Skip to main content
Top
Published in: Digestive Diseases and Sciences 3/2008

01-03-2008 | Original Paper

Effect of Adiponectin and Ghrelin on Apoptosis of Barrett Adenocarcinoma Cell Line

Authors: Peter C. Konturek, Grzegorz Burnat, Tilman Rau, Eckhart G. Hahn, Stanislaw Konturek

Published in: Digestive Diseases and Sciences | Issue 3/2008

Login to get access

Abstract

Background Obesity is an important risk factor for Barrett adenocarcinoma. However, the role of adiponectin (anti-inflammatory adipokine from adipose tissue) and ghrelin (orexigenic peptide gastric origin) on the progression of Barrett’s carcinogenesis has not been investigated so far. The aim of the present study was: (1) to compare the expression of adiponectin and ghrelin receptors in Barrett’s esophagus and in normal squamous epithelium; (2) to assess the effect of adiponectin and ghrelin on apoptosis in Barrett’s adenocarcinoma cells in vitro; and (3) to investigate the effect of ghrelin on IL-1β and COX-2 expression in OE-19 cells incubated with TNFα. Methods The expression of ghrelin and adiponectin receptors (GHS-R1a, Adipo-R1, Adipo R-2) in biopsies from Barrett’s esophagus and in Barrett’s adenocarcinoma cell line OE-19 was assessed by quantitative RT-PCR (qRT-PCR). The OE-19 cells were also incubated with adiponectin (5–10 μg/ml), and the apoptosis and proliferation were assessed by FACS and MTT assays. Additionally, effects of adiponectin on the mRNA and protein expression of proapoptotic Bax and antiapoptotic Bcl-2 were assessed by RT-PCR and Western blot, respectively. In two different in vitro models of esophagitis the OE-19 cells were incubated with ghrelin alone or in the presence of TNFα or bile acids in the normal or pulse acidified medium, and the expression of IL-1β and COX-2 as markers for inflammation were assessed by FACS and qRT-PCR, respectively. Results Adiponectin caused a significant increase in apoptosis, and this affect was accompanied by increased Bax and decreased Bcl-2 expression. In contrast, ghrelin had no effect on apoptosis of OE-19 cells incubated in neutral or acidified medium with or without addition of deoxycholic acid. At the mRNA level, the expression of adiponectin receptors (Adipo-R1, Adipo-R2) was decreased, and the expression of ghrelin receptor (GHS-R1a) was increased in Barrett’s mucosa. Ghrelin caused a decrease in TNFα-induced COX-2 and IL-1β expression in OE-19 cells. Conclusion Adiponectin and ghrelin have an inhibitory effect on Barrett’s carcinogenesis by two different mechanisms: (1) by an increase in apoptosis by adiponectin, and (2) by anti-inflammatory actions of ghrelin. The decrease in levels of these two peptides in obesity may explain the progression of Barrett’s carcinoma in obese individuals.
Literature
1.
go back to reference Jankowski JA, Harrison RF, Perry I, Balkwill F, Tselepis C (2000) Barrett’s metaplasia. Lancet 356:2079–2085PubMedCrossRef Jankowski JA, Harrison RF, Perry I, Balkwill F, Tselepis C (2000) Barrett’s metaplasia. Lancet 356:2079–2085PubMedCrossRef
2.
go back to reference Lagergren J (2005) Adenocarcinoma of oesophagus: what exactly is the size of the problem and who is at risk? Gut 54(Suppl 1):1–5CrossRef Lagergren J (2005) Adenocarcinoma of oesophagus: what exactly is the size of the problem and who is at risk? Gut 54(Suppl 1):1–5CrossRef
4.
go back to reference Menges M, Muller M, Zeitz M (2001) Increased acid and bile reflux in Barrett’s esophagus compared to reflux esophagitis, and effect of proton pump inhibitor therapy. Am J Gastroenterol 96:331–337PubMedCrossRef Menges M, Muller M, Zeitz M (2001) Increased acid and bile reflux in Barrett’s esophagus compared to reflux esophagitis, and effect of proton pump inhibitor therapy. Am J Gastroenterol 96:331–337PubMedCrossRef
5.
go back to reference Stein DJ, El-Serag HB, Kuczynski J, Kramer JR, Sampliner RE (2005) The association of body mass index with Barrett’s oesophagus. Aliment Pharmacol Ther 22:1005–1010PubMedCrossRef Stein DJ, El-Serag HB, Kuczynski J, Kramer JR, Sampliner RE (2005) The association of body mass index with Barrett’s oesophagus. Aliment Pharmacol Ther 22:1005–1010PubMedCrossRef
6.
go back to reference Trujillo ME, Scherer PE (2006) Adipose tissue-derived factors: impact on health and disease. Endocr Rev 27:762–778PubMed Trujillo ME, Scherer PE (2006) Adipose tissue-derived factors: impact on health and disease. Endocr Rev 27:762–778PubMed
7.
go back to reference Okamoto Y, Kihara S, Funahashi T, Matsuzawa Y, Libby P (2006) Adiponectin: a key adipocytokine in metabolic syndrome. Clin Sci 110:267–278PubMedCrossRef Okamoto Y, Kihara S, Funahashi T, Matsuzawa Y, Libby P (2006) Adiponectin: a key adipocytokine in metabolic syndrome. Clin Sci 110:267–278PubMedCrossRef
8.
go back to reference Funahashi T, Matsuzawa Y (2006) Hypoadiponectinemia: a common basis for diseases associated with overnutrition. Curr Atheroscler Rep 8:433–438PubMedCrossRef Funahashi T, Matsuzawa Y (2006) Hypoadiponectinemia: a common basis for diseases associated with overnutrition. Curr Atheroscler Rep 8:433–438PubMedCrossRef
9.
go back to reference Ishikawa M, Kitayama J, Kazama S, Hiramatsu T, Hatano K, Nagawa H (2005) Plasma adiponectin and gastric cancer. Clin Cancer Res 11:466–472PubMedCrossRef Ishikawa M, Kitayama J, Kazama S, Hiramatsu T, Hatano K, Nagawa H (2005) Plasma adiponectin and gastric cancer. Clin Cancer Res 11:466–472PubMedCrossRef
10.
go back to reference Otake S, Takeda H, Suzuki Y, Fukui T, Watanabe S, Ishihama K, Saito T, Togashi H, Nakamura T, Matsuzawa Y, Kawata S (2005) Association of visceral fat accumulation and plasma adiponectin with colorectal adenoma: evidence for participation of insulin resistance. Clin Cancer Res 11:3642–36462PubMedCrossRef Otake S, Takeda H, Suzuki Y, Fukui T, Watanabe S, Ishihama K, Saito T, Togashi H, Nakamura T, Matsuzawa Y, Kawata S (2005) Association of visceral fat accumulation and plasma adiponectin with colorectal adenoma: evidence for participation of insulin resistance. Clin Cancer Res 11:3642–36462PubMedCrossRef
11.
go back to reference Tworoger SS, Eliassen AH, Kelesidis T, Colditz GA, Willett WC, Mantzoros C, Hankinson SE (2007) Plasma adiponectin concentrations and risk of incident breast cancer. J Clin Endocrinol Metab 92:1510–1516PubMedCrossRef Tworoger SS, Eliassen AH, Kelesidis T, Colditz GA, Willett WC, Mantzoros C, Hankinson SE (2007) Plasma adiponectin concentrations and risk of incident breast cancer. J Clin Endocrinol Metab 92:1510–1516PubMedCrossRef
12.
go back to reference Soliman PT, Wu D, Tortolero-Luna G, Schmeler KM, Slomovitz BM, Bray MS, Gershenson DM, Lu KH (2006) Association between adiponectin, insulin resistance, and endometrial cancer. Cancer 106:2376–2381PubMedCrossRef Soliman PT, Wu D, Tortolero-Luna G, Schmeler KM, Slomovitz BM, Bray MS, Gershenson DM, Lu KH (2006) Association between adiponectin, insulin resistance, and endometrial cancer. Cancer 106:2376–2381PubMedCrossRef
13.
go back to reference Brakenhielm E, Veitonmaki N, Cao R, Kihara S, Matsuzawa Y, Zhivotovsky B, Funahashi T, Cao Y (2004) Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc Natl Acad Sci USA 101:2476–2481PubMedCrossRef Brakenhielm E, Veitonmaki N, Cao R, Kihara S, Matsuzawa Y, Zhivotovsky B, Funahashi T, Cao Y (2004) Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc Natl Acad Sci USA 101:2476–2481PubMedCrossRef
14.
go back to reference Kojima M, Kangawa K (2006) Drug insight: the functions of ghrelin and its potential as a multitherapeutic hormone. Nat Clin Pract Endocrinol Metab 2:80–88PubMedCrossRef Kojima M, Kangawa K (2006) Drug insight: the functions of ghrelin and its potential as a multitherapeutic hormone. Nat Clin Pract Endocrinol Metab 2:80–88PubMedCrossRef
15.
go back to reference Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, Matsukura S, Kangawa K, Nakazato M (2000) Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141:4255–4261PubMedCrossRef Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, Matsukura S, Kangawa K, Nakazato M (2000) Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141:4255–4261PubMedCrossRef
16.
go back to reference Inui A, Asakawa A, Bowers CY, Mantovani G, Laviano A, Meguid MM, Fujimiya M (2004) Ghrelin, appetite, and gastric motility: the emerging role of the stomach as an endocrine organ. FASEB J 18:439–456PubMedCrossRef Inui A, Asakawa A, Bowers CY, Mantovani G, Laviano A, Meguid MM, Fujimiya M (2004) Ghrelin, appetite, and gastric motility: the emerging role of the stomach as an endocrine organ. FASEB J 18:439–456PubMedCrossRef
17.
go back to reference Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP, Purnell JQ (2002) Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 346:1623–1630PubMedCrossRef Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP, Purnell JQ (2002) Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 346:1623–1630PubMedCrossRef
18.
go back to reference Suematsu M, Katsuki A, Sumida Y, Gabazza EC, Murashima S, Matsumoto K, Kitagawa N, Akatsuka H, Hori Y, Nakatani K, Togashi K, Yano Y, Adachi Y (2005) Decreased circulating levels of active ghrelin are associated with increased oxidative stress in obese subjects. Eur J Endocrinol 153:403–407PubMedCrossRef Suematsu M, Katsuki A, Sumida Y, Gabazza EC, Murashima S, Matsumoto K, Kitagawa N, Akatsuka H, Hori Y, Nakatani K, Togashi K, Yano Y, Adachi Y (2005) Decreased circulating levels of active ghrelin are associated with increased oxidative stress in obese subjects. Eur J Endocrinol 153:403–407PubMedCrossRef
19.
go back to reference Dixit VD, Schaffer EM, Pyle RS, Collins GD, Sakthivel SK, Palaniappan R, Lillard JW Jr, Taub DD (2004) Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J Clin Invest 114:57–66PubMed Dixit VD, Schaffer EM, Pyle RS, Collins GD, Sakthivel SK, Palaniappan R, Lillard JW Jr, Taub DD (2004) Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J Clin Invest 114:57–66PubMed
20.
go back to reference Li WG, Gavrila D, Liu X, Wang L, Gunnlaugsson S, Stoll LL, McCormick ML, Sigmund CD, Tang C, Weintraub NL (2004) Ghrelin inhibits proinflammatory responses and nuclear factor-kappaB activation in human endothelial cells. Circulation 109:2221–2226PubMedCrossRef Li WG, Gavrila D, Liu X, Wang L, Gunnlaugsson S, Stoll LL, McCormick ML, Sigmund CD, Tang C, Weintraub NL (2004) Ghrelin inhibits proinflammatory responses and nuclear factor-kappaB activation in human endothelial cells. Circulation 109:2221–2226PubMedCrossRef
21.
go back to reference Konturek PC, Brzozowski T, Walter B, Burnat G, Hess T, Hahn EG, Konturek SJ (2006) Ghrelin-induced gastroprotection against ischemia-reperfusion injury involves an activation of sensory afferent nerves and hyperemia mediated by nitric oxide. Eur J Pharmacol 536:171–181PubMedCrossRef Konturek PC, Brzozowski T, Walter B, Burnat G, Hess T, Hahn EG, Konturek SJ (2006) Ghrelin-induced gastroprotection against ischemia-reperfusion injury involves an activation of sensory afferent nerves and hyperemia mediated by nitric oxide. Eur J Pharmacol 536:171–181PubMedCrossRef
22.
go back to reference Brzozowski T, Konturek PC, Sliwowski Z, Pajdo R, Drozdowicz D, Kwiecien S, Burnat G, Konturek SJ, Pawlik WW (2006) Prostaglandin/cyclooxygenase pathway in ghrelin-induced gastroprotection against ischemia-reperfusion injury. J Pharmacol Exp Ther 319:477–487PubMedCrossRef Brzozowski T, Konturek PC, Sliwowski Z, Pajdo R, Drozdowicz D, Kwiecien S, Burnat G, Konturek SJ, Pawlik WW (2006) Prostaglandin/cyclooxygenase pathway in ghrelin-induced gastroprotection against ischemia-reperfusion injury. J Pharmacol Exp Ther 319:477–487PubMedCrossRef
23.
go back to reference Ogunwobi OO, Beales IL (2006) Adiponectin stimulates proliferation and cytokine secretion in colonic epithelial cells. Regul Pept 134:105–113PubMedCrossRef Ogunwobi OO, Beales IL (2006) Adiponectin stimulates proliferation and cytokine secretion in colonic epithelial cells. Regul Pept 134:105–113PubMedCrossRef
24.
go back to reference Dieudonne MN, Bussiere M., Dos Santos E, Leneveu MC, Giudicelli Y, Pecquery R (2006) Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells. Biochem Biophys Res Commun 345:271–279PubMedCrossRef Dieudonne MN, Bussiere M., Dos Santos E, Leneveu MC, Giudicelli Y, Pecquery R (2006) Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells. Biochem Biophys Res Commun 345:271–279PubMedCrossRef
25.
go back to reference Wang Y, Lam KS, Xu JY, Lu G, Xu LY, Cooper GJ, Xu A (2005) Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner. J Biol Chem 280:18341–18347PubMedCrossRef Wang Y, Lam KS, Xu JY, Lu G, Xu LY, Cooper GJ, Xu A (2005) Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner. J Biol Chem 280:18341–18347PubMedCrossRef
26.
go back to reference Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116:1784–1792PubMedCrossRef Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116:1784–1792PubMedCrossRef
Metadata
Title
Effect of Adiponectin and Ghrelin on Apoptosis of Barrett Adenocarcinoma Cell Line
Authors
Peter C. Konturek
Grzegorz Burnat
Tilman Rau
Eckhart G. Hahn
Stanislaw Konturek
Publication date
01-03-2008
Publisher
Springer US
Published in
Digestive Diseases and Sciences / Issue 3/2008
Print ISSN: 0163-2116
Electronic ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-007-9922-1

Other articles of this Issue 3/2008

Digestive Diseases and Sciences 3/2008 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine