against Staphylococcus aureus. The American Review of Respiratory Disease 138: 1439–1443.PubMed
17.
go back to reference Frevert, C.W., A.E. Warner, E. Weller, and J.D. Brain. 1998. The effect of endotoxin on in vivo rat alveolar macrophage phagocytosis. Experimental Lung Research 24: 745–758.PubMedCrossRef Frevert, C.W., A.E. Warner, E. Weller, and J.D. Brain. 1998. The effect of endotoxin on in vivo rat alveolar macrophage phagocytosis. Experimental Lung Research 24: 745–758.PubMedCrossRef
18.
go back to reference Jacobs, R.F., D.P. Kiel, and R.A. Balk. 1986. Alveolar macrophage function in a canine model of endotoxin-induced lung injury. The American Review of Respiratory Disease 134: 745–751.PubMed Jacobs, R.F., D.P. Kiel, and R.A. Balk. 1986. Alveolar macrophage function in a canine model of endotoxin-induced lung injury. The American Review of Respiratory Disease 134: 745–751.PubMed
19.
go back to reference Reddy, R.C., G.H. Chen, M.W. Newstead, T. Moore, X. Zeng, K. Tateda, and T.J. Standiford. 2001. Alveolar macrophage deactivation in murine septic peritonitis: Role of interleukin-10. Infection and immunity 69: 1394–1401.PubMedCrossRef Reddy, R.C., G.H. Chen, M.W. Newstead, T. Moore, X. Zeng, K. Tateda, and T.J. Standiford. 2001. Alveolar macrophage deactivation in murine septic peritonitis: Role of interleukin-10. Infection and immunity 69: 1394–1401.PubMedCrossRef
20.
go back to reference Steinhauser, M.L., C.M. Hogaboam, S.I. Kunkel, N.W. Lukacs, R.M. Strieter, and T.J. Standiford. 1999. IL-10 is a major mediator of sepsis-induced impairment in lung antibacterial host defence. Journal of Immunology 162: 392–399. Steinhauser, M.L., C.M. Hogaboam, S.I. Kunkel, N.W. Lukacs, R.M. Strieter, and T.J. Standiford. 1999. IL-10 is a major mediator of sepsis-induced impairment in lung antibacterial host defence. Journal of Immunology 162: 392–399.
21.
go back to reference Deng, J.C., G. Cheng, M.W. Newstead, X. Zeng, K. Kobayashi, R.A. Flavell, and T.J. Standiford. 2006. Sepsis-induced suppression of lung innate immunity is mediated by IRAK-M. Journal of Clinical Investigation 116: 2532–2542.PubMed Deng, J.C., G. Cheng, M.W. Newstead, X. Zeng, K. Kobayashi, R.A. Flavell, and T.J. Standiford. 2006. Sepsis-induced suppression of lung innate immunity is mediated by IRAK-M. Journal of Clinical Investigation 116: 2532–2542.PubMed
22.
go back to reference Siracusa, M.C., J.J. Reece, J.F. Urban Jr., and A.L. Scott. 2008. Dynamics of lung macrophage activation in response to helminth infection. Journal of Leukocyte Biology 84: 1422–1433.PubMedCrossRef Siracusa, M.C., J.J. Reece, J.F. Urban Jr., and A.L. Scott. 2008. Dynamics of lung macrophage activation in response to helminth infection. Journal of Leukocyte Biology 84: 1422–1433.PubMedCrossRef
23.
go back to reference Murphy, J.E., P.R. Tedbury, S. Homer-Vanniasinkam, J.H. Walker, and S. Ponnambalam. 2005. Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis 182: 1–15.PubMedCrossRef Murphy, J.E., P.R. Tedbury, S. Homer-Vanniasinkam, J.H. Walker, and S. Ponnambalam. 2005. Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis 182: 1–15.PubMedCrossRef
24.
go back to reference Arredouani, M., Z. Yang, Y. Ning, G. Qin, R. Soininen, K. Tryggvason, and L. Kobzik. 2004. The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. The Journal of Experimental Medicine 200: 267–272.PubMedCrossRef Arredouani, M., Z. Yang, Y. Ning, G. Qin, R. Soininen, K. Tryggvason, and L. Kobzik. 2004. The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. The Journal of Experimental Medicine 200: 267–272.PubMedCrossRef
25.
go back to reference Arredouani, M.S., A. Palecanda, H. Koziel, Y.C. Huang, A. Imrich, T.H. Sulahian, et al. 2005. MARCO is the major binding receptor for unopsonized particles and bacteria on human alveolar macrophages. Journal of Immunology 175: 6058–6064. Arredouani, M.S., A. Palecanda, H. Koziel, Y.C. Huang, A. Imrich, T.H. Sulahian, et al. 2005. MARCO is the major binding receptor for unopsonized particles and bacteria on human alveolar macrophages. Journal of Immunology 175: 6058–6064.
26.
go back to reference Arredouani, M.S., Z. Yang, A. Imrich, Y. Ning, G. Qin, and L. Kobzik. 2006. The macrophage scavenger receptor SR-AI/II and lung defense against pneumococci and particles. American Journal of Respiratory Cell and Molecular Biology 35: 474–478.PubMedCrossRef Arredouani, M.S., Z. Yang, A. Imrich, Y. Ning, G. Qin, and L. Kobzik. 2006. The macrophage scavenger receptor SR-AI/II and lung defense against pneumococci and particles. American Journal of Respiratory Cell and Molecular Biology 35: 474–478.PubMedCrossRef
27.
go back to reference Nair, M.G., Y. Du, J.G. Perrigoue, C. Zaph, J.J. Taylor, M. Goldschmidt, et al. 2009. Alternatively activated macrophage-derived RELM-α is a negative regulator of type 2 inflammation in the lung. The Journal of Experimental Medicine 206(4): 937–952.PubMedCrossRef Nair, M.G., Y. Du, J.G. Perrigoue, C. Zaph, J.J. Taylor, M. Goldschmidt, et al. 2009. Alternatively activated macrophage-derived RELM-α is a negative regulator of type 2 inflammation in the lung. The Journal of Experimental Medicine 206(4): 937–952.PubMedCrossRef
28.
go back to reference Dahl, M., A.K. Bauer, M. Arreduani, R. Soininen, K. Tryggvason, S.R. Kleeberger, and L. Kobzik. 2007. Protection against inhaled oxidants through scavenging of oxidized lipids by macrophage receptors MARCO and SR-AI/II. Journal of Clinical Investigation 117: 757–764.PubMedCrossRef Dahl, M., A.K. Bauer, M. Arreduani, R. Soininen, K. Tryggvason, S.R. Kleeberger, and L. Kobzik. 2007. Protection against inhaled oxidants through scavenging of oxidized lipids by macrophage receptors MARCO and SR-AI/II. Journal of Clinical Investigation 117: 757–764.PubMedCrossRef
29.
go back to reference Ares, M.P.S., M. Stollenwerk, A. Olsson, B. Kallin, S. Jovinge, and J. Nilsson. 2002. Decreased inducibility of TNF expression in lipid-loaded macrophages. BMC Immunology 3: 13–22.PubMedCrossRef Ares, M.P.S., M. Stollenwerk, A. Olsson, B. Kallin, S. Jovinge, and J. Nilsson. 2002. Decreased inducibility of TNF expression in lipid-loaded macrophages. BMC Immunology 3: 13–22.PubMedCrossRef
30.
go back to reference Broug-Holub, E., G.B. Toews, Freek, I. Van, J. Waarden, R.M. Streiter, S.L. Kunkel, R. Paine III, and T.J. Standiford. 1997. Alveolar macrophages are required for protective pulmonary defenses in murine Klebsiella pneumonia: Elimination of alveolar macrophages increases neutrophil recruitment but decreases bacterial clearance and survival. Infection and Immunity 65(4): 1139–1146.PubMed Broug-Holub, E., G.B. Toews, Freek, I. Van, J. Waarden, R.M. Streiter, S.L. Kunkel, R. Paine III, and T.J. Standiford. 1997. Alveolar macrophages are required for protective pulmonary defenses in murine Klebsiella pneumonia: Elimination of alveolar macrophages increases neutrophil recruitment but decreases bacterial clearance and survival. Infection and Immunity 65(4): 1139–1146.PubMed
31.
go back to reference Hashimoto, S., J.-F. Pittet, K. Hong, H. Folkesson, G. Bagby, L. Kobzik, C. Frevert, K. Watanabe, S. Tsurufuji, and J. Wiener-Kronish. 1996. Depletion of alveolar macrophages decreases neutrophil chemotaxis to Pseudomonas airspace infections. The American Journal of Physiology 270: 819–828. Hashimoto, S., J.-F. Pittet, K. Hong, H. Folkesson, G. Bagby, L. Kobzik, C. Frevert, K. Watanabe, S. Tsurufuji, and J. Wiener-Kronish. 1996. Depletion of alveolar macrophages decreases neutrophil chemotaxis to Pseudomonas airspace infections. The American Journal of Physiology 270: 819–828.
32.
go back to reference Morimoto, K., H. Amano, F. Sonoda, M. Baba, M. Senba, H. Yoshimine, H. Yamamoto, T. Ii, K. Oishi, and T. Nagatake. 2001. Alveolar macrophages that phagocytose apoptotic neutrophils produce hepatocyte growth factor during bacterial pneumonia in mice. American Journal of Respiratory Cell and Molecular Biology 24: 608–615.PubMed Morimoto, K., H. Amano, F. Sonoda, M. Baba, M. Senba, H. Yoshimine, H. Yamamoto, T. Ii, K. Oishi, and T. Nagatake. 2001. Alveolar macrophages that phagocytose apoptotic neutrophils produce hepatocyte growth factor during bacterial pneumonia in mice. American Journal of Respiratory Cell and Molecular Biology 24: 608–615.PubMed
Metadata
Title
Acute Lung Inflammation in Klebsiella pneumoniae B5055-Induced Pneumonia and Sepsis in BALB/c Mice: A Comparative Study
Authors
Vijay Kumar
Sanjay Chhibber
Publication date
01-10-2011
Publisher
Springer US
Published in
Inflammation / Issue 5/2011
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-010-9253-9

Other articles of this Issue 5/2011

Inflammation 5/2011 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine