Skip to main content
Top
Published in: Clinical & Experimental Metastasis 8/2015

01-12-2015 | Research Paper

GNL3 and SKA3 are novel prostate cancer metastasis susceptibility genes

Authors: Minnkyong Lee, Kendra A. Williams, Ying Hu, Jonathan Andreas, Shashank J. Patel, Suiyuan Zhang, Nigel P. S. Crawford

Published in: Clinical & Experimental Metastasis | Issue 8/2015

Login to get access

Abstract

Prostate cancer (PC) is very common in developed countries. However, the molecular determinants of PC metastasis are unclear. Previously, we reported that germline variation influences metastasis in the C57BL/6-Tg(TRAMP)8247Ng/J (TRAMP) mouse model of PC. These mice develop prostate tumors similar to a subset of poor outcome, treatment-associated human PC tumors. Here, we used TRAMP mice to nominate candidate genes and validate their role in aggressive human PC in PC datasets and cell lines. Candidate metastasis susceptibility genes were identified through quantitative trait locus (QTL) mapping in 201 (TRAMP × PWK/PhJ) F2 males. Two metastasis-associated QTLs were identified; one on chromosome 12 (LOD = 5.86), and one on chromosome 14 (LOD = 4.41). Correlation analysis using microarray data from (TRAMP × PWK/PhJ) F2 prostate tumors identified 35 metastasis-associated transcripts within the two loci. The role of these genes in susceptibility to aggressive human PC was determined through in silico analysis using multiple datasets. First, analysis of candidate gene expression in two human PC datasets demonstrated that five candidate genes were associated with an increased risk of aggressive disease and lower disease-free survival. Second, four of these genes (GNL3, MAT1A, SKA3, and ZMYM5) harbored SNPs associated with aggressive tumorigenesis in the PLCO/CGEMS GWAS of 1172 PC patients. Finally, over-expression of GNL3 and SKA3 in the PC-3 human PC cell line decreased in vitro cell migration and invasion. This novel approach demonstrates how mouse models can be used to identify metastasis susceptibility genes, and gives new insight into the molecular mechanisms of fatal PC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA: A Cancer J Clin 65(1):5–29 Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA: A Cancer J Clin 65(1):5–29
2.
go back to reference Birkhahn M, Penson DF, Cai J, Groshen S, Stein JP, Lieskovsky G, Skinner DG, Cote RJ (2011) Long-term outcome in patients with a Gleason score </= 6 prostate cancer treated by radical prostatectomy. BJU Int 108(5):660–664PubMed Birkhahn M, Penson DF, Cai J, Groshen S, Stein JP, Lieskovsky G, Skinner DG, Cote RJ (2011) Long-term outcome in patients with a Gleason score </= 6 prostate cancer treated by radical prostatectomy. BJU Int 108(5):660–664PubMed
3.
go back to reference Anchi T, Tamura K, Furihata M et al (2012) SNRPE is involved in cell proliferation and progression of high-grade prostate cancer through the regulation of androgen receptor expression. Oncol Lett 3(2):264–268PubMedCentralPubMed Anchi T, Tamura K, Furihata M et al (2012) SNRPE is involved in cell proliferation and progression of high-grade prostate cancer through the regulation of androgen receptor expression. Oncol Lett 3(2):264–268PubMedCentralPubMed
4.
go back to reference Ross HM, Kryvenko ON, Cowan JE, Simko JP, Wheeler TM, Epstein JI (2012) Do adenocarcinomas of the prostate with Gleason score (GS) </=6 have the potential to metastasize to lymph nodes? Am J Surg Pathol 36(9):1346–1352PubMedCentralCrossRefPubMed Ross HM, Kryvenko ON, Cowan JE, Simko JP, Wheeler TM, Epstein JI (2012) Do adenocarcinomas of the prostate with Gleason score (GS) </=6 have the potential to metastasize to lymph nodes? Am J Surg Pathol 36(9):1346–1352PubMedCentralCrossRefPubMed
6.
go back to reference Karantanos T, Corn PG, Thompson TC (2013) Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene 32(49):5501–5511PubMedCentralCrossRefPubMed Karantanos T, Corn PG, Thompson TC (2013) Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene 32(49):5501–5511PubMedCentralCrossRefPubMed
7.
go back to reference Patel JD, Krilov L, Adams S et al (2014) Clinical cancer advances 2013: annual report on progress against cancer from the American Society of Clinical Oncology. J Clin Oncol 32(2):129–160CrossRefPubMed Patel JD, Krilov L, Adams S et al (2014) Clinical cancer advances 2013: annual report on progress against cancer from the American Society of Clinical Oncology. J Clin Oncol 32(2):129–160CrossRefPubMed
8.
go back to reference Wang HT, Yao YH, Li BG, Tang Y, Chang JW, Zhang J (2014) Neuroendocrine prostate cancer (NEPC) progressing from conventional prostatic adenocarcinoma: factors associated with time to development of NEPC and survival from NEPC diagnosis-a systematic review and pooled analysis. J Clin Oncol. doi:10.1200/JCO.2013.54.3553 Wang HT, Yao YH, Li BG, Tang Y, Chang JW, Zhang J (2014) Neuroendocrine prostate cancer (NEPC) progressing from conventional prostatic adenocarcinoma: factors associated with time to development of NEPC and survival from NEPC diagnosis-a systematic review and pooled analysis. J Clin Oncol. doi:10.​1200/​JCO.​2013.​54.​3553
9.
go back to reference Epstein JI, Amin MB, Beltran H, Lotan TL, Mosquera JM, Reuter VE, Robinson BD, Troncoso P, Rubin MA (2014) Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am J Surg Pathol 38(6):756–767PubMedCentralCrossRefPubMed Epstein JI, Amin MB, Beltran H, Lotan TL, Mosquera JM, Reuter VE, Robinson BD, Troncoso P, Rubin MA (2014) Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am J Surg Pathol 38(6):756–767PubMedCentralCrossRefPubMed
10.
12.
13.
go back to reference Gingrich JR, Barrios RJ, Kattan MW, Nahm HS, Finegold MJ, Greenberg NM (1997) Androgen-independent prostate cancer progression in the TRAMP model. Cancer Res 57(21):4687–4691PubMed Gingrich JR, Barrios RJ, Kattan MW, Nahm HS, Finegold MJ, Greenberg NM (1997) Androgen-independent prostate cancer progression in the TRAMP model. Cancer Res 57(21):4687–4691PubMed
14.
go back to reference Gingrich JR, Barrios RJ, Foster BA, Greenberg NM (1999) Pathologic progression of autochthonous prostate cancer in the TRAMP model. Prostate Cancer Prostatic Dis 2(2):70–75CrossRefPubMed Gingrich JR, Barrios RJ, Foster BA, Greenberg NM (1999) Pathologic progression of autochthonous prostate cancer in the TRAMP model. Prostate Cancer Prostatic Dis 2(2):70–75CrossRefPubMed
15.
go back to reference Chiaverotti T, Couto SS, Donjacour A, Mao JH, Nagase H, Cardiff RD, Cunha GR, Balmain A (2008) Dissociation of epithelial and neuroendocrine carcinoma lineages in the transgenic adenocarcinoma of mouse prostate model of prostate cancer. Am J Pathol 172(1):236–246PubMedCentralCrossRefPubMed Chiaverotti T, Couto SS, Donjacour A, Mao JH, Nagase H, Cardiff RD, Cunha GR, Balmain A (2008) Dissociation of epithelial and neuroendocrine carcinoma lineages in the transgenic adenocarcinoma of mouse prostate model of prostate cancer. Am J Pathol 172(1):236–246PubMedCentralCrossRefPubMed
16.
go back to reference Greenberg NM, DeMayo F, Finegold MJ et al (1995) Prostate cancer in a transgenic mouse. Proc Natl Acad Sci United States Am 92(8):3439–3443CrossRef Greenberg NM, DeMayo F, Finegold MJ et al (1995) Prostate cancer in a transgenic mouse. Proc Natl Acad Sci United States Am 92(8):3439–3443CrossRef
17.
go back to reference Zhou Z, Flesken-Nikitin A, Corney DC, Wang W, Goodrich DW, Roy-Burman P, Nikitin AY (2006) Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res 66(16):7889–7898CrossRefPubMed Zhou Z, Flesken-Nikitin A, Corney DC, Wang W, Goodrich DW, Roy-Burman P, Nikitin AY (2006) Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res 66(16):7889–7898CrossRefPubMed
18.
go back to reference Patel SJ, Molinolo AA, Gutkind S, Crawford NP (2013) Germline genetic variation modulates tumor progression and metastasis in a mouse model of neuroendocrine prostate carcinoma. PLoS ONE 8(4):e61848PubMedCentralCrossRefPubMed Patel SJ, Molinolo AA, Gutkind S, Crawford NP (2013) Germline genetic variation modulates tumor progression and metastasis in a mouse model of neuroendocrine prostate carcinoma. PLoS ONE 8(4):e61848PubMedCentralCrossRefPubMed
19.
go back to reference Truett GE, Heeger P, Mynatt RL, Truett AA, Walker JA, Warman ML (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29(1):52–54PubMed Truett GE, Heeger P, Mynatt RL, Truett AA, Walker JA, Warman ML (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29(1):52–54PubMed
20.
go back to reference Hurwitz AA, Foster BA, Allison JP, Greenberg NM, Kwon ED (2001) The TRAMP mouse as a model for prostate cancer. Current protocols in immunology/edited by John E Coligan [et al] Chapter 20:Unit 20 25 Hurwitz AA, Foster BA, Allison JP, Greenberg NM, Kwon ED (2001) The TRAMP mouse as a model for prostate cancer. Current protocols in immunology/edited by John E Coligan [et al] Chapter 20:Unit 20 25
21.
go back to reference Williams KA, Lee M, Hu Y et al (2014) A systems genetics approach identifies CXCL14, ITGAX, and LPCAT2 as novel aggressive prostate cancer susceptibility genes. PLoS Genet 10(11):e1004809PubMedCentralCrossRefPubMed Williams KA, Lee M, Hu Y et al (2014) A systems genetics approach identifies CXCL14, ITGAX, and LPCAT2 as novel aggressive prostate cancer susceptibility genes. PLoS Genet 10(11):e1004809PubMedCentralCrossRefPubMed
22.
go back to reference Smith R, Sheppard K, DiPetrillo K, Churchill G (2009) Quantitative trait locus analysis using J/qtl. Methods Mol Biol 573:175–188CrossRefPubMed Smith R, Sheppard K, DiPetrillo K, Churchill G (2009) Quantitative trait locus analysis using J/qtl. Methods Mol Biol 573:175–188CrossRefPubMed
23.
25.
go back to reference Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):11CrossRef Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):11CrossRef
26.
go back to reference Faraji F, Pang Y, Walker RC, Nieves Borges R, Yang L, Hunter KW (2012) Cadm1 is a metastasis susceptibility gene that suppresses metastasis by modifying tumor interaction with the cell-mediated immunity. PLoS Genet 8(9):e1002926PubMedCentralCrossRefPubMed Faraji F, Pang Y, Walker RC, Nieves Borges R, Yang L, Hunter KW (2012) Cadm1 is a metastasis susceptibility gene that suppresses metastasis by modifying tumor interaction with the cell-mediated immunity. PLoS Genet 8(9):e1002926PubMedCentralCrossRefPubMed
27.
go back to reference Dudoit S, van der Laan MJ, Pollard KS (2004) Multiple testing. Part I. Single-step procedures for control of general type I error rates. Stat Appl Genet Mol Biol 3(1):1–69 Dudoit S, van der Laan MJ, Pollard KS (2004) Multiple testing. Part I. Single-step procedures for control of general type I error rates. Stat Appl Genet Mol Biol 3(1):1–69
28.
go back to reference Lee M, Dworkin AM, Lichtenberg J, Patel SJ, Trivedi NS, Gildea D, Bodine DM, Crawford NP (2014) Metastasis-associated protein ribosomal RNA processing 1 homolog B (RRP1B) modulates metastasis through regulation of histone methylation. Mol Cancer Res 12(12):1818–1828CrossRefPubMed Lee M, Dworkin AM, Lichtenberg J, Patel SJ, Trivedi NS, Gildea D, Bodine DM, Crawford NP (2014) Metastasis-associated protein ribosomal RNA processing 1 homolog B (RRP1B) modulates metastasis through regulation of histone methylation. Mol Cancer Res 12(12):1818–1828CrossRefPubMed
29.
go back to reference Lee M, Dworkin AM, Gildea D, Trivedi NS, Program NCS, Moorhead GB, Crawford NP (2014) RRP1B is a metastasis modifier that regulates the expression of alternative mRNA isoforms through interactions with SRSF1. Oncogene 33(14):1818–1827PubMedCentralCrossRefPubMed Lee M, Dworkin AM, Gildea D, Trivedi NS, Program NCS, Moorhead GB, Crawford NP (2014) RRP1B is a metastasis modifier that regulates the expression of alternative mRNA isoforms through interactions with SRSF1. Oncogene 33(14):1818–1827PubMedCentralCrossRefPubMed
30.
go back to reference Prorok PC, Andriole GL, Bresalier RS et al (2000) Design of the prostate, lung, colorectal and ovarian (PLCO) cancer screening trial. Control Clin Trials 21(6 Suppl):273S–309SCrossRefPubMed Prorok PC, Andriole GL, Bresalier RS et al (2000) Design of the prostate, lung, colorectal and ovarian (PLCO) cancer screening trial. Control Clin Trials 21(6 Suppl):273S–309SCrossRefPubMed
31.
go back to reference Gohagan JK, Prorok PC, Hayes RB, Kramer BS, Prostate LC, Ovarian Cancer Screening Trial Project T (2000) The prostate, lung, colorectal and ovarian (PLCO) Cancer Screening Trial of the National Cancer Institute: history, organization, and status. Control Clin Trials 21(6 Suppl):251S–272SCrossRefPubMed Gohagan JK, Prorok PC, Hayes RB, Kramer BS, Prostate LC, Ovarian Cancer Screening Trial Project T (2000) The prostate, lung, colorectal and ovarian (PLCO) Cancer Screening Trial of the National Cancer Institute: history, organization, and status. Control Clin Trials 21(6 Suppl):251S–272SCrossRefPubMed
32.
33.
go back to reference Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265CrossRefPubMed Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265CrossRefPubMed
35.
go back to reference Ma H, Pederson T (2007) Depletion of the nucleolar protein nucleostemin causes G1 cell cycle arrest via the p53 pathway. Mol Biol Cell 18(7):2630–2635PubMedCentralCrossRefPubMed Ma H, Pederson T (2007) Depletion of the nucleolar protein nucleostemin causes G1 cell cycle arrest via the p53 pathway. Mol Biol Cell 18(7):2630–2635PubMedCentralCrossRefPubMed
37.
go back to reference Okamoto N, Yasukawa M, Nguyen C et al (2011) Maintenance of tumor initiating cells of defined genetic composition by nucleostemin. Proc Natl Acad Sci United States of America 108(51):20388–20393CrossRef Okamoto N, Yasukawa M, Nguyen C et al (2011) Maintenance of tumor initiating cells of defined genetic composition by nucleostemin. Proc Natl Acad Sci United States of America 108(51):20388–20393CrossRef
38.
go back to reference Daum JR, Wren JD, Daniel JJ, Sivakumar S, McAvoy JN, Potapova TA, Gorbsky GJ (2009) Ska3 is required for spindle checkpoint silencing and the maintenance of chromosome cohesion in mitosis. Curr Biol 19(17):1467–1472PubMedCentralCrossRefPubMed Daum JR, Wren JD, Daniel JJ, Sivakumar S, McAvoy JN, Potapova TA, Gorbsky GJ (2009) Ska3 is required for spindle checkpoint silencing and the maintenance of chromosome cohesion in mitosis. Curr Biol 19(17):1467–1472PubMedCentralCrossRefPubMed
39.
go back to reference Gaitanos TN, Santamaria A, Jeyaprakash AA, Wang B, Conti E, Nigg EA (2009) Stable kinetochore-microtubule interactions depend on the Ska complex and its new component Ska3/C13Orf3. EMBO J 28(10):1442–1452PubMedCentralCrossRefPubMed Gaitanos TN, Santamaria A, Jeyaprakash AA, Wang B, Conti E, Nigg EA (2009) Stable kinetochore-microtubule interactions depend on the Ska complex and its new component Ska3/C13Orf3. EMBO J 28(10):1442–1452PubMedCentralCrossRefPubMed
40.
go back to reference Jeyaprakash AA, Santamaria A, Jayachandran U, Chan YW, Benda C, Nigg EA, Conti E (2012) Structural and functional organization of the Ska complex, a key component of the kinetochore-microtubule interface. Mol Cell 46(3):274–286CrossRefPubMed Jeyaprakash AA, Santamaria A, Jayachandran U, Chan YW, Benda C, Nigg EA, Conti E (2012) Structural and functional organization of the Ska complex, a key component of the kinetochore-microtubule interface. Mol Cell 46(3):274–286CrossRefPubMed
41.
go back to reference Jiao X, Hooper SD, Djureinovic T, Larsson C, Warnberg F, Tellgren-Roth C, Botling J, Sjoblom T (2013) Gene rearrangements in hormone receptor negative breast cancers revealed by mate pair sequencing. BMC Genom 14:165CrossRef Jiao X, Hooper SD, Djureinovic T, Larsson C, Warnberg F, Tellgren-Roth C, Botling J, Sjoblom T (2013) Gene rearrangements in hormone receptor negative breast cancers revealed by mate pair sequencing. BMC Genom 14:165CrossRef
42.
go back to reference Eeles R, Goh C, Castro E, Bancroft E, Guy M, Al Olama AA, Easton D, Kote-Jarai Z (2014) The genetic epidemiology of prostate cancer and its clinical implications. Nat Rev Urol 11(1):18–31CrossRefPubMed Eeles R, Goh C, Castro E, Bancroft E, Guy M, Al Olama AA, Easton D, Kote-Jarai Z (2014) The genetic epidemiology of prostate cancer and its clinical implications. Nat Rev Urol 11(1):18–31CrossRefPubMed
43.
go back to reference Al Olama AA, Kote-Jarai Z, Berndt SI et al (2014) A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat Genet 46(10):1103–1109PubMedCentralCrossRefPubMed Al Olama AA, Kote-Jarai Z, Berndt SI et al (2014) A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat Genet 46(10):1103–1109PubMedCentralCrossRefPubMed
44.
go back to reference Amin Al Olama A, Kote-Jarai Z, Schumacher FR et al (2013) A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease. Hum Mol Genet 22(2):408–415PubMedCentralCrossRefPubMed Amin Al Olama A, Kote-Jarai Z, Schumacher FR et al (2013) A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease. Hum Mol Genet 22(2):408–415PubMedCentralCrossRefPubMed
Metadata
Title
GNL3 and SKA3 are novel prostate cancer metastasis susceptibility genes
Authors
Minnkyong Lee
Kendra A. Williams
Ying Hu
Jonathan Andreas
Shashank J. Patel
Suiyuan Zhang
Nigel P. S. Crawford
Publication date
01-12-2015
Publisher
Springer Netherlands
Published in
Clinical & Experimental Metastasis / Issue 8/2015
Print ISSN: 0262-0898
Electronic ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-015-9745-y

Other articles of this Issue 8/2015

Clinical & Experimental Metastasis 8/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine