Skip to main content
Top
Published in: Digestive Diseases and Sciences 11/2007

01-11-2007 | Original Article

PPARβ/δ Protects Against Experimental Colitis Through a Ligand-Independent Mechanism

Authors: Holly E. Hollingshead, Keiichirou Morimura, Masahiro Adachi, Mary J. Kennett, Andrew N. Billin, Timothy M. Willson, Frank J. Gonzalez, Jeffrey M. Peters

Published in: Digestive Diseases and Sciences | Issue 11/2007

Login to get access

Abstract

Peroxisome proliferator-activated receptors (PPARs) β/δ and γ have overlapping roles in the negative regulation of inflammatory response genes. Ligand activation of PPARγ protects against experimental colitis in mice. PPARβ/δ can negatively regulate inflammation and is highly expressed in the epithelial cells of the colon, therefore PPARβ/δ may also have a role in experimental colitis. In these studies, colitis was induced by dextran sodium sulfate (DSS) treatment in wild-type and PPARβ/δ-null mice, with and without the PPARβ/δ specific ligand GW0742. PPARβ/δ-null mice exhibited increased sensitivity to DSS-induced colitis, as shown by marked differences in body weight loss, colon length, colonic morphology, myeloperoxidase activity and increased expression of mRNAs encoding the inflammatory markers interferon γ, tumor necrosis factor-α, and interleukin-6 compared to similarly treated wild-type mice. Interestingly, these differences were not affected by ligand activation of PPARβ/δ in either genotype. These studies demonstrate that PPARβ/δ expression in the colonic epithelium inhibits inflammation and protects against DSS-induced colitis through a ligand-independent mechanism.
Literature
1.
go back to reference Bouma G, Strober W (2003) The immunological and genetic basis of inflammatory bowel disease. Nature Rev Immunol 3:521–533CrossRef Bouma G, Strober W (2003) The immunological and genetic basis of inflammatory bowel disease. Nature Rev Immunol 3:521–533CrossRef
3.
4.
go back to reference Carpentier I, et al. (1998) TRAF2 plays a dual role in NF-kappaB-dependent gene activation by mediating the TNF-induced activation of p38 MAPK and IkappaB kinase pathways. FEBS Lett 425(2):195–198PubMedCrossRef Carpentier I, et al. (1998) TRAF2 plays a dual role in NF-kappaB-dependent gene activation by mediating the TNF-induced activation of p38 MAPK and IkappaB kinase pathways. FEBS Lett 425(2):195–198PubMedCrossRef
5.
go back to reference Hirano M, Aoki T, Hirai S, Hosaka M, Inoue J, Ohno S (1996) MEK kinase is involved in tumor necrosis factor alpha-induced NF-kappaB activation and degradation of IkappaB-alpha. J Biol Chem 271(22):13234–13238PubMedCrossRef Hirano M, Aoki T, Hirai S, Hosaka M, Inoue J, Ohno S (1996) MEK kinase is involved in tumor necrosis factor alpha-induced NF-kappaB activation and degradation of IkappaB-alpha. J Biol Chem 271(22):13234–13238PubMedCrossRef
6.
go back to reference Daynes R, Jones DC (2002) Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2:748–759PubMedCrossRef Daynes R, Jones DC (2002) Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2:748–759PubMedCrossRef
7.
go back to reference Youssef J, Badr M (2004) Role of peroxisome proliferator-activated receptors in inflammation control. J Biomed Biotech 3:156–166CrossRef Youssef J, Badr M (2004) Role of peroxisome proliferator-activated receptors in inflammation control. J Biomed Biotech 3:156–166CrossRef
8.
go back to reference Castrillo A, Tontonoz P (2004) Nuclear receptors in macrophage biology: at the crossroads of lipid metabolism and inflammation. Annu Rev Cell Dev Biol 20:455–480PubMedCrossRef Castrillo A, Tontonoz P (2004) Nuclear receptors in macrophage biology: at the crossroads of lipid metabolism and inflammation. Annu Rev Cell Dev Biol 20:455–480PubMedCrossRef
9.
go back to reference Michalik L, Desvergne B, Wahli W (2004) Peroxisome-proliferator-activated receptors and cancers: complex stories. Nat Rev Cancer 4(1):61–70PubMedCrossRef Michalik L, Desvergne B, Wahli W (2004) Peroxisome-proliferator-activated receptors and cancers: complex stories. Nat Rev Cancer 4(1):61–70PubMedCrossRef
10.
go back to reference Molnar F, Carlberg C (2005) Structural determinants of the agonist-independent association of human peroxisome proliferator-activated receptors with coactivators. J Biol Chem 280(28):26543–26556PubMedCrossRef Molnar F, Carlberg C (2005) Structural determinants of the agonist-independent association of human peroxisome proliferator-activated receptors with coactivators. J Biol Chem 280(28):26543–26556PubMedCrossRef
11.
go back to reference Lee CH, et al. (2003) Transcriptional repression of atherogenic inflammation: modulation by PPARdelta. Science 302(5644):453–457PubMedCrossRef Lee CH, et al. (2003) Transcriptional repression of atherogenic inflammation: modulation by PPARdelta. Science 302(5644):453–457PubMedCrossRef
12.
go back to reference Marx N, et al. (2001) PPARalpha activators inhibit tissue factor expression and activity in human monocytes. Circulation 103(2):213–219PubMed Marx N, et al. (2001) PPARalpha activators inhibit tissue factor expression and activity in human monocytes. Circulation 103(2):213–219PubMed
13.
go back to reference Shu H, et al. (2000) Activation of PPARalpha or gamma reduces secretion of matrix metalloproteinase 9 but not interleukin 8 from human monocytic THP-1 cells. Biochem Biophys Res Commun 267(1):345–349PubMedCrossRef Shu H, et al. (2000) Activation of PPARalpha or gamma reduces secretion of matrix metalloproteinase 9 but not interleukin 8 from human monocytic THP-1 cells. Biochem Biophys Res Commun 267(1):345–349PubMedCrossRef
14.
go back to reference Devchand PR, et al. (1996) The PPARalpha-leukotriene B4 pathway to inflammation control. Nature 384(6604):39–43PubMedCrossRef Devchand PR, et al. (1996) The PPARalpha-leukotriene B4 pathway to inflammation control. Nature 384(6604):39–43PubMedCrossRef
15.
go back to reference Jiang C, Ting AT, Seed B (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391(6662):82–86PubMedCrossRef Jiang C, Ting AT, Seed B (1998) PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 391(6662):82–86PubMedCrossRef
16.
go back to reference Ricote M, et al. (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391(6662):79–82PubMedCrossRef Ricote M, et al. (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391(6662):79–82PubMedCrossRef
17.
go back to reference Yang XY, et al. (2000) Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor gamma (PPARgamma) agonists. PPARgamma co-association with transcription factor NFAT. J Biol Chem 275(7):4541–4544,PubMedCrossRef Yang XY, et al. (2000) Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor gamma (PPARgamma) agonists. PPARgamma co-association with transcription factor NFAT. J Biol Chem 275(7):4541–4544,PubMedCrossRef
18.
go back to reference Su CG, et al. (1999) A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response. J Clin Invest 104(4):383–389PubMedCrossRef Su CG, et al. (1999) A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response. J Clin Invest 104(4):383–389PubMedCrossRef
19.
go back to reference Welch J, Ricote M, Akiayama TE, Gonzalez FJ, Glass CK (2003) PPARgamma and PPARdelta negatively regulate specific subsets of lipopolysaccharide and IFN-gamma target genes in macrophages. Proc Natl Acad Sci USA 100:6712–6717PubMedCrossRef Welch J, Ricote M, Akiayama TE, Gonzalez FJ, Glass CK (2003) PPARgamma and PPARdelta negatively regulate specific subsets of lipopolysaccharide and IFN-gamma target genes in macrophages. Proc Natl Acad Sci USA 100:6712–6717PubMedCrossRef
20.
go back to reference Setoguchi K, et al. (2001) Peroxisome proliferator-activated receptor-gamma haploinsufficiency enhances B cell proliferative responses and exacerbates experimentally induced arthritis. J Clin Invest 108(11):1667–1675PubMedCrossRef Setoguchi K, et al. (2001) Peroxisome proliferator-activated receptor-gamma haploinsufficiency enhances B cell proliferative responses and exacerbates experimentally induced arthritis. J Clin Invest 108(11):1667–1675PubMedCrossRef
21.
go back to reference Kim DJ, Billin AN, Willson TM, Gonzalez FJ, Peters JM (2006) PPARbeta/delta selectively induces differentiation and inhibits cell proliferation. Cell Death Different 13(1):53–60CrossRef Kim DJ, Billin AN, Willson TM, Gonzalez FJ, Peters JM (2006) PPARbeta/delta selectively induces differentiation and inhibits cell proliferation. Cell Death Different 13(1):53–60CrossRef
22.
go back to reference Schmuth M, et al. (2004) Peroxisome proliferator-activated receptor (PPAR)-beta/delta stimulates differentiation and lipid accumulation in keratinocytes. J Invest Dermatol 122(4):971–983PubMedCrossRef Schmuth M, et al. (2004) Peroxisome proliferator-activated receptor (PPAR)-beta/delta stimulates differentiation and lipid accumulation in keratinocytes. J Invest Dermatol 122(4):971–983PubMedCrossRef
23.
go back to reference Peters JM, et al. (2000) Growth, adipose, brain and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor b(d). Mol Cell Biol 20:5119–5128PubMedCrossRef Peters JM, et al. (2000) Growth, adipose, brain and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor b(d). Mol Cell Biol 20:5119–5128PubMedCrossRef
24.
go back to reference Cuzzocrea S, Di Paola R, Mazzon E, Tiziana G, Muia C, Centorrino T, Caputi AP (2004) Role of endogenous and exogenous ligands for the peroxisome proliferators activated receptors alpha in the development of inflammatory bowel diesease in mice. Lab Invest 84:1643–1654PubMedCrossRef Cuzzocrea S, Di Paola R, Mazzon E, Tiziana G, Muia C, Centorrino T, Caputi AP (2004) Role of endogenous and exogenous ligands for the peroxisome proliferators activated receptors alpha in the development of inflammatory bowel diesease in mice. Lab Invest 84:1643–1654PubMedCrossRef
25.
go back to reference Saubermann LJ, et al. (2002) Peroxisome proliferator-activated receptor gamma agonist ligands stimulate a Th2 cytokine response and prevent acute colitis. Inflamm Bowel Dis 8(5):330–339PubMedCrossRef Saubermann LJ, et al. (2002) Peroxisome proliferator-activated receptor gamma agonist ligands stimulate a Th2 cytokine response and prevent acute colitis. Inflamm Bowel Dis 8(5):330–339PubMedCrossRef
26.
go back to reference Desreumaux P, et al. (2001) Attenuation of colon inflammation through activators of the retinoid X receptor (RXR)/peroxisome proliferator-activated receptor gamma (PPARgamma) heterodimer. A basis for new therapeutic strategies. J Exp Med 193(7):827–838PubMedCrossRef Desreumaux P, et al. (2001) Attenuation of colon inflammation through activators of the retinoid X receptor (RXR)/peroxisome proliferator-activated receptor gamma (PPARgamma) heterodimer. A basis for new therapeutic strategies. J Exp Med 193(7):827–838PubMedCrossRef
27.
go back to reference Nakajima A, et al. (2001) Endogenous PPAR gamma mediates anti-inflammatory activity in murine ischemia-reperfusion injury. Gastroenterology 120(2):460–469PubMedCrossRef Nakajima A, et al. (2001) Endogenous PPAR gamma mediates anti-inflammatory activity in murine ischemia-reperfusion injury. Gastroenterology 120(2):460–469PubMedCrossRef
28.
go back to reference Dubuquoy L, et al. (2002) Role of peroxisome proliferator-activated receptor gamma and retinoid X receptor heterodimer in hepatogastroenterological diseases. Lancet 360(9343):1410–1418PubMedCrossRef Dubuquoy L, et al. (2002) Role of peroxisome proliferator-activated receptor gamma and retinoid X receptor heterodimer in hepatogastroenterological diseases. Lancet 360(9343):1410–1418PubMedCrossRef
29.
go back to reference Katayama K, et al. (2003) A novel PPAR gamma gene therapy to control inflammation associated with inflammatory bowel disease in a murine model. Gastroenterology 124(5):1315–1324PubMedCrossRef Katayama K, et al. (2003) A novel PPAR gamma gene therapy to control inflammation associated with inflammatory bowel disease in a murine model. Gastroenterology 124(5):1315–1324PubMedCrossRef
30.
go back to reference Bassaganya-Riera J, et al. (2004) Activation of PPAR gamma and delta by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology 127(3):777–791PubMedCrossRef Bassaganya-Riera J, et al. (2004) Activation of PPAR gamma and delta by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology 127(3):777–791PubMedCrossRef
31.
go back to reference Takagi T, Naito Y, Ichikawa H, Tomatsure N, Katada K, Isozaki Y, Kuroda M, Kokura S, Yoshida N, Yoshikawa T (2004) A PPAR-gamma ligand, 15-deoxy-Delta 12,14-prostaglandin J(2), inhibited gastric mucosal injury induced by ischemia-reperfusion in rats. Redox Rep 9:376–381PubMedCrossRef Takagi T, Naito Y, Ichikawa H, Tomatsure N, Katada K, Isozaki Y, Kuroda M, Kokura S, Yoshida N, Yoshikawa T (2004) A PPAR-gamma ligand, 15-deoxy-Delta 12,14-prostaglandin J(2), inhibited gastric mucosal injury induced by ischemia-reperfusion in rats. Redox Rep 9:376–381PubMedCrossRef
32.
go back to reference Schaefer KL, et al. (2005) Intestinal antiinflammatory effects of thiazolidenedione peroxisome proliferator-activated receptor-gamma ligands on T helper type 1 chemokine regulation include nontranscriptional control mechanisms. Inflamm Bowel Dis 11(3):244–252PubMedCrossRef Schaefer KL, et al. (2005) Intestinal antiinflammatory effects of thiazolidenedione peroxisome proliferator-activated receptor-gamma ligands on T helper type 1 chemokine regulation include nontranscriptional control mechanisms. Inflamm Bowel Dis 11(3):244–252PubMedCrossRef
33.
go back to reference Lytle C, et al. (2005) The peroxisome proliferator-activated receptor gamma ligand rosiglitazone delays the onset of inflammatory bowel disease in mice with interleukin 10 deficiency. Inflamm Bowel Dis 11(3):231–243PubMedCrossRef Lytle C, et al. (2005) The peroxisome proliferator-activated receptor gamma ligand rosiglitazone delays the onset of inflammatory bowel disease in mice with interleukin 10 deficiency. Inflamm Bowel Dis 11(3):231–243PubMedCrossRef
34.
go back to reference Adachi M, Kurotani R, Morimura M, Shah Y, Sanford M, Madison BB, Gumico DL, Marin HE, Peters JM, Young HA, Gonzalez FJ (2000) PPAR-gamma in colonic epithelial cells protects against experimental inflammatory bowel disease. Gut 55(8):1104–1113CrossRef Adachi M, Kurotani R, Morimura M, Shah Y, Sanford M, Madison BB, Gumico DL, Marin HE, Peters JM, Young HA, Gonzalez FJ (2000) PPAR-gamma in colonic epithelial cells protects against experimental inflammatory bowel disease. Gut 55(8):1104–1113CrossRef
35.
go back to reference Bassaganya-Riera J, Hontecillas R (2006) CLA and n-3 PUFA differentially modulate clinical activity and colonic PPAR-responsive gene expression in a pig model of experimental IBD. Clin Nutr (in press) Bassaganya-Riera J, Hontecillas R (2006) CLA and n-3 PUFA differentially modulate clinical activity and colonic PPAR-responsive gene expression in a pig model of experimental IBD. Clin Nutr (in press)
36.
go back to reference Wallace JL, et al. (1992) Mechanisms underlying the protective effects of interleukin 1 in experimental nonsteroidal anti-inflammatory drug gastropathy. Gastroenterology 102(4; Pt 1):1176–1185PubMed Wallace JL, et al. (1992) Mechanisms underlying the protective effects of interleukin 1 in experimental nonsteroidal anti-inflammatory drug gastropathy. Gastroenterology 102(4; Pt 1):1176–1185PubMed
37.
go back to reference Cooper HS, et al. (1993) Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest 69(2):238–249PubMed Cooper HS, et al. (1993) Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest 69(2):238–249PubMed
38.
go back to reference Kim DJ, et al. (2004) Peroxisome proliferator-activated receptor beta (delta)-dependent regulation of ubiquitin C expression contributes to attenuation of skin carcinogenesis. J Biol Chem 279(22):23719–23727PubMedCrossRef Kim DJ, et al. (2004) Peroxisome proliferator-activated receptor beta (delta)-dependent regulation of ubiquitin C expression contributes to attenuation of skin carcinogenesis. J Biol Chem 279(22):23719–23727PubMedCrossRef
39.
go back to reference Rokos CL, Ledwith BJ (1997) Peroxisome proliferators activate extracellular signal-regulated kinases in immortalized mouse liver cells. J Biol Chem 272(20):13452–13457PubMedCrossRef Rokos CL, Ledwith BJ (1997) Peroxisome proliferators activate extracellular signal-regulated kinases in immortalized mouse liver cells. J Biol Chem 272(20):13452–13457PubMedCrossRef
40.
41.
go back to reference Huin C, et al. (2000) Differential expression of peroxisome proliferator-activated receptors (PPARs) in the developing human fetal digestive tract. J Histochem Cytochem 48(5):603–611PubMed Huin C, et al. (2000) Differential expression of peroxisome proliferator-activated receptors (PPARs) in the developing human fetal digestive tract. J Histochem Cytochem 48(5):603–611PubMed
42.
go back to reference Shi Y, Hon M, Evans RM (2002) The peroxisome proliferator-activated receptor delta, an integrator of transcriptional repression and nuclear receptor signaling. Proc Natl Acad Sci USA 99(5):2613–2618PubMedCrossRef Shi Y, Hon M, Evans RM (2002) The peroxisome proliferator-activated receptor delta, an integrator of transcriptional repression and nuclear receptor signaling. Proc Natl Acad Sci USA 99(5):2613–2618PubMedCrossRef
43.
go back to reference Lewis J, Lichtenstein GR, Stein RB, Deren JJ, Judge TA, Fogt F, Furth EE, Demissie DJ, Hurd LB, Su CG, Keilbaugh SA, Lazar MA, Wu GD (2001) An open-label trial of the PPAR-gamma ligand rosiglitazone for active ulcerative colitis. Am J Gastroenterol 96:3323–3328PubMed Lewis J, Lichtenstein GR, Stein RB, Deren JJ, Judge TA, Fogt F, Furth EE, Demissie DJ, Hurd LB, Su CG, Keilbaugh SA, Lazar MA, Wu GD (2001) An open-label trial of the PPAR-gamma ligand rosiglitazone for active ulcerative colitis. Am J Gastroenterol 96:3323–3328PubMed
44.
go back to reference Marin HE, Peraza MA, Billin AN, Willson TM, Ward JM, Kennett MJ, Gonzalez FJ, Peters JM (2006) Ligand activation of PPARbeta/delta inhibits colon carcinogenesis. Cancer Res 66(8):4394–4401PubMedCrossRef Marin HE, Peraza MA, Billin AN, Willson TM, Ward JM, Kennett MJ, Gonzalez FJ, Peters JM (2006) Ligand activation of PPARbeta/delta inhibits colon carcinogenesis. Cancer Res 66(8):4394–4401PubMedCrossRef
45.
go back to reference Ding G, et al. (2006) PPARdelta modulates lipopolysaccharide-induced TNFalpha inflammation signaling in cultured cardiomyocytes. J Mol Cell Cardiol (in press) Ding G, et al. (2006) PPARdelta modulates lipopolysaccharide-induced TNFalpha inflammation signaling in cultured cardiomyocytes. J Mol Cell Cardiol (in press)
46.
go back to reference Gupta RA, et al. (2000) Prostacyclin-mediated activation of peroxisome proliferator-activated receptor delta in colorectal cancer. Proc Natl Acad Sci USA 97(24):13275–13280PubMedCrossRef Gupta RA, et al. (2000) Prostacyclin-mediated activation of peroxisome proliferator-activated receptor delta in colorectal cancer. Proc Natl Acad Sci USA 97(24):13275–13280PubMedCrossRef
Metadata
Title
PPARβ/δ Protects Against Experimental Colitis Through a Ligand-Independent Mechanism
Authors
Holly E. Hollingshead
Keiichirou Morimura
Masahiro Adachi
Mary J. Kennett
Andrew N. Billin
Timothy M. Willson
Frank J. Gonzalez
Jeffrey M. Peters
Publication date
01-11-2007
Publisher
Springer US
Published in
Digestive Diseases and Sciences / Issue 11/2007
Print ISSN: 0163-2116
Electronic ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-006-9644-9

Other articles of this Issue 11/2007

Digestive Diseases and Sciences 11/2007 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine