Skip to main content
Top
Published in: Documenta Ophthalmologica 1/2012

01-08-2012 | Original Research Article

Analysis of multifocal electroretinograms from a population with type 1 diabetes using partial least squares reveals spatial and temporal distribution of changes to retinal function

Authors: Tom Wright, Filomeno Cortese, Josefin Nilsson, Carol Westall

Published in: Documenta Ophthalmologica | Issue 1/2012

Login to get access

Abstract

Spatial–temporal partial least squares (ST-PLS) is a multivariate statistical analysis that has improved the analysis of modern imaging techniques. Multifocal electroretinograms (mfERGs) contain a large amount of data, and averaging and grouping have been used to reduce the amount of data to levels that can be handled using traditional statistical methods. In contrast, using all acquired data points, ST-PLS enables statistically rigorous testing of changes in waveform shape and in the distributed signal related to retinal function. We hypothesise that ST-PLS will improve analysis of the mfERG. Two mfERG protocols, a 103 hexagon clinical protocol and a slow-flash mfERG (sf-mfERG) protocol, were recorded from an adolescent population with type 1 diabetes and an age similar control population. The standard mfERGs were analysed using a template-fitting algorithm and the sf-mfERG using a signal-to-noise measure. The results of these traditional analysis techniques are compared with those of the ST-PLS analysis. Traditional analysis of the mfERG recordings revealed changes between groups for implicit time but not amplitude; however, the spatial location of these changes could not be identified. In contrast, ST-PLS detected significant changes between groups and displayed the spatial location of these changes on the retinal map and the temporal location within the mfERG waveforms. ST-PLS confirmed that changes to diabetic retinal function occur before the onset of clinical pathology. In addition, it revealed two distinct patterns of change depending on whether the multifocal paradigm was optimised to target outer retinal function (photoreceptors) or middle/inner retinal function (collector cells).
Appendix
Available only for authorised users
Literature
1.
go back to reference Sutter EE (2001) Imaging visual function with the multifocal m-sequence technique. Vision Res 41:1241–1255PubMedCrossRef Sutter EE (2001) Imaging visual function with the multifocal m-sequence technique. Vision Res 41:1241–1255PubMedCrossRef
2.
go back to reference Hood DC, Bach M, Brigell M et al (2012) ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc Ophthalmol Adv Ophthalmol 124:1–13CrossRef Hood DC, Bach M, Brigell M et al (2012) ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc Ophthalmol Adv Ophthalmol 124:1–13CrossRef
3.
go back to reference de Rouck AF (2006) History of the electroretinogram. In: Heckenlively JR, Arden GB (eds) Principals and practice of clinical electrophysiology of vision. MIT Press, Massachusetts, pp 3–11 de Rouck AF (2006) History of the electroretinogram. In: Heckenlively JR, Arden GB (eds) Principals and practice of clinical electrophysiology of vision. MIT Press, Massachusetts, pp 3–11
4.
go back to reference Marmor MF, Fultona B, Holder GE et al (2009) ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol Adv Ophthalmol 118:69–77CrossRef Marmor MF, Fultona B, Holder GE et al (2009) ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol Adv Ophthalmol 118:69–77CrossRef
5.
go back to reference McIntosh AR, Bookstein FL, Haxby JV et al (1996) Spatial pattern analysis of functional brain images using partial least squares. NeuroImage 3:143–157PubMedCrossRef McIntosh AR, Bookstein FL, Haxby JV et al (1996) Spatial pattern analysis of functional brain images using partial least squares. NeuroImage 3:143–157PubMedCrossRef
6.
go back to reference Krishnan A, Williams LJ, McIntosh AR et al (2011) Partial least squares (PLS) methods for neuroimaging: a tutorial and review. Neuroimage 56:455–475PubMedCrossRef Krishnan A, Williams LJ, McIntosh AR et al (2011) Partial least squares (PLS) methods for neuroimaging: a tutorial and review. Neuroimage 56:455–475PubMedCrossRef
7.
go back to reference Protzner AB, Cortese F, Alain C et al (2009) The temporal interaction of modality specific and process specific neural networks supporting simple working memory tasks. Neuropsychologia 47:1954–1963PubMedCrossRef Protzner AB, Cortese F, Alain C et al (2009) The temporal interaction of modality specific and process specific neural networks supporting simple working memory tasks. Neuropsychologia 47:1954–1963PubMedCrossRef
8.
go back to reference Khan MI, Barlow RB, Weinstock RS (2011) Acute hypoglycemia decreases central retinal function in the human eye. Vision Res 51:1623–1626PubMedCrossRef Khan MI, Barlow RB, Weinstock RS (2011) Acute hypoglycemia decreases central retinal function in the human eye. Vision Res 51:1623–1626PubMedCrossRef
9.
go back to reference Melendez-Ramirez LY, Richards RJ, Cefalu WT (2010) Complications of type 1 diabetes. Endocrinol Metab Clin North Am 39:625–640PubMedCrossRef Melendez-Ramirez LY, Richards RJ, Cefalu WT (2010) Complications of type 1 diabetes. Endocrinol Metab Clin North Am 39:625–640PubMedCrossRef
10.
go back to reference Klein R, Klein BE, Moss SE et al (1984) The Wisconsin epidemiologic study of diabetic retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol 102:520–526PubMedCrossRef Klein R, Klein BE, Moss SE et al (1984) The Wisconsin epidemiologic study of diabetic retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol 102:520–526PubMedCrossRef
11.
go back to reference (1991) Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 98:786–806 (1991) Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 98:786–806
12.
go back to reference Shirao Y, Kawasaki K (1998) Electrical responses from diabetic retina. Progr Retin Eye Res 17:59–76CrossRef Shirao Y, Kawasaki K (1998) Electrical responses from diabetic retina. Progr Retin Eye Res 17:59–76CrossRef
13.
go back to reference Arden GB (1986) Hamilton a M, Wilson-Holt J, et al. Pattern electroretinograms become abnormal when background diabetic retinopathy deteriorates to a preproliferative stage: possible use as a screening test. Br J Ophthalmol 70:330–335PubMedCrossRef Arden GB (1986) Hamilton a M, Wilson-Holt J, et al. Pattern electroretinograms become abnormal when background diabetic retinopathy deteriorates to a preproliferative stage: possible use as a screening test. Br J Ophthalmol 70:330–335PubMedCrossRef
14.
go back to reference Miyake Y (1990) Macular oscillatory potentials in humans. Macular OPs. Doc Ophthalmol Adv Ophthalmol 75:111–124CrossRef Miyake Y (1990) Macular oscillatory potentials in humans. Macular OPs. Doc Ophthalmol Adv Ophthalmol 75:111–124CrossRef
15.
go back to reference Onozu H, Yamamoto S (2003) Oscillatory potentials of multifocal electroretinogram retinopathy. Doc Ophthalmol 106:327–332PubMedCrossRef Onozu H, Yamamoto S (2003) Oscillatory potentials of multifocal electroretinogram retinopathy. Doc Ophthalmol 106:327–332PubMedCrossRef
16.
go back to reference Bearse MA, Han Y, Schneck ME et al (2004) Local multifocal oscillatory potential abnormalities in diabetes and early diabetic retinopathy. Invest Ophthalmol Vis Sci 45:3259–3265PubMedCrossRef Bearse MA, Han Y, Schneck ME et al (2004) Local multifocal oscillatory potential abnormalities in diabetes and early diabetic retinopathy. Invest Ophthalmol Vis Sci 45:3259–3265PubMedCrossRef
17.
go back to reference Bearse MA, Han Y, Schneck ME et al (2004) Retinal function in normal and diabetic eyes mapped with the slow flash multifocal electroretinogram. Invest Ophthalmol Vis Sci 45:296–304PubMedCrossRef Bearse MA, Han Y, Schneck ME et al (2004) Retinal function in normal and diabetic eyes mapped with the slow flash multifocal electroretinogram. Invest Ophthalmol Vis Sci 45:296–304PubMedCrossRef
18.
go back to reference Kurtenbach A, Langrova H, Zrenner E (2000) Multifocal oscillatory potentials in type 1 diabetes without retinopathy. Invest Ophthalmol Vis Sci 41:3234–3241PubMed Kurtenbach A, Langrova H, Zrenner E (2000) Multifocal oscillatory potentials in type 1 diabetes without retinopathy. Invest Ophthalmol Vis Sci 41:3234–3241PubMed
19.
go back to reference Lakhani E, Wright T, Abdolell M et al (2010) Multifocal ERG defects associated with insufficient long-term glycemic control in adolescents with type 1 diabetes. Invest Ophthalmol Vis Sci 51:5297–5303PubMedCrossRef Lakhani E, Wright T, Abdolell M et al (2010) Multifocal ERG defects associated with insufficient long-term glycemic control in adolescents with type 1 diabetes. Invest Ophthalmol Vis Sci 51:5297–5303PubMedCrossRef
20.
go back to reference Han Y, Bearse MA, Schneck ME et al (2004) Multifocal electroretinogram delays predict sites of subsequent diabetic retinopathy. Invest Ophthalmol Vis Sci 45:948–954PubMedCrossRef Han Y, Bearse MA, Schneck ME et al (2004) Multifocal electroretinogram delays predict sites of subsequent diabetic retinopathy. Invest Ophthalmol Vis Sci 45:948–954PubMedCrossRef
21.
go back to reference Harrison WW, Bearse MA, Ng JS et al (2011) Multifocal electroretinograms predict onset of diabetic retinopathy in adult patients with diabetes. Invest Ophthalmol Vis Sci 52:772–777PubMedCrossRef Harrison WW, Bearse MA, Ng JS et al (2011) Multifocal electroretinograms predict onset of diabetic retinopathy in adult patients with diabetes. Invest Ophthalmol Vis Sci 52:772–777PubMedCrossRef
22.
go back to reference Ng JS, Bearse MA, Schneck ME et al (2008) Local diabetic retinopathy prediction by multifocal ERG delays over 3 years. Invest Ophthalmol Vis Sci 49:1622–1628PubMedCrossRef Ng JS, Bearse MA, Schneck ME et al (2008) Local diabetic retinopathy prediction by multifocal ERG delays over 3 years. Invest Ophthalmol Vis Sci 49:1622–1628PubMedCrossRef
23.
go back to reference Han Y, Adams AJ, Bearse MAJ et al (2004) Multifocal electroretinogram and short-wavelength automated perimetry measures in diabetic eyes with little or no retinopathy. Arch Ophthalmol 122:1809–1815PubMedCrossRef Han Y, Adams AJ, Bearse MAJ et al (2004) Multifocal electroretinogram and short-wavelength automated perimetry measures in diabetic eyes with little or no retinopathy. Arch Ophthalmol 122:1809–1815PubMedCrossRef
24.
go back to reference Bearse MAJ, Sutter EE (1996) Imaging localized retinal dysfunction with the multifocal electroretinogram. J Opt Soc Am A: 13:634–640CrossRef Bearse MAJ, Sutter EE (1996) Imaging localized retinal dysfunction with the multifocal electroretinogram. J Opt Soc Am A: 13:634–640CrossRef
25.
go back to reference Hood DC, Frishman LJ, Saszik S et al (2002) Retinal origins of the primate multifocal ERG: implications for the human response. Invest Ophthalmol Vis Sci 43:1673–1685PubMed Hood DC, Frishman LJ, Saszik S et al (2002) Retinal origins of the primate multifocal ERG: implications for the human response. Invest Ophthalmol Vis Sci 43:1673–1685PubMed
26.
go back to reference Wright T, Nilsson J, Gerth C et al (2008) A comparison of signal detection techniques in the multifocal electroretinogram. Doc Ophthalmol Adv Ophthalmol 117:163–170CrossRef Wright T, Nilsson J, Gerth C et al (2008) A comparison of signal detection techniques in the multifocal electroretinogram. Doc Ophthalmol Adv Ophthalmol 117:163–170CrossRef
27.
go back to reference Hood D, Li J (1997) A technique for measuring individual multifocal ERG records. Trends Opt Photon 11:280–293 Hood D, Li J (1997) A technique for measuring individual multifocal ERG records. Trends Opt Photon 11:280–293
29.
go back to reference Fortune B, Schneck ME, Adams AJ (1999) Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci 40:2638–2651PubMed Fortune B, Schneck ME, Adams AJ (1999) Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci 40:2638–2651PubMed
30.
go back to reference Schneck ME, Bearse MAJ, Han Y et al (2004) Comparison of mfERG waveform components and implicit time measurement techniques for detecting functional change in early diabetic eye disease. Doc Ophthalmol 108:223–230PubMedCrossRef Schneck ME, Bearse MAJ, Han Y et al (2004) Comparison of mfERG waveform components and implicit time measurement techniques for detecting functional change in early diabetic eye disease. Doc Ophthalmol 108:223–230PubMedCrossRef
31.
go back to reference Bearse MA, Shimada Y, Sutter EE (2000) Distribution of oscillatory components in the central retina. Doc Ophthalmol Adv Ophthalmol 100:185–205CrossRef Bearse MA, Shimada Y, Sutter EE (2000) Distribution of oscillatory components in the central retina. Doc Ophthalmol Adv Ophthalmol 100:185–205CrossRef
32.
go back to reference Itier RJ, Taylor MJ, Lobaugh NJ (2004) Spatiotemporal analysis of event-related potentials to upright, inverted, and contrast-reversed faces: effects on encoding and recognition. Psychophysiology 41:643–653PubMedCrossRef Itier RJ, Taylor MJ, Lobaugh NJ (2004) Spatiotemporal analysis of event-related potentials to upright, inverted, and contrast-reversed faces: effects on encoding and recognition. Psychophysiology 41:643–653PubMedCrossRef
33.
go back to reference Wright T, Cortese F, Westall C (2008) A novel approach analyzing multifocal ERGs: spatiotemporal partial least squares (ST-PLS). Doc Ophthal 117:49CrossRef Wright T, Cortese F, Westall C (2008) A novel approach analyzing multifocal ERGs: spatiotemporal partial least squares (ST-PLS). Doc Ophthal 117:49CrossRef
Metadata
Title
Analysis of multifocal electroretinograms from a population with type 1 diabetes using partial least squares reveals spatial and temporal distribution of changes to retinal function
Authors
Tom Wright
Filomeno Cortese
Josefin Nilsson
Carol Westall
Publication date
01-08-2012
Publisher
Springer-Verlag
Published in
Documenta Ophthalmologica / Issue 1/2012
Print ISSN: 0012-4486
Electronic ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-012-9330-5

Other articles of this Issue 1/2012

Documenta Ophthalmologica 1/2012 Go to the issue