Skip to main content
Top
Published in: Heart Failure Reviews 4/2015

01-07-2015

Effects of apelin on the cardiovascular system

Authors: Anna Folino, Pier Giorgio Montarolo, Michele Samaja, Raffaella Rastaldo

Published in: Heart Failure Reviews | Issue 4/2015

Login to get access

Abstract

Apelin is an endogenous peptide acting on the APJ receptor. It consists of several isoforms characterized by different numbers of amino acids. The number of amino acids in the active isoforms range from 36 to 12. Apelin-13 and, to a lesser extent, apelin-36 are considered the most active isoforms with the greatest activity on the cardiovascular homeostasis. The effects normally exerted by the basal level of endogenous apelin can be enhanced not only by its up-regulation, but may also by its exogenous administration. The present review considers the effects of apelin on various aspects of the cardiovascular function, such as cardiac development, vasomotor tone, angiogenesis, myocardial inotropy in healthy and failing hearts as well as the prevention of ischemia–reperfusion injury, cardiac fibrosis and remodeling. Also the biphasic changes in apelin level during the evolution of heart failure are considered. Although the positive inotropic effect exerted by apelin in normal and failing hearts would suggest the use of this peptide in the treatment of heart failure, the limited duration and extent of its effect do not support this possibility, unless a long-lasting (6 h) infusion is performed to overcome the limit of its short life. However, although the data on the characteristics of the inotropic activity do not provide a strong support for the treatment of active heart failure, apelin may be used in the prevention of heart failure because of its activity in limiting the consequences of myocardial ischemia such as infarct size and cardiac remodeling.
Literature
1.
go back to reference O′Dowd BF, Heiber M, Chan A, Heng HH, Tsui LC, Kennedy JL, Shi X, Petronis A, George SR, Nguyen T (1993) A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene 136(1–2):355–360PubMed O′Dowd BF, Heiber M, Chan A, Heng HH, Tsui LC, Kennedy JL, Shi X, Petronis A, George SR, Nguyen T (1993) A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene 136(1–2):355–360PubMed
2.
go back to reference Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX, Kawamata Y, Fukusumi S, Hinuma S, Kitada C, Kurokawa T, Onda H, Fujino M (1998) Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun 251(2):471–476. doi:10.1006/bbrc.1998.9489 PubMed Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX, Kawamata Y, Fukusumi S, Hinuma S, Kitada C, Kurokawa T, Onda H, Fujino M (1998) Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun 251(2):471–476. doi:10.​1006/​bbrc.​1998.​9489 PubMed
3.
go back to reference Lee DK, Cheng R, Nguyen T, Fan T, Kariyawasam AP, Liu Y, Osmond DH, George SR, O’Dowd BF (2000) Characterization of apelin, the ligand for the APJ receptor. J Neurochem 74(1):34–41PubMed Lee DK, Cheng R, Nguyen T, Fan T, Kariyawasam AP, Liu Y, Osmond DH, George SR, O’Dowd BF (2000) Characterization of apelin, the ligand for the APJ receptor. J Neurochem 74(1):34–41PubMed
4.
go back to reference Simpkin JC, Yellon DM, Davidson SM, Lim SY, Wynne AM, Smith CC (2007) Apelin-13 and apelin-36 exhibit direct cardioprotective activity against ischemia–reperfusion injury. Basic Res Cardiol 102(6):518–528. doi:10.1007/s00395-007-0671-2 PubMed Simpkin JC, Yellon DM, Davidson SM, Lim SY, Wynne AM, Smith CC (2007) Apelin-13 and apelin-36 exhibit direct cardioprotective activity against ischemia–reperfusion injury. Basic Res Cardiol 102(6):518–528. doi:10.​1007/​s00395-007-0671-2 PubMed
5.
go back to reference Zhou N, Zhang X, Fan X, Argyris E, Fang J, Acheampong E, DuBois GC, Pomerantz RJ (2003) The N-terminal domain of APJ, a CNS-based coreceptor for HIV-1, is essential for its receptor function and coreceptor activity. Virology 317(1):84–94PubMed Zhou N, Zhang X, Fan X, Argyris E, Fang J, Acheampong E, DuBois GC, Pomerantz RJ (2003) The N-terminal domain of APJ, a CNS-based coreceptor for HIV-1, is essential for its receptor function and coreceptor activity. Virology 317(1):84–94PubMed
8.
11.
go back to reference Fukushima H, Kobayashi N, Takeshima H, Koguchi W, Ishimitsu T (2010) Effects of olmesartan on Apelin/APJ and Akt/endothelial nitric oxide synthase pathway in Dahl rats with end-stage heart failure. J Cardiovasc Pharmacol 55(1):83–88. doi:10.1097/FJC.0b013e3181c87a82 PubMed Fukushima H, Kobayashi N, Takeshima H, Koguchi W, Ishimitsu T (2010) Effects of olmesartan on Apelin/APJ and Akt/endothelial nitric oxide synthase pathway in Dahl rats with end-stage heart failure. J Cardiovasc Pharmacol 55(1):83–88. doi:10.​1097/​FJC.​0b013e3181c87a82​ PubMed
12.
go back to reference Foldes G, Horkay F, Szokodi I, Vuolteenaho O, Ilves M, Lindstedt KA, Mayranpaa M, Sarman B, Seres L, Skoumal R, Lako-Futo Z, deChatel R, Ruskoaho H, Toth M (2003) Circulating and cardiac levels of apelin, the novel ligand of the orphan receptor APJ, in patients with heart failure. Biochem Biophys Res Commun 308(3):480–485PubMed Foldes G, Horkay F, Szokodi I, Vuolteenaho O, Ilves M, Lindstedt KA, Mayranpaa M, Sarman B, Seres L, Skoumal R, Lako-Futo Z, deChatel R, Ruskoaho H, Toth M (2003) Circulating and cardiac levels of apelin, the novel ligand of the orphan receptor APJ, in patients with heart failure. Biochem Biophys Res Commun 308(3):480–485PubMed
13.
go back to reference De Mota N, Reaux-Le Goazigo A, El Messari S, Chartrel N, Roesch D, Dujardin C, Kordon C, Vaudry H, Moos F, Llorens-Cortes C (2004) Apelin, a potent diuretic neuropeptide counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin release. Proc Natl Acad Sci USA 101(28):10464–10469. doi:10.1073/pnas.0403518101 PubMedCentralPubMed De Mota N, Reaux-Le Goazigo A, El Messari S, Chartrel N, Roesch D, Dujardin C, Kordon C, Vaudry H, Moos F, Llorens-Cortes C (2004) Apelin, a potent diuretic neuropeptide counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin release. Proc Natl Acad Sci USA 101(28):10464–10469. doi:10.​1073/​pnas.​0403518101 PubMedCentralPubMed
14.
go back to reference Azizi M, Iturrioz X, Blanchard A, Peyrard S, De Mota N, Chartrel N, Vaudry H, Corvol P, Llorens-Cortes C (2008) Reciprocal regulation of plasma apelin and vasopressin by osmotic stimuli. J Am Soc Nephrol JASN 19(5):1015–1024. doi:10.1681/ASN.2007070816 Azizi M, Iturrioz X, Blanchard A, Peyrard S, De Mota N, Chartrel N, Vaudry H, Corvol P, Llorens-Cortes C (2008) Reciprocal regulation of plasma apelin and vasopressin by osmotic stimuli. J Am Soc Nephrol JASN 19(5):1015–1024. doi:10.​1681/​ASN.​2007070816
15.
go back to reference Japp AG, Cruden NL, Amer DA, Li VK, Goudie EB, Johnston NR, Sharma S, Neilson I, Webb DJ, Megson IL, Flapan AD, Newby DE (2008) Vascular effects of apelin in vivo in man. J Am Coll Cardiol 52(11):908–913. doi:10.1016/j.jacc.2008.06.013 PubMed Japp AG, Cruden NL, Amer DA, Li VK, Goudie EB, Johnston NR, Sharma S, Neilson I, Webb DJ, Megson IL, Flapan AD, Newby DE (2008) Vascular effects of apelin in vivo in man. J Am Coll Cardiol 52(11):908–913. doi:10.​1016/​j.​jacc.​2008.​06.​013 PubMed
16.
go back to reference Hosoya M, Kawamata Y, Fukusumi S, Fujii R, Habata Y, Hinuma S, Kitada C, Honda S, Kurokawa T, Onda H, Nishimura O, Fujino M (2000) Molecular and functional characteristics of APJ. Tissue distribution of mRNA and interaction with the endogenous ligand apelin. J Biol Chem 275(28):21061–21067. doi:10.1074/jbc.M908417199 PubMed Hosoya M, Kawamata Y, Fukusumi S, Fujii R, Habata Y, Hinuma S, Kitada C, Honda S, Kurokawa T, Onda H, Nishimura O, Fujino M (2000) Molecular and functional characteristics of APJ. Tissue distribution of mRNA and interaction with the endogenous ligand apelin. J Biol Chem 275(28):21061–21067. doi:10.​1074/​jbc.​M908417199 PubMed
17.
go back to reference Farkasfalvi K, Stagg MA, Coppen SR, Siedlecka U, Lee J, Soppa GK, Marczin N, Szokodi I, Yacoub MH, Terracciano CM (2007) Direct effects of apelin on cardiomyocyte contractility and electrophysiology. Biochem Biophys Res Commun 357(4):889–895. doi:10.1016/j.bbrc.2007.04.017 PubMed Farkasfalvi K, Stagg MA, Coppen SR, Siedlecka U, Lee J, Soppa GK, Marczin N, Szokodi I, Yacoub MH, Terracciano CM (2007) Direct effects of apelin on cardiomyocyte contractility and electrophysiology. Biochem Biophys Res Commun 357(4):889–895. doi:10.​1016/​j.​bbrc.​2007.​04.​017 PubMed
18.
go back to reference Charo DN, Ho M, Fajardo G, Kawana M, Kundu RK, Sheikh AY, Finsterbach TP, Leeper NJ, Ernst KV, Chen MM, Ho YD, Chun HJ, Bernstein D, Ashley EA, Quertermous T (2009) Endogenous regulation of cardiovascular function by apelin-APJ. Am J Physiol Heart Circ Physiol 297(5):H1904–H1913. doi:10.1152/ajpheart.00686.2009 PubMedCentralPubMed Charo DN, Ho M, Fajardo G, Kawana M, Kundu RK, Sheikh AY, Finsterbach TP, Leeper NJ, Ernst KV, Chen MM, Ho YD, Chun HJ, Bernstein D, Ashley EA, Quertermous T (2009) Endogenous regulation of cardiovascular function by apelin-APJ. Am J Physiol Heart Circ Physiol 297(5):H1904–H1913. doi:10.​1152/​ajpheart.​00686.​2009 PubMedCentralPubMed
20.
go back to reference Xie F, Lv D, Chen L (2014) ELABELA: a novel hormone in cardiac development acting as a new endogenous ligand for the APJ receptor. Acta Biochim Biophys Sin 46(7):620–622. doi:10.1093/abbs/gmu032 PubMed Xie F, Lv D, Chen L (2014) ELABELA: a novel hormone in cardiac development acting as a new endogenous ligand for the APJ receptor. Acta Biochim Biophys Sin 46(7):620–622. doi:10.​1093/​abbs/​gmu032 PubMed
21.
go back to reference Scimia MC, Hurtado C, Ray S, Metzler S, Wei K, Wang J, Woods CE, Purcell NH, Catalucci D, Akasaka T, Bueno OF, Vlasuk GP, Kaliman P, Bodmer R, Smith LH, Ashley E, Mercola M, Brown JH, Ruiz-Lozano P (2012) APJ acts as a dual receptor in cardiac hypertrophy. Nature 488(7411):394–398. doi:10.1038/nature11263 PubMedCentralPubMed Scimia MC, Hurtado C, Ray S, Metzler S, Wei K, Wang J, Woods CE, Purcell NH, Catalucci D, Akasaka T, Bueno OF, Vlasuk GP, Kaliman P, Bodmer R, Smith LH, Ashley E, Mercola M, Brown JH, Ruiz-Lozano P (2012) APJ acts as a dual receptor in cardiac hypertrophy. Nature 488(7411):394–398. doi:10.​1038/​nature11263 PubMedCentralPubMed
22.
go back to reference Tatemoto K, Takayama K, Zou MX, Kumaki I, Zhang W, Kumano K, Fujimiya M (2001) The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul Pept 99(2–3):87–92PubMed Tatemoto K, Takayama K, Zou MX, Kumaki I, Zhang W, Kumano K, Fujimiya M (2001) The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul Pept 99(2–3):87–92PubMed
23.
go back to reference Cheng X, Cheng XS, Pang CC (2003) Venous dilator effect of apelin, an endogenous peptide ligand for the orphan APJ receptor, in conscious rats. Eur J Pharmacol 470(3):171–175PubMed Cheng X, Cheng XS, Pang CC (2003) Venous dilator effect of apelin, an endogenous peptide ligand for the orphan APJ receptor, in conscious rats. Eur J Pharmacol 470(3):171–175PubMed
24.
go back to reference Ashley EA, Powers J, Chen M, Kundu R, Finsterbach T, Caffarelli A, Deng A, Eichhorn J, Mahajan R, Agrawal R, Greve J, Robbins R, Patterson AJ, Bernstein D, Quertermous T (2005) The endogenous peptide apelin potently improves cardiac contractility and reduces cardiac loading in vivo. Cardiovasc Res 65(1):73–82. doi:10.1016/j.cardiores.2004.08.018 PubMedCentralPubMed Ashley EA, Powers J, Chen M, Kundu R, Finsterbach T, Caffarelli A, Deng A, Eichhorn J, Mahajan R, Agrawal R, Greve J, Robbins R, Patterson AJ, Bernstein D, Quertermous T (2005) The endogenous peptide apelin potently improves cardiac contractility and reduces cardiac loading in vivo. Cardiovasc Res 65(1):73–82. doi:10.​1016/​j.​cardiores.​2004.​08.​018 PubMedCentralPubMed
26.
go back to reference Ferrario CM (2006) Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. J Renin Angiotensin Aldosterone Syst JRAAS 7(1):3–14. doi:10.3317/jraas.2006.003 Ferrario CM (2006) Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. J Renin Angiotensin Aldosterone Syst JRAAS 7(1):3–14. doi:10.​3317/​jraas.​2006.​003
27.
go back to reference Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S (2007) Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci 112(8):417–428. doi:10.1042/CS20060342 PubMed Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S (2007) Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci 112(8):417–428. doi:10.​1042/​CS20060342 PubMed
30.
go back to reference Sato T, Suzuki T, Watanabe H, Kadowaki A, Fukamizu A, Liu PP, Kimura A, Ito H, Penninger JM, Imai Y, Kuba K (2013) Apelin is a positive regulator of ACE2 in failing hearts. J Clin Invest 123(12):5203–5211. doi:10.1172/JCI69608 PubMedCentralPubMed Sato T, Suzuki T, Watanabe H, Kadowaki A, Fukamizu A, Liu PP, Kimura A, Ito H, Penninger JM, Imai Y, Kuba K (2013) Apelin is a positive regulator of ACE2 in failing hearts. J Clin Invest 123(12):5203–5211. doi:10.​1172/​JCI69608 PubMedCentralPubMed
31.
go back to reference Catt KJ, Mendelsohn FA, Millan MA, Aguilera G (1984) The role of angiotensin II receptors in vascular regulation. J Cardiovasc Pharmacol 6(Suppl 4):S575–S586PubMed Catt KJ, Mendelsohn FA, Millan MA, Aguilera G (1984) The role of angiotensin II receptors in vascular regulation. J Cardiovasc Pharmacol 6(Suppl 4):S575–S586PubMed
32.
go back to reference Chun HJ, Ali ZA, Kojima Y, Kundu RK, Sheikh AY, Agrawal R, Zheng L, Leeper NJ, Pearl NE, Patterson AJ, Anderson JP, Tsao PS, Lenardo MJ, Ashley EA, Quertermous T (2008) Apelin signaling antagonizes Ang II effects in mouse models of atherosclerosis. J Clin Invest 118(10):3343–3354. doi:10.1172/JCI34871 PubMedCentralPubMed Chun HJ, Ali ZA, Kojima Y, Kundu RK, Sheikh AY, Agrawal R, Zheng L, Leeper NJ, Pearl NE, Patterson AJ, Anderson JP, Tsao PS, Lenardo MJ, Ashley EA, Quertermous T (2008) Apelin signaling antagonizes Ang II effects in mouse models of atherosclerosis. J Clin Invest 118(10):3343–3354. doi:10.​1172/​JCI34871 PubMedCentralPubMed
33.
go back to reference Sun X, Iida S, Yoshikawa A, Senbonmatsu R, Imanaka K, Maruyama K, Nishimura S, Inagami T, Senbonmatsu T (2011) Non-activated APJ suppresses the angiotensin II type 1 receptor, whereas apelin-activated APJ acts conversely. Hypertens Res 34(6):701–706. doi:10.1038/hr.2011.19 PubMed Sun X, Iida S, Yoshikawa A, Senbonmatsu R, Imanaka K, Maruyama K, Nishimura S, Inagami T, Senbonmatsu T (2011) Non-activated APJ suppresses the angiotensin II type 1 receptor, whereas apelin-activated APJ acts conversely. Hypertens Res 34(6):701–706. doi:10.​1038/​hr.​2011.​19 PubMed
34.
go back to reference Zhong J, Basu R, Guo D, Chow FL, Byrns S, Schuster M, Loibner H, Wang XH, Penninger JM, Kassiri Z, Oudit GY (2010) Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction. Circulation 122(7):717–728. doi:10.1161/CIRCULATIONAHA.110.955369 718 p following 728PubMed Zhong J, Basu R, Guo D, Chow FL, Byrns S, Schuster M, Loibner H, Wang XH, Penninger JM, Kassiri Z, Oudit GY (2010) Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction. Circulation 122(7):717–728. doi:10.​1161/​CIRCULATIONAHA.​110.​955369 718 p following 728PubMed
36.
go back to reference Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 87(5):E1–E9PubMed Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, Donovan M, Woolf B, Robison K, Jeyaseelan R, Breitbart RE, Acton S (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 87(5):E1–E9PubMed
37.
go back to reference McKinney CA, Fattah C, Loughrey CM, Milligan G, Nicklin SA (2014) Angiotensin-(1–7) and angiotensin-(1–9): function in cardiac and vascular remodelling. Clin Sci 126(12):815–827. doi:10.1042/CS20130436 PubMed McKinney CA, Fattah C, Loughrey CM, Milligan G, Nicklin SA (2014) Angiotensin-(1–7) and angiotensin-(1–9): function in cardiac and vascular remodelling. Clin Sci 126(12):815–827. doi:10.​1042/​CS20130436 PubMed
38.
go back to reference Ocaranza MP, Moya J, Barrientos V, Alzamora R, Hevia D, Morales C, Pinto M, Escudero N, Garcia L, Novoa U, Ayala P, Diaz-Araya G, Godoy I, Chiong M, Lavandero S, Jalil JE, Michea L (2014) Angiotensin-(1–9) reverses experimental hypertension and cardiovascular damage by inhibition of the angiotensin converting enzyme/Ang II axis. J Hypertens 32(4):771–783. doi:10.1097/HJH.0000000000000094 PubMed Ocaranza MP, Moya J, Barrientos V, Alzamora R, Hevia D, Morales C, Pinto M, Escudero N, Garcia L, Novoa U, Ayala P, Diaz-Araya G, Godoy I, Chiong M, Lavandero S, Jalil JE, Michea L (2014) Angiotensin-(1–9) reverses experimental hypertension and cardiovascular damage by inhibition of the angiotensin converting enzyme/Ang II axis. J Hypertens 32(4):771–783. doi:10.​1097/​HJH.​0000000000000094​ PubMed
39.
go back to reference Flores-Munoz M, Work LM, Douglas K, Denby L, Dominiczak AF, Graham D, Nicklin SA (2012) Angiotensin-(1–9) attenuates cardiac fibrosis in the stroke-prone spontaneously hypertensive rat via the angiotensin type 2 receptor. Hypertension 59(2):300–307. doi:10.1161/HYPERTENSIONAHA.111.177485 PubMed Flores-Munoz M, Work LM, Douglas K, Denby L, Dominiczak AF, Graham D, Nicklin SA (2012) Angiotensin-(1–9) attenuates cardiac fibrosis in the stroke-prone spontaneously hypertensive rat via the angiotensin type 2 receptor. Hypertension 59(2):300–307. doi:10.​1161/​HYPERTENSIONAHA.​111.​177485 PubMed
40.
go back to reference Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, Godbout K, Parsons T, Baronas E, Hsieh F, Acton S, Patane M, Nichols A, Tummino P (2002) Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 277(17):14838–14843. doi:10.1074/jbc.M200581200 PubMed Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, Godbout K, Parsons T, Baronas E, Hsieh F, Acton S, Patane M, Nichols A, Tummino P (2002) Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 277(17):14838–14843. doi:10.​1074/​jbc.​M200581200 PubMed
41.
go back to reference Rastaldo R, Cappello S, Folino A, Berta GN, Sprio AE, Losano G, Samaja M, Pagliaro P (2011) Apelin-13 limits infarct size and improves cardiac postischemic mechanical recovery only if given after ischemia. Am J Physiol Heart Circ Physiol 300(6):H2308–H2315. doi:10.1152/ajpheart.01177.2010 PubMed Rastaldo R, Cappello S, Folino A, Berta GN, Sprio AE, Losano G, Samaja M, Pagliaro P (2011) Apelin-13 limits infarct size and improves cardiac postischemic mechanical recovery only if given after ischemia. Am J Physiol Heart Circ Physiol 300(6):H2308–H2315. doi:10.​1152/​ajpheart.​01177.​2010 PubMed
44.
go back to reference Kang Y, Kim J, Anderson JP, Wu J, Gleim SR, Kundu RK, McLean DL, Kim JD, Park H, Jin SW, Hwa J, Quertermous T, Chun HJ (2013) Apelin-APJ signaling is a critical regulator of endothelial MEF2 activation in cardiovascular development. Circ Res 113(1):22–31. doi:10.1161/CIRCRESAHA.113.301324 PubMedCentralPubMed Kang Y, Kim J, Anderson JP, Wu J, Gleim SR, Kundu RK, McLean DL, Kim JD, Park H, Jin SW, Hwa J, Quertermous T, Chun HJ (2013) Apelin-APJ signaling is a critical regulator of endothelial MEF2 activation in cardiovascular development. Circ Res 113(1):22–31. doi:10.​1161/​CIRCRESAHA.​113.​301324 PubMedCentralPubMed
45.
go back to reference Saint-Geniez M, Masri B, Malecaze F, Knibiehler B, Audigier Y (2002) Expression of the murine msr/apj receptor and its ligand apelin is upregulated during formation of the retinal vessels. Mech Dev 110(1–2):183–186PubMed Saint-Geniez M, Masri B, Malecaze F, Knibiehler B, Audigier Y (2002) Expression of the murine msr/apj receptor and its ligand apelin is upregulated during formation of the retinal vessels. Mech Dev 110(1–2):183–186PubMed
46.
go back to reference Devic E, Rizzoti K, Bodin S, Knibiehler B, Audigier Y (1999) Amino acid sequence and embryonic expression of msr/apj, the mouse homolog of Xenopus X-msr and human APJ. Mech Dev 84(1–2):199–203PubMed Devic E, Rizzoti K, Bodin S, Knibiehler B, Audigier Y (1999) Amino acid sequence and embryonic expression of msr/apj, the mouse homolog of Xenopus X-msr and human APJ. Mech Dev 84(1–2):199–203PubMed
47.
go back to reference Devic E, Paquereau L, Vernier P, Knibiehler B, Audigier Y (1996) Expression of a new G protein-coupled receptor X-msr is associated with an endothelial lineage in Xenopus laevis. Mech Dev 59(2):129–140PubMed Devic E, Paquereau L, Vernier P, Knibiehler B, Audigier Y (1996) Expression of a new G protein-coupled receptor X-msr is associated with an endothelial lineage in Xenopus laevis. Mech Dev 59(2):129–140PubMed
48.
go back to reference Cox CM, D’Agostino SL, Miller MK, Heimark RL, Krieg PA (2006) Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo. Dev Biol 296(1):177–189. doi:10.1016/j.ydbio.2006.04.452 PubMed Cox CM, D’Agostino SL, Miller MK, Heimark RL, Krieg PA (2006) Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo. Dev Biol 296(1):177–189. doi:10.​1016/​j.​ydbio.​2006.​04.​452 PubMed
49.
go back to reference Saint-Geniez M, Argence CB, Knibiehler B, Audigier Y (2003) The msr/apj gene encoding the apelin receptor is an early and specific marker of the venous phenotype in the retinal vasculature. Gene Expr Patterns GEP 3(4):467–472 Saint-Geniez M, Argence CB, Knibiehler B, Audigier Y (2003) The msr/apj gene encoding the apelin receptor is an early and specific marker of the venous phenotype in the retinal vasculature. Gene Expr Patterns GEP 3(4):467–472
51.
52.
go back to reference Yang X, Zhu W, Zhang P, Chen K, Zhao L, Li J, Wei M, Liu M (2014) Apelin-13 stimulates angiogenesis by promoting crosstalk between AMP-activated protein kinase and Akt signaling in myocardial microvascular endothelial cells. Molecular Med Rep 9(5):1590–1596. doi:10.3892/mmr.2014.1984 Yang X, Zhu W, Zhang P, Chen K, Zhao L, Li J, Wei M, Liu M (2014) Apelin-13 stimulates angiogenesis by promoting crosstalk between AMP-activated protein kinase and Akt signaling in myocardial microvascular endothelial cells. Molecular Med Rep 9(5):1590–1596. doi:10.​3892/​mmr.​2014.​1984
54.
go back to reference Wang W, McKinnie SM, Patel VB, Haddad G, Wang Z, Zhabyeyev P, Das SK, Basu R, McLean B, Kandalam V, Penninger JM, Kassiri Z, Vederas JC, Murray AG, Oudit GY (2013) Loss of Apelin exacerbates myocardial infarction adverse remodeling and ischemia–reperfusion injury: therapeutic potential of synthetic Apelin analogues. J Am Heart Assoc 2(4):e000249. doi:10.1161/JAHA.113.000249 PubMedCentralPubMed Wang W, McKinnie SM, Patel VB, Haddad G, Wang Z, Zhabyeyev P, Das SK, Basu R, McLean B, Kandalam V, Penninger JM, Kassiri Z, Vederas JC, Murray AG, Oudit GY (2013) Loss of Apelin exacerbates myocardial infarction adverse remodeling and ischemia–reperfusion injury: therapeutic potential of synthetic Apelin analogues. J Am Heart Assoc 2(4):e000249. doi:10.​1161/​JAHA.​113.​000249 PubMedCentralPubMed
55.
go back to reference Lin Q, Schwarz J, Bucana C, Olson EN (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276(5317):1404–1407PubMedCentralPubMed Lin Q, Schwarz J, Bucana C, Olson EN (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276(5317):1404–1407PubMedCentralPubMed
56.
go back to reference Naya FJ, Black BL, Wu H, Bassel-Duby R, Richardson JA, Hill JA, Olson EN (2002) Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor. Nat Med 8(11):1303–1309. doi:10.1038/nm789 PubMed Naya FJ, Black BL, Wu H, Bassel-Duby R, Richardson JA, Hill JA, Olson EN (2002) Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor. Nat Med 8(11):1303–1309. doi:10.​1038/​nm789 PubMed
57.
go back to reference Matsunaga T, Weihrauch DW, Moniz MC, Tessmer J, Warltier DC, Chilian WM (2002) Angiostatin inhibits coronary angiogenesis during impaired production of nitric oxide. Circulation 105(18):2185–2191PubMed Matsunaga T, Weihrauch DW, Moniz MC, Tessmer J, Warltier DC, Chilian WM (2002) Angiostatin inhibits coronary angiogenesis during impaired production of nitric oxide. Circulation 105(18):2185–2191PubMed
58.
go back to reference Cooke JP, Losordo DW (2002) Nitric oxide and angiogenesis. Circulation 105(18):2133–2135PubMed Cooke JP, Losordo DW (2002) Nitric oxide and angiogenesis. Circulation 105(18):2133–2135PubMed
59.
60.
go back to reference Ishida J, Hashimoto T, Hashimoto Y, Nishiwaki S, Iguchi T, Harada S, Sugaya T, Matsuzaki H, Yamamoto R, Shiota N, Okunishi H, Kihara M, Umemura S, Sugiyama F, Yagami K, Kasuya Y, Mochizuki N, Fukamizu A (2004) Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type 1 receptor in blood pressure in vivo. J Biol Chem 279(25):26274–26279. doi:10.1074/jbc.M404149200 PubMed Ishida J, Hashimoto T, Hashimoto Y, Nishiwaki S, Iguchi T, Harada S, Sugaya T, Matsuzaki H, Yamamoto R, Shiota N, Okunishi H, Kihara M, Umemura S, Sugiyama F, Yagami K, Kasuya Y, Mochizuki N, Fukamizu A (2004) Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type 1 receptor in blood pressure in vivo. J Biol Chem 279(25):26274–26279. doi:10.​1074/​jbc.​M404149200 PubMed
63.
go back to reference Katugampola SD, Maguire JJ, Matthewson SR, Davenport AP (2001) [(125)I]-(Pyr(1))Apelin-13 is a novel radioligand for localizing the APJ orphan receptor in human and rat tissues with evidence for a vasoconstrictor role in man. Br J Pharmacol 132(6):1255–1260. doi:10.1038/sj.bjp.0703939 PubMedCentralPubMed Katugampola SD, Maguire JJ, Matthewson SR, Davenport AP (2001) [(125)I]-(Pyr(1))Apelin-13 is a novel radioligand for localizing the APJ orphan receptor in human and rat tissues with evidence for a vasoconstrictor role in man. Br J Pharmacol 132(6):1255–1260. doi:10.​1038/​sj.​bjp.​0703939 PubMedCentralPubMed
65.
go back to reference Han X, Zhang DL, Yin DX, Zhang QD, Liu WH (2013) Apelin-13 deteriorates hypertension in rats after damage of the vascular endothelium by ADMA. Can J Physiol Pharmacol 91(9):708–714. doi:10.1139/cjpp-2013-0046 PubMed Han X, Zhang DL, Yin DX, Zhang QD, Liu WH (2013) Apelin-13 deteriorates hypertension in rats after damage of the vascular endothelium by ADMA. Can J Physiol Pharmacol 91(9):708–714. doi:10.​1139/​cjpp-2013-0046 PubMed
66.
go back to reference Gurzu B, Petrescu BC, Costuleanu M, Petrescu G (2006) Interactions between apelin and angiotensin II on rat portal vein. J Renin Angiotensin Aldosterone Syst JRAAS 7(4):212–216. doi:10.3317/jraas.2006.040 Gurzu B, Petrescu BC, Costuleanu M, Petrescu G (2006) Interactions between apelin and angiotensin II on rat portal vein. J Renin Angiotensin Aldosterone Syst JRAAS 7(4):212–216. doi:10.​3317/​jraas.​2006.​040
69.
go back to reference Rastaldo R, Cappello S, Folino A, Losano G (2011) Effect of apelin–apelin receptor system in postischaemic myocardial protection: a pharmacological postconditioning tool? Antioxid Redox Signal 14(5):909–922. doi:10.1089/ars.2010.3355 PubMed Rastaldo R, Cappello S, Folino A, Losano G (2011) Effect of apelin–apelin receptor system in postischaemic myocardial protection: a pharmacological postconditioning tool? Antioxid Redox Signal 14(5):909–922. doi:10.​1089/​ars.​2010.​3355 PubMed
71.
go back to reference Ladeiras-Lopes R, Ferreira-Martins J, Leite-Moreira AF (2008) The apelinergic system: the role played in human physiology and pathology and potential therapeutic applications. Arq Bras Cardiol 90(5):343–349PubMed Ladeiras-Lopes R, Ferreira-Martins J, Leite-Moreira AF (2008) The apelinergic system: the role played in human physiology and pathology and potential therapeutic applications. Arq Bras Cardiol 90(5):343–349PubMed
72.
go back to reference Hashimoto T, Kihara M, Ishida J, Imai N, Yoshida S, Toya Y, Fukamizu A, Kitamura H, Umemura S (2006) Apelin stimulates myosin light chain phosphorylation in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 26(6):1267–1272. doi:10.1161/01.ATV.0000218841.39828.91 PubMed Hashimoto T, Kihara M, Ishida J, Imai N, Yoshida S, Toya Y, Fukamizu A, Kitamura H, Umemura S (2006) Apelin stimulates myosin light chain phosphorylation in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 26(6):1267–1272. doi:10.​1161/​01.​ATV.​0000218841.​39828.​91 PubMed
74.
go back to reference Szokodi I, Tavi P, Foldes G, Voutilainen-Myllyla S, Ilves M, Tokola H, Pikkarainen S, Piuhola J, Rysa J, Toth M, Ruskoaho H (2002) Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res 91(5):434–440PubMed Szokodi I, Tavi P, Foldes G, Voutilainen-Myllyla S, Ilves M, Tokola H, Pikkarainen S, Piuhola J, Rysa J, Toth M, Ruskoaho H (2002) Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res 91(5):434–440PubMed
75.
go back to reference Perjes A, Skoumal R, Tenhunen O, Konyi A, Simon M, Horvath IG, Kerkela R, Ruskoaho H, Szokodi I (2014) Apelin increases cardiac contractility via protein kinase C epsilon- and extracellular signal-regulated kinase-dependent mechanisms. PLoS One 9(4):e93473. doi:10.1371/journal.pone.0093473 PubMedCentralPubMed Perjes A, Skoumal R, Tenhunen O, Konyi A, Simon M, Horvath IG, Kerkela R, Ruskoaho H, Szokodi I (2014) Apelin increases cardiac contractility via protein kinase C epsilon- and extracellular signal-regulated kinase-dependent mechanisms. PLoS One 9(4):e93473. doi:10.​1371/​journal.​pone.​0093473 PubMedCentralPubMed
76.
go back to reference Ronkainen VP, Ronkainen JJ, Hanninen SL, Leskinen H, Ruas JL, Pereira T, Poellinger L, Vuolteenaho O, Tavi P (2007) Hypoxia inducible factor regulates the cardiac expression and secretion of apelin. FASEB J 21(8):1821–1830. doi:10.1096/fj.06-7294com PubMed Ronkainen VP, Ronkainen JJ, Hanninen SL, Leskinen H, Ruas JL, Pereira T, Poellinger L, Vuolteenaho O, Tavi P (2007) Hypoxia inducible factor regulates the cardiac expression and secretion of apelin. FASEB J 21(8):1821–1830. doi:10.​1096/​fj.​06-7294com PubMed
78.
go back to reference Wang M, Gupta RC, Rastogi S, Kohli S, Sabbah MS, Zhang K, Mohyi P, Hogie M, Fischer Y, Sabbah HN (2013) Effects of acute intravenous infusion of apelin on left ventricular function in dogs with advanced heart failure. J Cardiac Fail 19(7):509–516. doi:10.1016/j.cardfail.2013.05.004 Wang M, Gupta RC, Rastogi S, Kohli S, Sabbah MS, Zhang K, Mohyi P, Hogie M, Fischer Y, Sabbah HN (2013) Effects of acute intravenous infusion of apelin on left ventricular function in dogs with advanced heart failure. J Cardiac Fail 19(7):509–516. doi:10.​1016/​j.​cardfail.​2013.​05.​004
80.
go back to reference Mathar I, Kecskes M, Van der Mieren G, Jacobs G, Camacho Londono JE, Uhl S, Flockerzi V, Voets T, Freichel M, Nilius B, Herijgers P, Vennekens R (2014) Increased beta-adrenergic inotropy in ventricular myocardium from Trpm4−/− mice. Circ Res 114(2):283–294. doi:10.1161/CIRCRESAHA.114.302835 PubMed Mathar I, Kecskes M, Van der Mieren G, Jacobs G, Camacho Londono JE, Uhl S, Flockerzi V, Voets T, Freichel M, Nilius B, Herijgers P, Vennekens R (2014) Increased beta-adrenergic inotropy in ventricular myocardium from Trpm4−/− mice. Circ Res 114(2):283–294. doi:10.​1161/​CIRCRESAHA.​114.​302835 PubMed
82.
go back to reference Katz AM, Lorell BH (2000) Regulation of cardiac contraction and relaxation. Circulation 102(20 Suppl 4):IV69–IV74PubMed Katz AM, Lorell BH (2000) Regulation of cardiac contraction and relaxation. Circulation 102(20 Suppl 4):IV69–IV74PubMed
84.
go back to reference Wang C, Du JF, Wu F, Wang HC (2008) Apelin decreases the SR Ca2+ content but enhances the amplitude of [Ca2+]i transient and contractions during twitches in isolated rat cardiac myocytes. Am J Physiol Heart Circ Physiol 294(6):H2540–H2546. doi:10.1152/ajpheart.00046.2008 PubMed Wang C, Du JF, Wu F, Wang HC (2008) Apelin decreases the SR Ca2+ content but enhances the amplitude of [Ca2+]i transient and contractions during twitches in isolated rat cardiac myocytes. Am J Physiol Heart Circ Physiol 294(6):H2540–H2546. doi:10.​1152/​ajpheart.​00046.​2008 PubMed
85.
go back to reference Karmazyn M, Gan XT, Humphreys RA, Yoshida H, Kusumoto K (1999) The myocardial Na(+)-H(+) exchange: structure, regulation, and its role in heart disease. Circ Res 85(9):777–786PubMed Karmazyn M, Gan XT, Humphreys RA, Yoshida H, Kusumoto K (1999) The myocardial Na(+)-H(+) exchange: structure, regulation, and its role in heart disease. Circ Res 85(9):777–786PubMed
86.
go back to reference Kojda G, Kottenberg K, Nix P, Schluter KD, Piper HM, Noack E (1996) Low increase in cGMP induced by organic nitrates and nitrovasodilators improves contractile response of rat ventricular myocytes. Circ Res 78(1):91–101PubMed Kojda G, Kottenberg K, Nix P, Schluter KD, Piper HM, Noack E (1996) Low increase in cGMP induced by organic nitrates and nitrovasodilators improves contractile response of rat ventricular myocytes. Circ Res 78(1):91–101PubMed
91.
go back to reference Zweier J, Rayburn B, Flaherty J, Weisfeldt M (1987) Recombinant superoxide dismutase reduces oxygen free radical concentrations in reperfused myocardium. J Clin Invest 80:1728–1734PubMedCentralPubMed Zweier J, Rayburn B, Flaherty J, Weisfeldt M (1987) Recombinant superoxide dismutase reduces oxygen free radical concentrations in reperfused myocardium. J Clin Invest 80:1728–1734PubMedCentralPubMed
92.
go back to reference Tao J, Zhu W, Li Y, Xin P, Li J, Liu M, Li J, Redington AN, Wei M (2011) Apelin-13 protects the heart against ischemia–reperfusion injury through inhibition of ER-dependent apoptotic pathways in a time-dependent fashion. Am J Physiol Heart Circ Physiol 301(4):H1471–H1486. doi:10.1152/ajpheart.00097.2011 PubMed Tao J, Zhu W, Li Y, Xin P, Li J, Liu M, Li J, Redington AN, Wei M (2011) Apelin-13 protects the heart against ischemia–reperfusion injury through inhibition of ER-dependent apoptotic pathways in a time-dependent fashion. Am J Physiol Heart Circ Physiol 301(4):H1471–H1486. doi:10.​1152/​ajpheart.​00097.​2011 PubMed
94.
go back to reference Pisarenko OI, Lankin VZ, Konovalova GG, Serebryakova LI, Shulzhenko VS, Timoshin AA, Tskitishvili OV, Pelogeykina YA, Studneva IM (2014) Apelin-12 and its structural analog enhance antioxidant defense in experimental myocardial ischemia and reperfusion. Mol Cell Biochem 391(1–2):241–250. doi:10.1007/s11010-014-2008-4 PubMed Pisarenko OI, Lankin VZ, Konovalova GG, Serebryakova LI, Shulzhenko VS, Timoshin AA, Tskitishvili OV, Pelogeykina YA, Studneva IM (2014) Apelin-12 and its structural analog enhance antioxidant defense in experimental myocardial ischemia and reperfusion. Mol Cell Biochem 391(1–2):241–250. doi:10.​1007/​s11010-014-2008-4 PubMed
96.
go back to reference Smith CC, Mocanu MM, Bowen J, Wynne AM, Simpkin JC, Dixon RA, Cooper MB, Yellon DM (2007) Temporal changes in myocardial salvage kinases during reperfusion following ischemia: studies involving the cardioprotective adipocytokine apelin. Cardiovasc Drugs Ther 21(6):409–414. doi:10.1007/s10557-007-6054-y PubMed Smith CC, Mocanu MM, Bowen J, Wynne AM, Simpkin JC, Dixon RA, Cooper MB, Yellon DM (2007) Temporal changes in myocardial salvage kinases during reperfusion following ischemia: studies involving the cardioprotective adipocytokine apelin. Cardiovasc Drugs Ther 21(6):409–414. doi:10.​1007/​s10557-007-6054-y PubMed
98.
99.
go back to reference Tang SY, Xie H, Yuan LQ, Luo XH, Huang J, Cui RR, Zhou HD, Wu XP, Liao EY (2007) Apelin stimulates proliferation and suppresses apoptosis of mouse osteoblastic cell line MC3T3-E1 via JNK and PI3-K/Akt signaling pathways. Peptides 28(3):708–718. doi:10.1016/j.peptides.2006.10.005 PubMed Tang SY, Xie H, Yuan LQ, Luo XH, Huang J, Cui RR, Zhou HD, Wu XP, Liao EY (2007) Apelin stimulates proliferation and suppresses apoptosis of mouse osteoblastic cell line MC3T3-E1 via JNK and PI3-K/Akt signaling pathways. Peptides 28(3):708–718. doi:10.​1016/​j.​peptides.​2006.​10.​005 PubMed
101.
go back to reference Alastalo TP, Li M, de Jesus Perez V, Pham D, Sawada H, Wang JK, Koskenvuo M, Wang L, Freeman BA, Chang HY, Rabinovitch M (2011) Disruption of PPARgamma/beta-catenin-mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial EC survival. J Clin Invest 121(9):3735–3746. doi:10.1172/JCI43382 PubMedCentralPubMed Alastalo TP, Li M, de Jesus Perez V, Pham D, Sawada H, Wang JK, Koskenvuo M, Wang L, Freeman BA, Chang HY, Rabinovitch M (2011) Disruption of PPARgamma/beta-catenin-mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial EC survival. J Clin Invest 121(9):3735–3746. doi:10.​1172/​JCI43382 PubMedCentralPubMed
102.
go back to reference Cui RR, Mao DA, Yi L, Wang C, Zhang XX, Xie H, Wu XP, Liao XB, Zhou H, Meng JC, Yuan LQ, Liao EY (2010) Apelin suppresses apoptosis of human vascular smooth muscle cells via APJ/PI3-K/Akt signaling pathways. Amino Acids 39(5):1193–1200. doi:10.1007/s00726-010-0555-x PubMed Cui RR, Mao DA, Yi L, Wang C, Zhang XX, Xie H, Wu XP, Liao XB, Zhou H, Meng JC, Yuan LQ, Liao EY (2010) Apelin suppresses apoptosis of human vascular smooth muscle cells via APJ/PI3-K/Akt signaling pathways. Amino Acids 39(5):1193–1200. doi:10.​1007/​s00726-010-0555-x PubMed
104.
go back to reference Khaksari M, Aboutaleb N, Nasirinezhad F, Vakili A, Madjd Z (2012) Apelin-13 protects the brain against ischemic reperfusion injury and cerebral edema in a transient model of focal cerebral ischemia. J Mol Neurosci 48(1):201–208. doi:10.1007/s12031-012-9808-3 PubMed Khaksari M, Aboutaleb N, Nasirinezhad F, Vakili A, Madjd Z (2012) Apelin-13 protects the brain against ischemic reperfusion injury and cerebral edema in a transient model of focal cerebral ischemia. J Mol Neurosci 48(1):201–208. doi:10.​1007/​s12031-012-9808-3 PubMed
105.
106.
go back to reference Gu Q, Zhai L, Feng X, Chen J, Miao Z, Ren L, Qian X, Yu J, Li Y, Xu X, Liu CF (2013) Apelin-36, a potent peptide, protects against ischemic brain injury by activating the PI3K/Akt pathway. Neurochem Int 63(6):535–540. doi:10.1016/j.neuint.2013.09.017 PubMed Gu Q, Zhai L, Feng X, Chen J, Miao Z, Ren L, Qian X, Yu J, Li Y, Xu X, Liu CF (2013) Apelin-36, a potent peptide, protects against ischemic brain injury by activating the PI3K/Akt pathway. Neurochem Int 63(6):535–540. doi:10.​1016/​j.​neuint.​2013.​09.​017 PubMed
107.
go back to reference Antushevich H, Pawlina B, Kapica M, Krawczynska A, Herman AP, Kuwahara A, Kato I, Zabielski R (2013) Influence of fundectomy and intraperitoneal or intragastric administration of apelin on apoptosis, mitosis, and DNA repair enzyme OGG1,2 expression in adult rats gastrointestinal tract and pancreas. J Physiol Pharmacol 64(4):423–428PubMed Antushevich H, Pawlina B, Kapica M, Krawczynska A, Herman AP, Kuwahara A, Kato I, Zabielski R (2013) Influence of fundectomy and intraperitoneal or intragastric administration of apelin on apoptosis, mitosis, and DNA repair enzyme OGG1,2 expression in adult rats gastrointestinal tract and pancreas. J Physiol Pharmacol 64(4):423–428PubMed
109.
go back to reference Zhang Z, Yu B, Tao GZ (2009) Apelin protects against cardiomyocyte apoptosis induced by glucose deprivation. Chin Med J 122(19):2360–2365PubMed Zhang Z, Yu B, Tao GZ (2009) Apelin protects against cardiomyocyte apoptosis induced by glucose deprivation. Chin Med J 122(19):2360–2365PubMed
110.
go back to reference Pchejetski D, Foussal C, Alfarano C, Lairez O, Calise D, Guilbeau-Frugier C, Schaak S, Seguelas MH, Wanecq E, Valet P, Parini A, Kunduzova O (2012) Apelin prevents cardiac fibroblast activation and collagen production through inhibition of sphingosine kinase 1. Eur Heart J 33(18):2360–2369. doi:10.1093/eurheartj/ehr389 PubMed Pchejetski D, Foussal C, Alfarano C, Lairez O, Calise D, Guilbeau-Frugier C, Schaak S, Seguelas MH, Wanecq E, Valet P, Parini A, Kunduzova O (2012) Apelin prevents cardiac fibroblast activation and collagen production through inhibition of sphingosine kinase 1. Eur Heart J 33(18):2360–2369. doi:10.​1093/​eurheartj/​ehr389 PubMed
111.
go back to reference Koguchi W, Kobayashi N, Takeshima H, Ishikawa M, Sugiyama F, Ishimitsu T (2012) Cardioprotective effect of apelin-13 on cardiac performance and remodeling in end-stage heart failure. Circ J 76(1):137–144PubMed Koguchi W, Kobayashi N, Takeshima H, Ishikawa M, Sugiyama F, Ishimitsu T (2012) Cardioprotective effect of apelin-13 on cardiac performance and remodeling in end-stage heart failure. Circ J 76(1):137–144PubMed
112.
go back to reference Siwik DA, Chang DL, Colucci WS (2000) Interleukin-1beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res 86(12):1259–1265PubMed Siwik DA, Chang DL, Colucci WS (2000) Interleukin-1beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res 86(12):1259–1265PubMed
113.
go back to reference Kim S, Iwao H (2000) Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 52(1):11–34PubMed Kim S, Iwao H (2000) Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 52(1):11–34PubMed
114.
116.
go back to reference Barnes GD, Alam S, Carter G, Pedersen CM, Lee KM, Hubbard TJ, Veitch S, Jeong H, White A, Cruden NL, Huson L, Japp AG, Newby DE (2013) Sustained cardiovascular actions of APJ agonism during renin-angiotensin system activation and in patients with heart failure. Circ Heart Fail 6(3):482–491. doi:10.1161/CIRCHEARTFAILURE.111.000077 PubMed Barnes GD, Alam S, Carter G, Pedersen CM, Lee KM, Hubbard TJ, Veitch S, Jeong H, White A, Cruden NL, Huson L, Japp AG, Newby DE (2013) Sustained cardiovascular actions of APJ agonism during renin-angiotensin system activation and in patients with heart failure. Circ Heart Fail 6(3):482–491. doi:10.​1161/​CIRCHEARTFAILURE​.​111.​000077 PubMed
118.
go back to reference Yang L, Su T, Lv D, Xie F, Liu W, Cao J, Sheikh IA, Qin X, Li L, Chen L (2014) ERK1/2 mediates lung adenocarcinoma cell proliferation and autophagy induced by apelin-13. Acta Biochim Biophys Sin 46(2):100–111. doi:10.1093/abbs/gmt140 PubMed Yang L, Su T, Lv D, Xie F, Liu W, Cao J, Sheikh IA, Qin X, Li L, Chen L (2014) ERK1/2 mediates lung adenocarcinoma cell proliferation and autophagy induced by apelin-13. Acta Biochim Biophys Sin 46(2):100–111. doi:10.​1093/​abbs/​gmt140 PubMed
Metadata
Title
Effects of apelin on the cardiovascular system
Authors
Anna Folino
Pier Giorgio Montarolo
Michele Samaja
Raffaella Rastaldo
Publication date
01-07-2015
Publisher
Springer US
Published in
Heart Failure Reviews / Issue 4/2015
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-015-9475-x

Other articles of this Issue 4/2015

Heart Failure Reviews 4/2015 Go to the issue