Skip to main content
Top
Published in: Inflammation 1/2008

01-02-2008

Diffuse Axonal Damage, Myelin Impairment, Astrocytosis and Inflammatory Response Following Microinjections of NMDA into The Rat Striatum

Authors: Rafael R. Lima, Joanilson Guimaraes-Silva, Jorge L. Oliveira, Ana Maria R. Costa, Renata D. Souza-Rodrigues, Claudia D. Dos Santos, Cristovam W. Picanço-Diniz, Walace Gomes-Leal

Published in: Inflammation | Issue 1/2008

Login to get access

Abstract

White matter damage and inflammatory response are important secondary outcomes after acute neural disorders. Nevertheless, a few studies addressed the temporal outcomes of these pathological events using non-traumatic models of acute brain injury. In the present study, we describe acute inflammatory response and white matter neuropathology between 1 and 7 days after acute excitotoxic striatal damage. Twenty micrometer sections were stained by hematoxylin and eosin technique for gross histopathological analysis and immunolabed for neutrophils (anti-mbs-1), activated macrophages/microglia (anti-ed1), astrocytes (anti-gfap), damaged axons (anti-βapp) and myelin basic protein (MBP). Recruitment peak of neutrophils and macrophages occurred at 1 and 7 days post-nmda injection, respectively. Diffuse damaged axons (β-app + end-bulbs) were apparent at 7 days, concomitant with progressive myelin impairment and astrocytosis. Further studies using electron microscopy and blockers of inflammatory response and glutamatergic receptors should be performed to confirm and address the mechanisms of white matter damage following an excitotoxic lesion.
Literature
1.
go back to reference Mitsios, N., J. Gaffney, P. Kumar, J. Krupinski, S. Kumar, and M. Slevin. 2006. Pathophysiology of acute ischaemic stroke: an analysis of common signalling mechanisms and identification of new molecular targets. Pathobiology 73:159–175.PubMedCrossRef Mitsios, N., J. Gaffney, P. Kumar, J. Krupinski, S. Kumar, and M. Slevin. 2006. Pathophysiology of acute ischaemic stroke: an analysis of common signalling mechanisms and identification of new molecular targets. Pathobiology 73:159–175.PubMedCrossRef
2.
go back to reference Taylor, T. N., P. H. Davis, J. C. Torner, J. Holmes, J. W. Meyer, and M. F. Jacobson. 1996. Lifetime cost of stroke in the United States. Stroke 27:1459–1466.PubMed Taylor, T. N., P. H. Davis, J. C. Torner, J. Holmes, J. W. Meyer, and M. F. Jacobson. 1996. Lifetime cost of stroke in the United States. Stroke 27:1459–1466.PubMed
3.
go back to reference Lo, E. H., T. Dalkara, and M.A. Moskowitz. 2003. Mechanisms, challenges and opportunities in stroke. Nat. Rev. Neurosci. 4:399–415.PubMedCrossRef Lo, E. H., T. Dalkara, and M.A. Moskowitz. 2003. Mechanisms, challenges and opportunities in stroke. Nat. Rev. Neurosci. 4:399–415.PubMedCrossRef
4.
go back to reference Esiri, M. M. 2007. The interplay between inflammation and neurodegeneration in CNS disease. J. Neuroimmunol. 184:4–16.PubMedCrossRef Esiri, M. M. 2007. The interplay between inflammation and neurodegeneration in CNS disease. J. Neuroimmunol. 184:4–16.PubMedCrossRef
5.
go back to reference Tator, C. H., and M. G. Fehlings. 1991. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J. Neurosurg. 75:15–26.PubMedCrossRef Tator, C. H., and M. G. Fehlings. 1991. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J. Neurosurg. 75:15–26.PubMedCrossRef
6.
go back to reference Yoles, E., and M. Schwartz. 1998. Degeneration of spared axons following partial white matter lesion: implications for optic nerve neuropathies. Exp. Neurol. 153:1–7.PubMedCrossRef Yoles, E., and M. Schwartz. 1998. Degeneration of spared axons following partial white matter lesion: implications for optic nerve neuropathies. Exp. Neurol. 153:1–7.PubMedCrossRef
7.
go back to reference Matute, C., E. Alberdi, M. Domercq, M. V. Sanchez-Gomez, A. Perez-Samartin, A. Rodriguez-Antiguedad, and F. Perez-Cerda. 2007. Excitotoxic damage to white matter. J. Anat. 210:693–702.PubMedCrossRef Matute, C., E. Alberdi, M. Domercq, M. V. Sanchez-Gomez, A. Perez-Samartin, A. Rodriguez-Antiguedad, and F. Perez-Cerda. 2007. Excitotoxic damage to white matter. J. Anat. 210:693–702.PubMedCrossRef
8.
go back to reference Medana, I. M., and M. M. Esiri. 2003. Axonal damage: a key predictor of outcome in human CNS diseases. Brain 126:515–530.PubMedCrossRef Medana, I. M., and M. M. Esiri. 2003. Axonal damage: a key predictor of outcome in human CNS diseases. Brain 126:515–530.PubMedCrossRef
9.
go back to reference Coleman, M., and V. Perry. 2002. Axon pathology in neurological disease: a neglected therapeutic target. Trends. Neurosci. 25:532–537.PubMedCrossRef Coleman, M., and V. Perry. 2002. Axon pathology in neurological disease: a neglected therapeutic target. Trends. Neurosci. 25:532–537.PubMedCrossRef
10.
go back to reference Gomes-Leal, W., D. J. Corkill, and C. W. Picanco-Diniz. 2005. Systematic analysis of axonal damage and inflammatory response in different white matter tracts of acutely injured rat spinal cord. Brain. Res. 1066:57–70.PubMedCrossRef Gomes-Leal, W., D. J. Corkill, and C. W. Picanco-Diniz. 2005. Systematic analysis of axonal damage and inflammatory response in different white matter tracts of acutely injured rat spinal cord. Brain. Res. 1066:57–70.PubMedCrossRef
11.
go back to reference Blight, A. R. 1994. Effects of silica on the outcome from experimental spinal cord injury: implication of macrophages in secondary tissue damage. Neuroscience 60:263–273.PubMedCrossRef Blight, A. R. 1994. Effects of silica on the outcome from experimental spinal cord injury: implication of macrophages in secondary tissue damage. Neuroscience 60:263–273.PubMedCrossRef
12.
go back to reference Popovich, P. G., Z. Guan, P. Wei, I. Huitinga, N. van Rooijen, and B. T. Stokes. 1999. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp. Neurol. 158:351–365.PubMedCrossRef Popovich, P. G., Z. Guan, P. Wei, I. Huitinga, N. van Rooijen, and B. T. Stokes. 1999. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp. Neurol. 158:351–365.PubMedCrossRef
13.
go back to reference Popovich, P. G., Z. Guan, V. McGaughy, L. Fisher, W. F. Hickey, and D. M. Basso. 2002. The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J. Neuropathol. Exp. Neurol. 61:623–633.PubMed Popovich, P. G., Z. Guan, V. McGaughy, L. Fisher, W. F. Hickey, and D. M. Basso. 2002. The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J. Neuropathol. Exp. Neurol. 61:623–633.PubMed
14.
go back to reference Jones, T. B., E.E. McDaniel, and P.G. Popovich. 2005. Inflammatory-mediated injury and repair in the traumatically injured spinal cord. Curr. Pharm. Des. 11:1223–1236.PubMedCrossRef Jones, T. B., E.E. McDaniel, and P.G. Popovich. 2005. Inflammatory-mediated injury and repair in the traumatically injured spinal cord. Curr. Pharm. Des. 11:1223–1236.PubMedCrossRef
15.
go back to reference Hamby, A. M., S. W. Suh, T. M. Kauppinen, and R. A. Swanson. 2007. Use of a poly(ADP-ribose) polymerase inhibitor to suppress inflammation and neuronal death after cerebral ischemia-reperfusion. Stroke 38:632–636.PubMedCrossRef Hamby, A. M., S. W. Suh, T. M. Kauppinen, and R. A. Swanson. 2007. Use of a poly(ADP-ribose) polymerase inhibitor to suppress inflammation and neuronal death after cerebral ischemia-reperfusion. Stroke 38:632–636.PubMedCrossRef
16.
go back to reference Rogove, A. D., and S. E. Tsirka. 1998. Neurotoxic responses by microglia elicited by excitotoxic injury in the mouse hippocampus. Curr. Biol. 8:19–25.PubMedCrossRef Rogove, A. D., and S. E. Tsirka. 1998. Neurotoxic responses by microglia elicited by excitotoxic injury in the mouse hippocampus. Curr. Biol. 8:19–25.PubMedCrossRef
17.
go back to reference Dommergues, M. A., F. Plaisant, C. Verney, and P. Gressens. 2003. Early microglial activation following neonatal excitotoxic brain damage in mice: a potential target for neuroprotection. Neuroscience 121:619–628.PubMedCrossRef Dommergues, M. A., F. Plaisant, C. Verney, and P. Gressens. 2003. Early microglial activation following neonatal excitotoxic brain damage in mice: a potential target for neuroprotection. Neuroscience 121:619–628.PubMedCrossRef
18.
go back to reference Bolton, S. J., and V. H. Perry. 1998. Differential blood-brain barrier breakdown and leucocyte recruitment following excitotoxic lesions in juvenile and adult rats. Exp. Neurol. 154:231–240.PubMedCrossRef Bolton, S. J., and V. H. Perry. 1998. Differential blood-brain barrier breakdown and leucocyte recruitment following excitotoxic lesions in juvenile and adult rats. Exp. Neurol. 154:231–240.PubMedCrossRef
19.
go back to reference Mahapatra, R. K., M. J. Edwards, J. M. Schott, and K. P. Bhatia. 2004. Corticobasal degeneration. Lancet. Neurol. 3:736–743.PubMedCrossRef Mahapatra, R. K., M. J. Edwards, J. M. Schott, and K. P. Bhatia. 2004. Corticobasal degeneration. Lancet. Neurol. 3:736–743.PubMedCrossRef
20.
go back to reference Robinson, A. P., T. M. White, and D. W. Mason. 1986. Macrophage heterogeneity in the rat as delineated by two monoclonal antibodies MRC OX-41 and MRC OX-42, the latter recognizing complement receptor type 3. Immunology 57:239–247.PubMed Robinson, A. P., T. M. White, and D. W. Mason. 1986. Macrophage heterogeneity in the rat as delineated by two monoclonal antibodies MRC OX-41 and MRC OX-42, the latter recognizing complement receptor type 3. Immunology 57:239–247.PubMed
21.
go back to reference Gomes-Leal, W., D. J. Corkill, M. A. Freire, C. W. Picanco-Diniz, and V. H. Perry. 2004. Astrocytosis, microglia activation, oligodendrocyte degeneration, and pyknosis following acute spinal cord injury. Exp. Neurol. 190:456–467.PubMedCrossRef Gomes-Leal, W., D. J. Corkill, M. A. Freire, C. W. Picanco-Diniz, and V. H. Perry. 2004. Astrocytosis, microglia activation, oligodendrocyte degeneration, and pyknosis following acute spinal cord injury. Exp. Neurol. 190:456–467.PubMedCrossRef
22.
go back to reference Gentleman, S. M., M. J. Nash, C. J. Sweeting, D. I. Graham, and G. W. Roberts. 1993. Beta-amyloid precursor protein (beta APP) as a marker for axonal injury after head injury. Neurosci. Lett. 160:139–144.PubMedCrossRef Gentleman, S. M., M. J. Nash, C. J. Sweeting, D. I. Graham, and G. W. Roberts. 1993. Beta-amyloid precursor protein (beta APP) as a marker for axonal injury after head injury. Neurosci. Lett. 160:139–144.PubMedCrossRef
23.
go back to reference McKenzie, K. J., D. R. McLellan, S. M. Gentleman, W. L. Maxwell, T. A. Gennarelli, and D. I. Graham. 1996. Is beta-APP a marker of axonal damage in short-surviving head injury? Acta Neuropathol. 92:608–613.PubMedCrossRef McKenzie, K. J., D. R. McLellan, S. M. Gentleman, W. L. Maxwell, T. A. Gennarelli, and D. I. Graham. 1996. Is beta-APP a marker of axonal damage in short-surviving head injury? Acta Neuropathol. 92:608–613.PubMedCrossRef
24.
go back to reference Ayres, M. 2005. “Biostat 4.0.” 4th ed. Sociedade Civil Mamirauá/MCT/CNPQ. Imprensa Oficial do Estado do Pará, Belém. Ayres, M. 2005. “Biostat 4.0.” 4th ed. Sociedade Civil Mamirauá/MCT/CNPQ. Imprensa Oficial do Estado do Pará, Belém.
25.
go back to reference Schnell, L., S. Fearn, H. Klassen, M. E. Schwab, and V. H. Perry. 1999. Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord. Eur. J. Neurosci. 11:3648–3658.PubMedCrossRef Schnell, L., S. Fearn, H. Klassen, M. E. Schwab, and V. H. Perry. 1999. Acute inflammatory responses to mechanical lesions in the CNS: differences between brain and spinal cord. Eur. J. Neurosci. 11:3648–3658.PubMedCrossRef
26.
go back to reference Irving, E. A., D. L. Bentley, and A. A. Parsons. 2001. Assessment of white matter injury following prolonged focal cerebral ischaemia in the rat. Acta Neuropathol. 102:627–635.PubMed Irving, E. A., D. L. Bentley, and A. A. Parsons. 2001. Assessment of white matter injury following prolonged focal cerebral ischaemia in the rat. Acta Neuropathol. 102:627–635.PubMed
27.
go back to reference Dos Santos, C. D., C. W. Picanco-Diniz, W. Gomes-Leal. 2007. Differential patterns of inflammatory response, axonal damage and myelin impairment following excitotoxic or ischemic damage to the trigeminal spinal nucleus of adult rats. Brain Res. DOI 10.1016/j.brainres.2007.07.037. Dos Santos, C. D., C. W. Picanco-Diniz, W. Gomes-Leal. 2007. Differential patterns of inflammatory response, axonal damage and myelin impairment following excitotoxic or ischemic damage to the trigeminal spinal nucleus of adult rats. Brain Res. DOI 10.​1016/​j.​brainres.​2007.​07.​037.
28.
go back to reference Carlson, S. L., M. E. Parrish, J. E. Springer, K. Doty, and L. Dossett. 1998. Acute inflammatory response in spinal cord following impact injury. Exp. Neurol. 151:77–88.PubMedCrossRef Carlson, S. L., M. E. Parrish, J. E. Springer, K. Doty, and L. Dossett. 1998. Acute inflammatory response in spinal cord following impact injury. Exp. Neurol. 151:77–88.PubMedCrossRef
29.
go back to reference Tator, C. H., and I. Koyanagi. 1997. Vascular mechanisms in the pathophysiology of human spinal cord injury. J. Neurosurg. 86:483–492.PubMed Tator, C. H., and I. Koyanagi. 1997. Vascular mechanisms in the pathophysiology of human spinal cord injury. J. Neurosurg. 86:483–492.PubMed
30.
go back to reference Popovich, P. G., and W. F. Hickey. 2001. Bone marrow chimeric rats reveal the unique distribution of resident and recruited macrophages in the contused rat spinal cord. J. Neuropathol. Exp. Neurol. 60:676–685.PubMed Popovich, P. G., and W. F. Hickey. 2001. Bone marrow chimeric rats reveal the unique distribution of resident and recruited macrophages in the contused rat spinal cord. J. Neuropathol. Exp. Neurol. 60:676–685.PubMed
31.
go back to reference Lazarov-Spiegler, O., O. Rapalino, G. Agranov, and M. Schwartz. 1998. Restricted inflammatory reaction in the CNS: a key impediment to axonal regeneration? Mol. Med. Today 4:337–342.PubMedCrossRef Lazarov-Spiegler, O., O. Rapalino, G. Agranov, and M. Schwartz. 1998. Restricted inflammatory reaction in the CNS: a key impediment to axonal regeneration? Mol. Med. Today 4:337–342.PubMedCrossRef
32.
go back to reference Rapalino, O., O. Lazarov-Spiegler, E. Agranov, G. J. Velan, E. Yoles, M. Fraidakis, A. Solomon, R. Gepstein, A. Katz, M. Belkin, M. Hadani, and M. Schwartz. 1998. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat. Med. 4:814–821.PubMedCrossRef Rapalino, O., O. Lazarov-Spiegler, E. Agranov, G. J. Velan, E. Yoles, M. Fraidakis, A. Solomon, R. Gepstein, A. Katz, M. Belkin, M. Hadani, and M. Schwartz. 1998. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat. Med. 4:814–821.PubMedCrossRef
33.
go back to reference Knoller, N., G. Auerbach, V. Fulga, G. Zelig, J. Attias, R. Bakimer, J. B. Marder, E. Yoles, M. Belkin, M. Schwartz, and M. Hadani. 2005. Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: phase I study results. J. Neurosurg. Spine 3:173–181.PubMed Knoller, N., G. Auerbach, V. Fulga, G. Zelig, J. Attias, R. Bakimer, J. B. Marder, E. Yoles, M. Belkin, M. Schwartz, and M. Hadani. 2005. Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: phase I study results. J. Neurosurg. Spine 3:173–181.PubMed
34.
go back to reference Schwartz, M., O. Butovsky, W. Bruck, and U. K. Hanisch. 2006. Microglial phenotype: is the commitment reversible? Trends. Neurosci. 29:68–74.PubMedCrossRef Schwartz, M., O. Butovsky, W. Bruck, and U. K. Hanisch. 2006. Microglial phenotype: is the commitment reversible? Trends. Neurosci. 29:68–74.PubMedCrossRef
35.
go back to reference Anderson, C. M., and R. A. Swanson. 2000. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32:1–14.PubMedCrossRef Anderson, C. M., and R. A. Swanson. 2000. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32:1–14.PubMedCrossRef
36.
go back to reference Aschner, M. 1998. Astrocytes as mediators of immune and inflammatory responses in the CNS. Neurotoxicology 19:269–281.PubMed Aschner, M. 1998. Astrocytes as mediators of immune and inflammatory responses in the CNS. Neurotoxicology 19:269–281.PubMed
37.
go back to reference Aschner, M. 1998. Astrocytic functions and physiological reactions to injury: the potential to induce and/or exacerbate neuronal dysfunction—a forum position paper. Neurotoxicology 19:7–17; discussion 37–8.PubMed Aschner, M. 1998. Astrocytic functions and physiological reactions to injury: the potential to induce and/or exacerbate neuronal dysfunction—a forum position paper. Neurotoxicology 19:7–17; discussion 37–8.PubMed
38.
go back to reference Li, Y., J. Chen, C. L. Zhang, L. Wang, D. Lu, M. Katakowski, Q. Gao, L. H. Shen, J. Zhang, M. Lu, and M. Chopp. 2005. Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia 49:407–417.PubMedCrossRef Li, Y., J. Chen, C. L. Zhang, L. Wang, D. Lu, M. Katakowski, Q. Gao, L. H. Shen, J. Zhang, M. Lu, and M. Chopp. 2005. Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia 49:407–417.PubMedCrossRef
39.
go back to reference Galtrey, C. M., and J. W. Fawcett. 2007. The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain. Res. Rev. 54:1–18.PubMedCrossRef Galtrey, C. M., and J. W. Fawcett. 2007. The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain. Res. Rev. 54:1–18.PubMedCrossRef
40.
go back to reference Goda, M., M. Isono, M. Fujiki, and H. Kobayashi. 2002. Both MK801 and NBQX reduce the neuronal damage after impact-acceleration brain injury. J. Neurotrauma 19:1445–1456.PubMedCrossRef Goda, M., M. Isono, M. Fujiki, and H. Kobayashi. 2002. Both MK801 and NBQX reduce the neuronal damage after impact-acceleration brain injury. J. Neurotrauma 19:1445–1456.PubMedCrossRef
41.
go back to reference Hughes, P. M., D. C. Anthony, M. Ruddin, M. S. Botham, E. L. Rankine, M. Sablone, D. Baumann, A. K. Mir, and V. H. Perry. 2003. Focal lesions in the rat central nervous system induced by endothelin-1. J. Neuropathol. Exp. Neurol. 62:1276–1286.PubMed Hughes, P. M., D. C. Anthony, M. Ruddin, M. S. Botham, E. L. Rankine, M. Sablone, D. Baumann, A. K. Mir, and V. H. Perry. 2003. Focal lesions in the rat central nervous system induced by endothelin-1. J. Neuropathol. Exp. Neurol. 62:1276–1286.PubMed
42.
43.
go back to reference Karadottir, R., P. Cavelier, L. H. Bergersen, and D. Attwell. 2005. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438:1162–1166.PubMedCrossRef Karadottir, R., P. Cavelier, L. H. Bergersen, and D. Attwell. 2005. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438:1162–1166.PubMedCrossRef
44.
go back to reference Li, S., and P. K. Stys. 2001. Na(+)-K(+)-ATPase inhibition and depolarization induce glutamate release via reverse Na(+)-dependent transport in spinal cord white matter. Neuroscience 107:675–683.PubMedCrossRef Li, S., and P. K. Stys. 2001. Na(+)-K(+)-ATPase inhibition and depolarization induce glutamate release via reverse Na(+)-dependent transport in spinal cord white matter. Neuroscience 107:675–683.PubMedCrossRef
45.
go back to reference Stys, P. K. 2005. General mechanisms of axonal damage and its prevention. J. Neurol. Sci. 233:3–13.PubMedCrossRef Stys, P. K. 2005. General mechanisms of axonal damage and its prevention. J. Neurol. Sci. 233:3–13.PubMedCrossRef
46.
go back to reference Schabitz, W. R., F. Li, and M. Fisher. 2000. The N-methyl-D-aspartate antagonist CNS 1102 protects cerebral gray and white matter from ischemic injury following temporary focal ischemia in rats. Stroke 31:1709–1714.PubMed Schabitz, W. R., F. Li, and M. Fisher. 2000. The N-methyl-D-aspartate antagonist CNS 1102 protects cerebral gray and white matter from ischemic injury following temporary focal ischemia in rats. Stroke 31:1709–1714.PubMed
47.
go back to reference Matute, C. 2006. Oligodendrocyte NMDA receptors: a novel therapeutic target. Trends. Mol. Med. 12:289–292.PubMedCrossRef Matute, C. 2006. Oligodendrocyte NMDA receptors: a novel therapeutic target. Trends. Mol. Med. 12:289–292.PubMedCrossRef
48.
go back to reference Kanellopoulos, G. K., X. M. Xu, C. Y. Hsu, X. Lu, T. M. Sundt, and N. T. Kouchoukos. 2000. White matter injury in spinal cord ischemia: protection by AMPA/kainate glutamate receptor antagonism. Stroke 31:1945–1952.PubMed Kanellopoulos, G. K., X. M. Xu, C. Y. Hsu, X. Lu, T. M. Sundt, and N. T. Kouchoukos. 2000. White matter injury in spinal cord ischemia: protection by AMPA/kainate glutamate receptor antagonism. Stroke 31:1945–1952.PubMed
49.
go back to reference Frost, S. B., S. Barbay, M. L. Mumert, A. M. Stowe, and R. J. Nudo. 2006. An animal model of capsular infarct: endothelin-1 injections in the rat. Behav. Brain. Res. 169:206–211.PubMedCrossRef Frost, S. B., S. Barbay, M. L. Mumert, A. M. Stowe, and R. J. Nudo. 2006. An animal model of capsular infarct: endothelin-1 injections in the rat. Behav. Brain. Res. 169:206–211.PubMedCrossRef
Metadata
Title
Diffuse Axonal Damage, Myelin Impairment, Astrocytosis and Inflammatory Response Following Microinjections of NMDA into The Rat Striatum
Authors
Rafael R. Lima
Joanilson Guimaraes-Silva
Jorge L. Oliveira
Ana Maria R. Costa
Renata D. Souza-Rodrigues
Claudia D. Dos Santos
Cristovam W. Picanço-Diniz
Walace Gomes-Leal
Publication date
01-02-2008
Publisher
Springer US
Published in
Inflammation / Issue 1/2008
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-007-9046-y

Other articles of this Issue 1/2008

Inflammation 1/2008 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine