Skip to main content
Top
Published in: European Journal of Epidemiology 7/2013

01-07-2013 | MORTALITY

Seventeen year risk of all-cause and cause-specific mortality associated with C-reactive protein, fibrinogen and leukocyte count in men and women: the EPIC-Norfolk study

Authors: Sara Ahmadi-Abhari, Robert N. Luben, Nicholas J. Wareham, Kay-Tee Khaw

Published in: European Journal of Epidemiology | Issue 7/2013

Login to get access

Abstract

There is strong evidence from observational studies suggesting serum C-reactive protein (CRP) is associated with cardiovascular and all-cause mortality. However, less is known about whether there are differences in the association of CRP with all-cause or cause specific mortality by sex, smoking, body mass index (BMI), or physical activity. We aimed to investigate these interactions and also investigate and compare the association of CRP and other inflammation markers (i.e., fibrinogen and leukocyte count) with all-cause and cause-specific mortality. Men and women aged 40–79 were recruited in 1993–1997 in the EPIC-Norfolk cohort study. A total of 16,850 participants with high-sensitivity assayed CRP data who had no known cancer, myocardial infarction and stroke at baseline were entered in the analysis to test the association of CRP, fibrinogen and leukocyte count with risk of all-cause and cause specific mortality. A total of, 2,603 all-cause deaths (1,452 in men) including 823 cardiovascular and 1,035 cancer deaths, were observed after 231,000 person-years of follow-up (median 14.3 years). CRP was positively associated with risk of all-cause, cardiovascular, and non-cancer non-cardiovascular mortality independent of established risk factors. The hazard ratio of all-cause mortality (95 % CI) for participants with CRP in the range of 3–10 and >10 mg/l (vs. <0.5 mg/l) was 1.56 (1.26–1.93) and 1.87 (1.43–2.43) respectively in men and 1.34 (1.07–1.68) and 1.98 (1.50–2.63) in women. The association was less positively graded in women with the increased risk being significant only at higher levels of the CRP distribution. The association persisted in never smokers and did not vary by levels of BMI or physical activity. Although fibrinogen and leukocyte count were also positively associated with mortality risk, only CRP remained a significant predictor of mortality when the inflammation markers were adjusted for one another in multivariable models. Serum CRP levels were a long-term predictor of risk of cardiovascular and non-cardiovascular mortality independent of known risk factors, fibrinogen, and leukocyte count.
Appendix
Available only for authorised users
Literature
1.
go back to reference De MM, Franceschi C, Monti D, Ginaldi L. Inflammation markers predicting frailty and mortality in the elderly. Exp Mol Pathol. 2006;80(3):219–27.CrossRef De MM, Franceschi C, Monti D, Ginaldi L. Inflammation markers predicting frailty and mortality in the elderly. Exp Mol Pathol. 2006;80(3):219–27.CrossRef
2.
go back to reference De MM, Franceschi C, Monti D, Ginaldi L. Inflamm-ageing and lifelong antigenic load as major determinants of ageing rate and longevity. FEBS Lett. 2005;579(10):2035–9.CrossRef De MM, Franceschi C, Monti D, Ginaldi L. Inflamm-ageing and lifelong antigenic load as major determinants of ageing rate and longevity. FEBS Lett. 2005;579(10):2035–9.CrossRef
4.
go back to reference Kaptoge S, Di AE, Lowe G, Pepys MB, Thompson SG, Collins R, Danesh J. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet. 2010;375(9709):132–40.PubMedCrossRef Kaptoge S, Di AE, Lowe G, Pepys MB, Thompson SG, Collins R, Danesh J. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet. 2010;375(9709):132–40.PubMedCrossRef
5.
go back to reference Danesh J, Wheeler JG, Hirschfield GM, Eda S, Eiriksdottir G, Rumley A, et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med. 2004;350(14):1387–97.PubMedCrossRef Danesh J, Wheeler JG, Hirschfield GM, Eda S, Eiriksdottir G, Rumley A, et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med. 2004;350(14):1387–97.PubMedCrossRef
6.
go back to reference Koenig W, Khuseyinova N, Baumert J, Thorand B, Loewel H, Chambless L, et al. Increased concentrations of C-reactive protein and IL-6 but not IL-18 are independently associated with incident coronary events in middle-aged men and women: results from the MONICA/KORA Augsburg case-cohort study, 1984–2002. Arterioscler Thromb Vasc Biol. 2006;26(12):2745–51.PubMedCrossRef Koenig W, Khuseyinova N, Baumert J, Thorand B, Loewel H, Chambless L, et al. Increased concentrations of C-reactive protein and IL-6 but not IL-18 are independently associated with incident coronary events in middle-aged men and women: results from the MONICA/KORA Augsburg case-cohort study, 1984–2002. Arterioscler Thromb Vasc Biol. 2006;26(12):2745–51.PubMedCrossRef
7.
go back to reference Il’yasova D, Colbert LH, Harris TB, Newman AB, Bauer DC, Satterfield S, Kritchevsky SB. Circulating levels of inflammatory markers and cancer risk in the health aging and body composition cohort. Cancer Epidemiol Biomarkers Prev. 2005;14(10):2413–8.PubMedCrossRef Il’yasova D, Colbert LH, Harris TB, Newman AB, Bauer DC, Satterfield S, Kritchevsky SB. Circulating levels of inflammatory markers and cancer risk in the health aging and body composition cohort. Cancer Epidemiol Biomarkers Prev. 2005;14(10):2413–8.PubMedCrossRef
8.
go back to reference Siemes C, Visser LE, Coebergh JW, Splinter TA, Witteman JC, Uitterlinden AG, et al. C-reactive protein levels, variation in the C-reactive protein gene, and cancer risk: the Rotterdam Study. J Clin Oncol. 2006;24(33):5216–22.PubMedCrossRef Siemes C, Visser LE, Coebergh JW, Splinter TA, Witteman JC, Uitterlinden AG, et al. C-reactive protein levels, variation in the C-reactive protein gene, and cancer risk: the Rotterdam Study. J Clin Oncol. 2006;24(33):5216–22.PubMedCrossRef
9.
go back to reference Heikkila K, Harris R, Lowe G, Rumley A, Yarnell J, Gallacher J, et al. Associations of circulating C-reactive protein and interleukin-6 with cancer risk: findings from two prospective cohorts and a meta-analysis. Cancer Causes Control. 2009;20(1):15–26.PubMedCrossRef Heikkila K, Harris R, Lowe G, Rumley A, Yarnell J, Gallacher J, et al. Associations of circulating C-reactive protein and interleukin-6 with cancer risk: findings from two prospective cohorts and a meta-analysis. Cancer Causes Control. 2009;20(1):15–26.PubMedCrossRef
10.
go back to reference Lee CC, Adler AI, Sandhu MS, Sharp SJ, Forouhi NG, Erqou S, et al. Association of C-reactive protein with type 2 diabetes: prospective analysis and meta-analysis. Diabetologia. 2009;52(6):1040–7.PubMedCrossRef Lee CC, Adler AI, Sandhu MS, Sharp SJ, Forouhi NG, Erqou S, et al. Association of C-reactive protein with type 2 diabetes: prospective analysis and meta-analysis. Diabetologia. 2009;52(6):1040–7.PubMedCrossRef
11.
go back to reference Sesso HD, Buring JE, Rifai N, Blake GJ, Gaziano JM, Ridker PM. C-reactive protein and the risk of developing hypertension. JAMA. 2003;290(22):2945–51.PubMedCrossRef Sesso HD, Buring JE, Rifai N, Blake GJ, Gaziano JM, Ridker PM. C-reactive protein and the risk of developing hypertension. JAMA. 2003;290(22):2945–51.PubMedCrossRef
12.
go back to reference van Durme YM, Verhamme KM, Aarnoudse AJ, Van Pottelberge GR, Hofman A, Witteman JC, et al. C-reactive protein levels, haplotypes, and the risk of incident chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2009;179(5):375–82.PubMedCrossRef van Durme YM, Verhamme KM, Aarnoudse AJ, Van Pottelberge GR, Hofman A, Witteman JC, et al. C-reactive protein levels, haplotypes, and the risk of incident chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2009;179(5):375–82.PubMedCrossRef
13.
go back to reference Arcari A, Zito F, Di CA, De CA, Dirckx C, Arnout J, et al. C reactive protein and its determinants in healthy men and women from European regions at different risk of coronary disease: the IMMIDIET Project. J Thromb Haemost. 2008;6(3):436–43.PubMedCrossRef Arcari A, Zito F, Di CA, De CA, Dirckx C, Arnout J, et al. C reactive protein and its determinants in healthy men and women from European regions at different risk of coronary disease: the IMMIDIET Project. J Thromb Haemost. 2008;6(3):436–43.PubMedCrossRef
14.
go back to reference Thorand B, Baumert J, Doring A, Herder C, Kolb H, Rathmann W, et al. Sex differences in the relation of body composition to markers of inflammation. Atherosclerosis. 2006;184(1):216–24.PubMedCrossRef Thorand B, Baumert J, Doring A, Herder C, Kolb H, Rathmann W, et al. Sex differences in the relation of body composition to markers of inflammation. Atherosclerosis. 2006;184(1):216–24.PubMedCrossRef
15.
go back to reference Festa A, D’Agostino R Jr, Williams K, Karter AJ, Mayer-Davis EJ, Tracy RP, Haffner SM. The relation of body fat mass and distribution to markers of chronic inflammation. Int J Obes Relat Metab Disord. 2001;25(10):1407–15.PubMedCrossRef Festa A, D’Agostino R Jr, Williams K, Karter AJ, Mayer-Davis EJ, Tracy RP, Haffner SM. The relation of body fat mass and distribution to markers of chronic inflammation. Int J Obes Relat Metab Disord. 2001;25(10):1407–15.PubMedCrossRef
16.
go back to reference Rana JS, Arsenault BJ, Despres JP, Cote M, Talmud PJ, Ninio E, et al. Inflammatory biomarkers, physical activity, waist circumference, and risk of future coronary heart disease in healthy men and women. Eur Heart J. 2011;32(3):336–44.PubMedCrossRef Rana JS, Arsenault BJ, Despres JP, Cote M, Talmud PJ, Ninio E, et al. Inflammatory biomarkers, physical activity, waist circumference, and risk of future coronary heart disease in healthy men and women. Eur Heart J. 2011;32(3):336–44.PubMedCrossRef
17.
go back to reference Huang ZS, Chien KL, Yang CY, Tsai KS, Wang CH. Peripheral differential leukocyte counts in humans vary with hyperlipidemia, smoking, and body mass index. Lipids. 2001;36(3):237–45.PubMedCrossRef Huang ZS, Chien KL, Yang CY, Tsai KS, Wang CH. Peripheral differential leukocyte counts in humans vary with hyperlipidemia, smoking, and body mass index. Lipids. 2001;36(3):237–45.PubMedCrossRef
18.
go back to reference Ruggiero C, Metter EJ, Cherubini A, Maggio M, Sen R, Najjar SS, et al. White blood cell count and mortality in the Baltimore Longitudinal Study of Aging. J Am Coll Cardiol. 2007;49(18):1841–50.PubMedCrossRef Ruggiero C, Metter EJ, Cherubini A, Maggio M, Sen R, Najjar SS, et al. White blood cell count and mortality in the Baltimore Longitudinal Study of Aging. J Am Coll Cardiol. 2007;49(18):1841–50.PubMedCrossRef
19.
go back to reference Ford ES, Giles WH, Mokdad AH, Myers GL. Distribution and correlates of C-reactive protein concentrations among adult US women. Clin Chem. 2004;50(3):574–81.PubMedCrossRef Ford ES, Giles WH, Mokdad AH, Myers GL. Distribution and correlates of C-reactive protein concentrations among adult US women. Clin Chem. 2004;50(3):574–81.PubMedCrossRef
20.
go back to reference Sinha S, Luben RN, Welch A, Bingham S, Wareham NJ, Day NE, Khaw KT. Fibrinogen and cigarette smoking in men and women in the European prospective investigation into cancer in Norfolk (EPIC-Norfolk) population. Eur J Cardiovasc Prev Rehabil. 2005;12(2):144–50.PubMedCrossRef Sinha S, Luben RN, Welch A, Bingham S, Wareham NJ, Day NE, Khaw KT. Fibrinogen and cigarette smoking in men and women in the European prospective investigation into cancer in Norfolk (EPIC-Norfolk) population. Eur J Cardiovasc Prev Rehabil. 2005;12(2):144–50.PubMedCrossRef
21.
go back to reference Kasapis C, Thompson PD. The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. J Am Coll Cardiol. 2005;45(10):1563–9.PubMedCrossRef Kasapis C, Thompson PD. The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. J Am Coll Cardiol. 2005;45(10):1563–9.PubMedCrossRef
22.
go back to reference Myint PK, Luben RN, Wareham NJ, Welch AA, Bingham SA, Khaw KT. Physical activity and fibrinogen concentrations in 23,201 men and women in the EPIC-Norfolk population-based study. Atherosclerosis. 2008;198(2):419–25.PubMedCrossRef Myint PK, Luben RN, Wareham NJ, Welch AA, Bingham SA, Khaw KT. Physical activity and fibrinogen concentrations in 23,201 men and women in the EPIC-Norfolk population-based study. Atherosclerosis. 2008;198(2):419–25.PubMedCrossRef
23.
go back to reference Sprague BL, Trentham-Dietz A, Klein BE, Klein R, Cruickshanks KJ, Lee KE, Hampton JM. Physical activity, white blood cell count, and lung cancer risk in a prospective cohort study. Cancer Epidemiol Biomarkers Prev. 2008;17(10):2714–22.PubMedCrossRef Sprague BL, Trentham-Dietz A, Klein BE, Klein R, Cruickshanks KJ, Lee KE, Hampton JM. Physical activity, white blood cell count, and lung cancer risk in a prospective cohort study. Cancer Epidemiol Biomarkers Prev. 2008;17(10):2714–22.PubMedCrossRef
24.
go back to reference Piche ME, Lemieux S, Weisnagel SJ, Corneau L, Nadeau A, Bergeron J. Relation of high-sensitivity C-reactive protein, interleukin-6, tumor necrosis factor-alpha, and fibrinogen to abdominal adipose tissue, blood pressure, and cholesterol and triglyceride levels in healthy postmenopausal women. Am J Cardiol. 2005;96(1):92–7.PubMedCrossRef Piche ME, Lemieux S, Weisnagel SJ, Corneau L, Nadeau A, Bergeron J. Relation of high-sensitivity C-reactive protein, interleukin-6, tumor necrosis factor-alpha, and fibrinogen to abdominal adipose tissue, blood pressure, and cholesterol and triglyceride levels in healthy postmenopausal women. Am J Cardiol. 2005;96(1):92–7.PubMedCrossRef
25.
go back to reference Orakzai RH, Orakzai SH, Nasir K, Santos RD, Rana JS, Pimentel I, et al. Association of white blood cell count with systolic blood pressure within the normotensive range. J Hum Hypertens. 2006;20(5):341–7.PubMedCrossRef Orakzai RH, Orakzai SH, Nasir K, Santos RD, Rana JS, Pimentel I, et al. Association of white blood cell count with systolic blood pressure within the normotensive range. J Hum Hypertens. 2006;20(5):341–7.PubMedCrossRef
26.
go back to reference Danesh J, Lewington S, Thompson SG, Lowe GD, Collins R, Kostis JB, et al. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA. 2005;294(14):1799–809.PubMedCrossRef Danesh J, Lewington S, Thompson SG, Lowe GD, Collins R, Kostis JB, et al. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA. 2005;294(14):1799–809.PubMedCrossRef
27.
go back to reference Kaptoge S, White IR, Thompson SG, Wood AM, Lewington S, Lowe GD, Danesh J. Associations of plasma fibrinogen levels with established cardiovascular disease risk factors, inflammatory markers, and other characteristics: individual participant meta-analysis of 154,211 adults in 31 prospective studies: the fibrinogen studies collaboration. Am J Epidemiol. 2007;166(8):867–79.PubMedCrossRef Kaptoge S, White IR, Thompson SG, Wood AM, Lewington S, Lowe GD, Danesh J. Associations of plasma fibrinogen levels with established cardiovascular disease risk factors, inflammatory markers, and other characteristics: individual participant meta-analysis of 154,211 adults in 31 prospective studies: the fibrinogen studies collaboration. Am J Epidemiol. 2007;166(8):867–79.PubMedCrossRef
28.
go back to reference Koenig W, Khuseyinova N, Baumert J, Meisinger C. Prospective study of high-sensitivity C-reactive protein as a determinant of mortality: results from the MONICA/KORA Augsburg Cohort Study, 1984–1998. Clin Chem. 2008;54(2):335–42.PubMedCrossRef Koenig W, Khuseyinova N, Baumert J, Meisinger C. Prospective study of high-sensitivity C-reactive protein as a determinant of mortality: results from the MONICA/KORA Augsburg Cohort Study, 1984–1998. Clin Chem. 2008;54(2):335–42.PubMedCrossRef
29.
go back to reference Zacho J, Tybjaerg-Hansen A, Nordestgaard BG. C-reactive protein and all-cause mortality—the Copenhagen City Heart Study. Eur Heart J. 2010;31(13):1624–32.PubMedCrossRef Zacho J, Tybjaerg-Hansen A, Nordestgaard BG. C-reactive protein and all-cause mortality—the Copenhagen City Heart Study. Eur Heart J. 2010;31(13):1624–32.PubMedCrossRef
30.
go back to reference Arima H, Kubo M, Yonemoto K, Doi Y, Ninomiya T, Tanizaki Y, et al. High-sensitivity C-reactive protein and coronary heart disease in a general population of Japanese: the Hisayama study. Arterioscler Thromb Vasc Biol. 2008;28(7):1385–91.PubMedCrossRef Arima H, Kubo M, Yonemoto K, Doi Y, Ninomiya T, Tanizaki Y, et al. High-sensitivity C-reactive protein and coronary heart disease in a general population of Japanese: the Hisayama study. Arterioscler Thromb Vasc Biol. 2008;28(7):1385–91.PubMedCrossRef
31.
go back to reference Tuomisto K, Jousilahti P, Sundvall J, Pajunen P, Salomaa V. C-reactive protein, interleukin-6 and tumor necrosis factor alpha as predictors of incident coronary and cardiovascular events and total mortality. A population-based, prospective study. Thromb Haemost. 2006;95(3):511–8.PubMed Tuomisto K, Jousilahti P, Sundvall J, Pajunen P, Salomaa V. C-reactive protein, interleukin-6 and tumor necrosis factor alpha as predictors of incident coronary and cardiovascular events and total mortality. A population-based, prospective study. Thromb Haemost. 2006;95(3):511–8.PubMed
32.
go back to reference Tamakoshi K, Toyoshima H, Yatsuya H, Matsushita K, Okamura T, Hayakawa T, et al. White blood cell count and risk of all-cause and cardiovascular mortality in nationwide sample of Japanese–results from the NIPPON DATA90. Circ J. 2007;71(4):479–85.PubMedCrossRef Tamakoshi K, Toyoshima H, Yatsuya H, Matsushita K, Okamura T, Hayakawa T, et al. White blood cell count and risk of all-cause and cardiovascular mortality in nationwide sample of Japanese–results from the NIPPON DATA90. Circ J. 2007;71(4):479–85.PubMedCrossRef
33.
go back to reference Day N, Oakes S, Luben R, Khaw KT, Bingham S, Welch A, Wareham N. EPIC-Norfolk: study design and characteristics of the cohort. European prospective investigation of cancer. Br J Cancer. 1999;80(Suppl 1):95–103.PubMed Day N, Oakes S, Luben R, Khaw KT, Bingham S, Welch A, Wareham N. EPIC-Norfolk: study design and characteristics of the cohort. European prospective investigation of cancer. Br J Cancer. 1999;80(Suppl 1):95–103.PubMed
34.
go back to reference Danesh J, Collins R, Appleby P, Peto R. Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. JAMA. 1998;279(18):1477–82.PubMedCrossRef Danesh J, Collins R, Appleby P, Peto R. Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. JAMA. 1998;279(18):1477–82.PubMedCrossRef
35.
go back to reference Danesh J, Pepys MB. C-reactive protein and coronary disease: is there a causal link? Circulation. 2009;120(21):2036–9.PubMedCrossRef Danesh J, Pepys MB. C-reactive protein and coronary disease: is there a causal link? Circulation. 2009;120(21):2036–9.PubMedCrossRef
36.
go back to reference Goto M. Inflammaging (inflammation + aging): a driving force for human aging based on an evolutionarily antagonistic pleiotropy theory? Biosci Trends. 2008;2(6):218–30.PubMed Goto M. Inflammaging (inflammation + aging): a driving force for human aging based on an evolutionarily antagonistic pleiotropy theory? Biosci Trends. 2008;2(6):218–30.PubMed
37.
go back to reference Franceschi C, Bonafe M, Valensin S. Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine. 2000;18(16):1717–20.PubMedCrossRef Franceschi C, Bonafe M, Valensin S. Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine. 2000;18(16):1717–20.PubMedCrossRef
38.
go back to reference Kravitz BA, Corrada MM, Kawas CH. Elevated C-reactive protein levels are associated with prevalent dementia in the oldest-old. Alzheimers Dement. 2009;5(4):318–23.PubMedCrossRef Kravitz BA, Corrada MM, Kawas CH. Elevated C-reactive protein levels are associated with prevalent dementia in the oldest-old. Alzheimers Dement. 2009;5(4):318–23.PubMedCrossRef
39.
go back to reference He LP, Tang XY, Ling WH, Chen WQ, Chen YM. Early C-reactive protein in the prediction of long-term outcomes after acute coronary syndromes: a meta-analysis of longitudinal studies. Heart. 2010;96(5):339–46.PubMedCrossRef He LP, Tang XY, Ling WH, Chen WQ, Chen YM. Early C-reactive protein in the prediction of long-term outcomes after acute coronary syndromes: a meta-analysis of longitudinal studies. Heart. 2010;96(5):339–46.PubMedCrossRef
40.
go back to reference Ormstad H, Aass HC, Lund-Sorensen N, Amthor KF, Sandvik L. Serum levels of cytokines and C-reactive protein in acute ischemic stroke patients, and their relationship to stroke lateralization, type, and infarct volume. J Neurol. 2011;258(4):677–85.PubMedCrossRef Ormstad H, Aass HC, Lund-Sorensen N, Amthor KF, Sandvik L. Serum levels of cytokines and C-reactive protein in acute ischemic stroke patients, and their relationship to stroke lateralization, type, and infarct volume. J Neurol. 2011;258(4):677–85.PubMedCrossRef
41.
go back to reference Wang CS, Sun CF. C-reactive protein and malignancy: clinico-pathological association and therapeutic implication. Chang Gung Med J. 2009;32(5):471–82.PubMed Wang CS, Sun CF. C-reactive protein and malignancy: clinico-pathological association and therapeutic implication. Chang Gung Med J. 2009;32(5):471–82.PubMed
42.
go back to reference Dahl M, Vestbo J, Lange P, Bojesen SE, Tybjaerg-Hansen A, Nordestgaard BG. C-reactive protein as a predictor of prognosis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;175(3):250–5.PubMedCrossRef Dahl M, Vestbo J, Lange P, Bojesen SE, Tybjaerg-Hansen A, Nordestgaard BG. C-reactive protein as a predictor of prognosis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;175(3):250–5.PubMedCrossRef
43.
go back to reference Wensley F, Gao P, Burgess S, Kaptoge S, Di AE, Shah T, et al. Association between C reactive protein and coronary heart disease: mendelian randomisation analysis based on individual participant data. BMJ. 2011;342:d548. doi:10.1136/bmj.d548:d548.PubMedCrossRef Wensley F, Gao P, Burgess S, Kaptoge S, Di AE, Shah T, et al. Association between C reactive protein and coronary heart disease: mendelian randomisation analysis based on individual participant data. BMJ. 2011;342:d548. doi:10.​1136/​bmj.​d548:​d548.PubMedCrossRef
44.
go back to reference Allin KH, Nordestgaard BG, Zacho J, Tybjaerg-Hansen A, Bojesen SE. C-reactive protein and the risk of cancer: a mendelian randomization study. J Natl Cancer Inst. 2010;102(3):202–6.PubMedCrossRef Allin KH, Nordestgaard BG, Zacho J, Tybjaerg-Hansen A, Bojesen SE. C-reactive protein and the risk of cancer: a mendelian randomization study. J Natl Cancer Inst. 2010;102(3):202–6.PubMedCrossRef
45.
go back to reference Chakrabarti S, Lekontseva O, Davidge ST. Estrogen is a modulator of vascular inflammation. IUBMB Life. 2008;60(6):376–82.PubMedCrossRef Chakrabarti S, Lekontseva O, Davidge ST. Estrogen is a modulator of vascular inflammation. IUBMB Life. 2008;60(6):376–82.PubMedCrossRef
46.
go back to reference Vegeto E, Benedusi V, Maggi A. Estrogen anti-inflammatory activity in brain: a therapeutic opportunity for menopause and neurodegenerative diseases. Front Neuroendocrinol. 2008;29(4):507–19.PubMedCrossRef Vegeto E, Benedusi V, Maggi A. Estrogen anti-inflammatory activity in brain: a therapeutic opportunity for menopause and neurodegenerative diseases. Front Neuroendocrinol. 2008;29(4):507–19.PubMedCrossRef
47.
go back to reference Gilliver SC. Sex steroids as inflammatory regulators. J Steroid Biochem Mol Biol. 2010;120(2–3):105–15.PubMedCrossRef Gilliver SC. Sex steroids as inflammatory regulators. J Steroid Biochem Mol Biol. 2010;120(2–3):105–15.PubMedCrossRef
48.
go back to reference Pai JK, Pischon T, Ma J, Manson JE, Hankinson SE, Joshipura K, et al. Inflammatory markers and the risk of coronary heart disease in men and women. N Engl J Med. 2004;351(25):2599–610.PubMedCrossRef Pai JK, Pischon T, Ma J, Manson JE, Hankinson SE, Joshipura K, et al. Inflammatory markers and the risk of coronary heart disease in men and women. N Engl J Med. 2004;351(25):2599–610.PubMedCrossRef
49.
go back to reference Sezer OK, Erenus M, Yoldemir T. The impact of tibolone and hormone therapy on serum C-reactive protein, tumor necrosis factor-alpha and hepatocyte growth factor in postmenopausal women. Climacteric. 2009;12(1):66–71.CrossRef Sezer OK, Erenus M, Yoldemir T. The impact of tibolone and hormone therapy on serum C-reactive protein, tumor necrosis factor-alpha and hepatocyte growth factor in postmenopausal women. Climacteric. 2009;12(1):66–71.CrossRef
50.
go back to reference Nilsson TK, Boman K, Jansson JH, Thogersen AM, Berggren M, Broberg A, Granlund A. Comparison of soluble thrombomodulin, von Willebrand factor, tPA/PAI-1 complex, and high-sensitivity CRP concentrations in serum, EDTA plasma, citrated plasma, and acidified citrated plasma (Stabilyte) stored at −70 degrees C for 8–11 years. Thromb Res. 2005;116(3):249–54.PubMedCrossRef Nilsson TK, Boman K, Jansson JH, Thogersen AM, Berggren M, Broberg A, Granlund A. Comparison of soluble thrombomodulin, von Willebrand factor, tPA/PAI-1 complex, and high-sensitivity CRP concentrations in serum, EDTA plasma, citrated plasma, and acidified citrated plasma (Stabilyte) stored at −70 degrees C for 8–11 years. Thromb Res. 2005;116(3):249–54.PubMedCrossRef
51.
go back to reference Alesci S, Borggrefe M, Dempfle CE. Effect of freezing method and storage at −20 degrees C and −70 degrees C on prothrombin time, aPTT and plasma fibrinogen levels. Thromb Res. 2009;124(1):121–6.PubMedCrossRef Alesci S, Borggrefe M, Dempfle CE. Effect of freezing method and storage at −20 degrees C and −70 degrees C on prothrombin time, aPTT and plasma fibrinogen levels. Thromb Res. 2009;124(1):121–6.PubMedCrossRef
Metadata
Title
Seventeen year risk of all-cause and cause-specific mortality associated with C-reactive protein, fibrinogen and leukocyte count in men and women: the EPIC-Norfolk study
Authors
Sara Ahmadi-Abhari
Robert N. Luben
Nicholas J. Wareham
Kay-Tee Khaw
Publication date
01-07-2013
Publisher
Springer Netherlands
Published in
European Journal of Epidemiology / Issue 7/2013
Print ISSN: 0393-2990
Electronic ISSN: 1573-7284
DOI
https://doi.org/10.1007/s10654-013-9819-6

Other articles of this Issue 7/2013

European Journal of Epidemiology 7/2013 Go to the issue