Skip to main content
Top
Published in: Documenta Ophthalmologica 2/2007

01-09-2007 | Original Research Article

Within-session reproducibility of motion-onset VEPs: Effect of adaptation/habituation or fatigue on N2 peak amplitude and latency

Authors: Jan Kremláček, Miroslav Kuba, Zuzana Kubová, Jana Langrová, František Vít, Jana Szanyi

Published in: Documenta Ophthalmologica | Issue 2/2007

Login to get access

Abstract

We explored the effect of repeated visual stimulation on motion-onset visual evoked potentials (M-VEPs) during 25 min recording sessions in 10 subjects. The aim of the experiment was to determine influence of global motion adaptation (without motion-aftereffect) on intra-individual variability of M-VEPs and to suggest an optimal recording design for clinical examination. In addition to well described middle-time sensory adaptation, we also observed a long-time effect on motion specific N2 peak (155 ms). The N2 peak exhibited a strong relationship between its latency and inter-peak amplitude to the duration of recording in occipito-parietal derivations. In addition to the middle-term adaptation, N2 peak latency was prolonged by 10 ms and amplitude was attenuated by 30% with respect to the start of the experiment. An exponential model was employed to describe the dependency. The model can be used to reduce intra-individual variability during examination. Observed resemblance between the measured electrophysiological values and already published metabolic changes (glucose and oxygen utilization) during brain processing of visual information is discussed.
Literature
1.
go back to reference Kuba M, Kubová Z, Kremláček J, Langrová J (2007) Motion-onset VEPs: characteristics, methods, and diagnostic use. Vision Res 47:189–202PubMedCrossRef Kuba M, Kubová Z, Kremláček J, Langrová J (2007) Motion-onset VEPs: characteristics, methods, and diagnostic use. Vision Res 47:189–202PubMedCrossRef
2.
3.
go back to reference Kubová Z, Kuba M, Spekreijse H, Blakemore C (1995) Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vision Res 35:197–205PubMedCrossRef Kubová Z, Kuba M, Spekreijse H, Blakemore C (1995) Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vision Res 35:197–205PubMedCrossRef
4.
go back to reference Hoffmann MB, Unsold AS, Bach M (2001) Directional tuning of human motion adaptation as reflected by the motion VEP. Vision Res 41:2187–2194PubMedCrossRef Hoffmann MB, Unsold AS, Bach M (2001) Directional tuning of human motion adaptation as reflected by the motion VEP. Vision Res 41:2187–2194PubMedCrossRef
5.
go back to reference Kubová Z, Kuba M (1992) Clinical application of motion-onset visual evoked potentials. Doc Ophthalmol 81:209–218PubMedCrossRef Kubová Z, Kuba M (1992) Clinical application of motion-onset visual evoked potentials. Doc Ophthalmol 81:209–218PubMedCrossRef
6.
go back to reference Kuba M, Kubová Z (1992) Visual evoked potentials specific for motion onset. Doc Ophthalmol 80:83–89PubMedCrossRef Kuba M, Kubová Z (1992) Visual evoked potentials specific for motion onset. Doc Ophthalmol 80:83–89PubMedCrossRef
7.
go back to reference Bach M, Ullrich D (1994) Motion adaptation governs the shape of motion-evoked cortical potentials. Vision Res 34:1541–1547PubMedCrossRef Bach M, Ullrich D (1994) Motion adaptation governs the shape of motion-evoked cortical potentials. Vision Res 34:1541–1547PubMedCrossRef
8.
go back to reference Kremláček J, Kuba M, Chlubnová J, Kubová Z (2004) Effect of stimulus localisation on motion-onset VEP. Vision Res 44:2989–3000PubMedCrossRef Kremláček J, Kuba M, Chlubnová J, Kubová Z (2004) Effect of stimulus localisation on motion-onset VEP. Vision Res 44:2989–3000PubMedCrossRef
9.
go back to reference Priebe N, Churchland M, Lisberg S (2002) Constrains on source of short-term motion adaptation in macaque area MT. I. The role of input and intrinsic mechanisms. J Neurphysiol 88:354–369 Priebe N, Churchland M, Lisberg S (2002) Constrains on source of short-term motion adaptation in macaque area MT. I. The role of input and intrinsic mechanisms. J Neurphysiol 88:354–369
10.
go back to reference Hoffmann M, Dorn TJ, Bach M (1999) Time course of motion adaptation: motion-onset visual evoked potentials and subjective estimates. Vision Res 39:437–44. Erratum in: Vision Res (1999)39:2794 Hoffmann M, Dorn TJ, Bach M (1999) Time course of motion adaptation: motion-onset visual evoked potentials and subjective estimates. Vision Res 39:437–44. Erratum in: Vision Res (1999)39:2794
11.
go back to reference World Medical Association Declaration of Helsinky (2004) Ethical Principles for Medical Research Involving Human Subjects. Available via http://www.wma.net/e/policy/b3.htm World Medical Association Declaration of Helsinky (2004) Ethical Principles for Medical Research Involving Human Subjects. Available via http://​www.​wma.​net/​e/​policy/​b3.​htm
12.
go back to reference Maurer P, Heinrich T, Bach M (2004) Direction tuning of human motion detection determined from population model. Eur J Neurosci19:3359–3364PubMedCrossRef Maurer P, Heinrich T, Bach M (2004) Direction tuning of human motion detection determined from population model. Eur J Neurosci19:3359–3364PubMedCrossRef
13.
go back to reference Odom JV, De Smedt E, Van Malderen L, Spileers W (1998–99) Visually evoked potentials evoked by moving unidimensional noise stimuli: effects of contrast, spatial frequency, active electrode location, reference electrode location, and stimulus type. Doc Ophthalmol 95:315–333 Odom JV, De Smedt E, Van Malderen L, Spileers W (1998–99) Visually evoked potentials evoked by moving unidimensional noise stimuli: effects of contrast, spatial frequency, active electrode location, reference electrode location, and stimulus type. Doc Ophthalmol 95:315–333
14.
go back to reference Purpura K, Kaplan E, Shapley RM (1988) Background light and the contrast gain of primate P and M retinal ganglion cells. Proc Natl Acad Sci USA 85:4534–4537PubMedCrossRef Purpura K, Kaplan E, Shapley RM (1988) Background light and the contrast gain of primate P and M retinal ganglion cells. Proc Natl Acad Sci USA 85:4534–4537PubMedCrossRef
15.
go back to reference Kremláček J, Kuba M (1999) Global brain dynamics of transient visual evoked potentials. Physiol Res 48:303–308PubMed Kremláček J, Kuba M (1999) Global brain dynamics of transient visual evoked potentials. Physiol Res 48:303–308PubMed
16.
go back to reference Muller R, Gopfert E, Breuer D, Greenlee MW (1998–1999). Motion VEPs with simultaneous measurement of perceived velocity. Doc Ophthalmol 97:121–134 Muller R, Gopfert E, Breuer D, Greenlee MW (1998–1999). Motion VEPs with simultaneous measurement of perceived velocity. Doc Ophthalmol 97:121–134
17.
go back to reference Afra J, Cecchini AP, De Pasqua V, Albert A, Schoenen J (1998) Visual evoked potentials during long periods of pattern-reversal stimulation in migraine. Brain 121:233–241PubMedCrossRef Afra J, Cecchini AP, De Pasqua V, Albert A, Schoenen J (1998) Visual evoked potentials during long periods of pattern-reversal stimulation in migraine. Brain 121:233–241PubMedCrossRef
18.
go back to reference Obrig H, Israel H, Kohl-Bareis M, Uludag K, Wenzel R, Muller B, Arnold G, Villringer A (2002) Habituation of the visually evoked potential and its vascular response: implications for neurovascular coupling in the healthy adult. Neuroimage 17:1–18PubMedCrossRef Obrig H, Israel H, Kohl-Bareis M, Uludag K, Wenzel R, Muller B, Arnold G, Villringer A (2002) Habituation of the visually evoked potential and its vascular response: implications for neurovascular coupling in the healthy adult. Neuroimage 17:1–18PubMedCrossRef
19.
go back to reference Bach M, Hoffmann MB (2000) Visual motion detection in man is governed by non-retinal mechanisms. Vision Res 40:2379–2385PubMedCrossRef Bach M, Hoffmann MB (2000) Visual motion detection in man is governed by non-retinal mechanisms. Vision Res 40:2379–2385PubMedCrossRef
20.
go back to reference Porciatti V, Sorokac N, Buchser W (2005) Habituation of retinal ganglion cell activity in response to steady state pattern visual stimuli in normal subjects. Invest Ophthalmol Vis Sci 46:1296–1302PubMedCrossRef Porciatti V, Sorokac N, Buchser W (2005) Habituation of retinal ganglion cell activity in response to steady state pattern visual stimuli in normal subjects. Invest Ophthalmol Vis Sci 46:1296–1302PubMedCrossRef
21.
go back to reference Mintun MA, Vlassenko AG, Shulman GL, Snyder AZ (2002) Time-related increase of oxygen utilization in continuously activated human visual cortex. Neuroimage16:531–537PubMedCrossRef Mintun MA, Vlassenko AG, Shulman GL, Snyder AZ (2002) Time-related increase of oxygen utilization in continuously activated human visual cortex. Neuroimage16:531–537PubMedCrossRef
22.
go back to reference Vlassenko AG, Rundle MM, Mintun MA (2006) Human brain glucose metabolism may evolve during activation: findings from a modified FDG PET paradigm. Neuroimage 33:1036–1041PubMedCrossRef Vlassenko AG, Rundle MM, Mintun MA (2006) Human brain glucose metabolism may evolve during activation: findings from a modified FDG PET paradigm. Neuroimage 33:1036–1041PubMedCrossRef
23.
go back to reference Sannita WG (2006) Individual variability, end-point effects and possible biases in electrophysiological research. Clin Neurophysiol 117:2569–2583PubMedCrossRef Sannita WG (2006) Individual variability, end-point effects and possible biases in electrophysiological research. Clin Neurophysiol 117:2569–2583PubMedCrossRef
24.
go back to reference Mintun MA, Lundstrom BN, Snyder AZ, Vlassenko AG, Shulman GL, Raichle ME (2001) Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data. Proc Natl Acad Sci USA 98:6859–6864PubMedCrossRef Mintun MA, Lundstrom BN, Snyder AZ, Vlassenko AG, Shulman GL, Raichle ME (2001) Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data. Proc Natl Acad Sci USA 98:6859–6864PubMedCrossRef
25.
go back to reference Prichard J, Rothman D, Novotny E, Petroff O, Kuwabara T, Avison M, Howseman A, Hanstock C, Shulman R (1991) Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci USA 88:5829–5831PubMedCrossRef Prichard J, Rothman D, Novotny E, Petroff O, Kuwabara T, Avison M, Howseman A, Hanstock C, Shulman R (1991) Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci USA 88:5829–5831PubMedCrossRef
26.
go back to reference Kubová Z, Chlubnová J, Szanyi J, Kuba M, Kremláček J (2005) Influence of physiological changes of glycaemia on VEPs and visual ERPs. Physiol Res 54:245–250PubMed Kubová Z, Chlubnová J, Szanyi J, Kuba M, Kremláček J (2005) Influence of physiological changes of glycaemia on VEPs and visual ERPs. Physiol Res 54:245–250PubMed
27.
go back to reference Kremláček J, Kuba M, Kubová Z, Langrová J (2006) Visual mismatch negativity elicited by magnocellular system activation. Vision Res 46:485–490PubMedCrossRef Kremláček J, Kuba M, Kubová Z, Langrová J (2006) Visual mismatch negativity elicited by magnocellular system activation. Vision Res 46:485–490PubMedCrossRef
28.
go back to reference Kremláček J, Kuba M, Kubová Z (1998) Electrophysiological manifestation of first-order motion perception. Perception 27 ECVP Abstract Supplement:192–193 Kremláček J, Kuba M, Kubová Z (1998) Electrophysiological manifestation of first-order motion perception. Perception 27 ECVP Abstract Supplement:192–193
29.
go back to reference Schellart NA, Trindade MJ, Reits D, Verbunt JP, Spekreijse H (2004) Temporal and spatial congruence of components of motion-onset evoked responses investigated by whole-head magneto-electroencephalography. Vision Res 44:119–134PubMedCrossRef Schellart NA, Trindade MJ, Reits D, Verbunt JP, Spekreijse H (2004) Temporal and spatial congruence of components of motion-onset evoked responses investigated by whole-head magneto-electroencephalography. Vision Res 44:119–134PubMedCrossRef
Metadata
Title
Within-session reproducibility of motion-onset VEPs: Effect of adaptation/habituation or fatigue on N2 peak amplitude and latency
Authors
Jan Kremláček
Miroslav Kuba
Zuzana Kubová
Jana Langrová
František Vít
Jana Szanyi
Publication date
01-09-2007
Publisher
Springer-Verlag
Published in
Documenta Ophthalmologica / Issue 2/2007
Print ISSN: 0012-4486
Electronic ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-007-9063-z

Other articles of this Issue 2/2007

Documenta Ophthalmologica 2/2007 Go to the issue