Skip to main content
Top
Published in: Clinical & Experimental Metastasis 8/2013

01-12-2013 | Research Paper

Cooperative involvement of NFAT and SnoN mediates transforming growth factor-β (TGF-β) induced EMT in metastatic breast cancer (MDA-MB 231) cells

Authors: Suman Sengupta, Samir Jana, Subir Biswas, Palash Kumar Mandal, Arindam Bhattacharyya

Published in: Clinical & Experimental Metastasis | Issue 8/2013

Login to get access

Abstract

Epithelial to mesenchymal transition (EMT) is a secondary phenomenon concomitantly associated with the tumor progression. The regulatory signals and mechanistic details of EMT are not fully elucidated. Here, we shared a TGF-β mediated mechanism of EMT in breast cancer (MDA-MB 231) cells. Initial exposure of TGF-β for 48 h, enhanced the rate of cell proliferation and associated with EMT of MDA-MB 231 cells. The EMT was characterized by observing the increased N-cadherin, fibronectin, Snail expression and associated with the morphological change with a reduced E-cadherin expression. NFAT, a transcription factor, alters tumor suppressive function of TGF-β towards tumor progression. Up regulation of NFAT, coupled with a foremost translocation of one oncogenic protein SnoN from cytoplasm to nucleus was noticed during this TGF-β mediated EMT. Silencing of NFAT also showed the inhibition of TGF-β mediated EMT characterized by down regulation of N-cadherin and associated with reduced expression of SnoN. In addition, it was also observed that NFAT sequestering the Smad3 prevents the proteasome mediated degradation of SnoN and this SnoN has a role on the regulation of MMP-2, MMP-9 activity. Increased Smad3-SnoN interaction and proteasome mediated degradation of SnoN were detected after silencing of NFAT with a reduced MMP-2, MMP-9 activity. All of these observations provide a fresh mechanism in which by a twofold involvement of NFAT and SnoN plays a crucial role in TGF-β mediated EMT by recruiting the effector molecules N-cadherin and MMP-2, MMP-9.
Appendix
Available only for authorised users
Literature
1.
go back to reference de Caestecker MP, Piek E, Roberts AB (2000) Role of transforming growth factor-β signaling in cancer. J Natl Cancer Inst 92(17):1388–1402PubMedCrossRef de Caestecker MP, Piek E, Roberts AB (2000) Role of transforming growth factor-β signaling in cancer. J Natl Cancer Inst 92(17):1388–1402PubMedCrossRef
2.
go back to reference Knabbe C, Kopp A, Hilgers W, Lang D, Muller V, Zugmaier G, Jonat W (1996) Regulation and role of TGF-β production in breast cancer. Ann N Y Acad Sci 784:263–276PubMedCrossRef Knabbe C, Kopp A, Hilgers W, Lang D, Muller V, Zugmaier G, Jonat W (1996) Regulation and role of TGF-β production in breast cancer. Ann N Y Acad Sci 784:263–276PubMedCrossRef
3.
go back to reference Muraoka-Cook RS, Dumont N, Arteaga CL (2005) Dual role of transforming growth factor beta in mammary tumorigenesis and metastatic progression. Clin Cancer Res 11:937s–943sPubMed Muraoka-Cook RS, Dumont N, Arteaga CL (2005) Dual role of transforming growth factor beta in mammary tumorigenesis and metastatic progression. Clin Cancer Res 11:937s–943sPubMed
4.
go back to reference Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425:577–584PubMedCrossRef Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425:577–584PubMedCrossRef
5.
go back to reference Boyer PL, Colmenares C, Stavnezer E, Hughes SH (1993) Sequence and biological activity of chicken SnoN cDNA clones. Oncogene 8:457–466PubMed Boyer PL, Colmenares C, Stavnezer E, Hughes SH (1993) Sequence and biological activity of chicken SnoN cDNA clones. Oncogene 8:457–466PubMed
6.
go back to reference Kang Yibin (2006) Pro-metastasis function of TGF-β mediated by the Smad pathway. J Cell Biochem 98:1380–1390PubMedCrossRef Kang Yibin (2006) Pro-metastasis function of TGF-β mediated by the Smad pathway. J Cell Biochem 98:1380–1390PubMedCrossRef
7.
go back to reference Oft M, Heider KH, Beug H (1998) TGF-β signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol 8:1243–1252PubMedCrossRef Oft M, Heider KH, Beug H (1998) TGF-β signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol 8:1243–1252PubMedCrossRef
8.
go back to reference Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E (1996) TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 10:2462–2477PubMedCrossRef Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E (1996) TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 10:2462–2477PubMedCrossRef
9.
go back to reference Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890PubMedCrossRef Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890PubMedCrossRef
10.
go back to reference Zavadil J, Bottinger EP (2005) TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24:5764–5774PubMedCrossRef Zavadil J, Bottinger EP (2005) TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24:5764–5774PubMedCrossRef
11.
go back to reference Nomura N, Sasamoto S, Ishii S, Date T, Matsui M, Ishizaki R (1989) Isolation of human cDNA clones of ski and the ski-related gene, sno. Nucleic Acids Res 17:5489–5500PubMedCrossRef Nomura N, Sasamoto S, Ishii S, Date T, Matsui M, Ishizaki R (1989) Isolation of human cDNA clones of ski and the ski-related gene, sno. Nucleic Acids Res 17:5489–5500PubMedCrossRef
12.
go back to reference Singh G, Singh SK, König A, Reutlinger K, Nye MD, Adhikary T, Eilers M, Gress TM, Fernandez-Zapico ME, Ellenrieder V (2010) Sequential activation of NFAT and c-MYC transcription factors mediates the TGF-β switch from a suppressor to a promoter of cancer cell proliferation. J Biol Chem 285(35):27241–27250 http://www.jbc.org/cgi/doi/10.1074/jbc.M110.100438 Singh G, Singh SK, König A, Reutlinger K, Nye MD, Adhikary T, Eilers M, Gress TM, Fernandez-Zapico ME, Ellenrieder V (2010) Sequential activation of NFAT and c-MYC transcription factors mediates the TGF-β switch from a suppressor to a promoter of cancer cell proliferation. J Biol Chem 285(35):27241–27250 http://​www.​jbc.​org/​cgi/​doi/​10.​1074/​jbc.​M110.​100438
13.
go back to reference Pearson-White S, Crittenden R (1997) Proto-oncogene SnoN expression, alternative isoforms and immediate early serum response. Nucleic Acids Res 25:2930–2937PubMedCrossRef Pearson-White S, Crittenden R (1997) Proto-oncogene SnoN expression, alternative isoforms and immediate early serum response. Nucleic Acids Res 25:2930–2937PubMedCrossRef
14.
go back to reference Imoto I, Pimkhaokham A, Fukuda Y, Yang ZQ, Shimada Y, Nomura N, Hirai H, Imamura M, Inazawa J (2001) SNO is a probable target for gene amplification at 3q26 in squamous-cell carcinomas of the esophagus. Biochem Biophys Res Commun 286:559–565PubMedCrossRef Imoto I, Pimkhaokham A, Fukuda Y, Yang ZQ, Shimada Y, Nomura N, Hirai H, Imamura M, Inazawa J (2001) SNO is a probable target for gene amplification at 3q26 in squamous-cell carcinomas of the esophagus. Biochem Biophys Res Commun 286:559–565PubMedCrossRef
15.
go back to reference Pearson-White S (1993) SnoI, a novel alternatively spliced isoform of the ski protooncogene homolog, sno. Nucleic Acids Res 21:4632–4638PubMedCrossRef Pearson-White S (1993) SnoI, a novel alternatively spliced isoform of the ski protooncogene homolog, sno. Nucleic Acids Res 21:4632–4638PubMedCrossRef
16.
go back to reference Zhang F, Lundin M, Ristimaki A, Heikkila P, Lundin J, Isola J, Joensuu H, Laiho M (2003) Ski-related novel protein N (SnoN), a negative controller of transforming growth factor-β signaling, is a prognostic marker in estrogen receptor-positive breast carcinomas. Cancer Res 63:5005–5010PubMed Zhang F, Lundin M, Ristimaki A, Heikkila P, Lundin J, Isola J, Joensuu H, Laiho M (2003) Ski-related novel protein N (SnoN), a negative controller of transforming growth factor-β signaling, is a prognostic marker in estrogen receptor-positive breast carcinomas. Cancer Res 63:5005–5010PubMed
17.
go back to reference Jakowlew SB (2006) Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev 25:435–457PubMedCrossRef Jakowlew SB (2006) Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev 25:435–457PubMedCrossRef
18.
go back to reference Bloom HJG, Richardson WW (1957) Histological grading and prognosis in breast cancer; a study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer 11:359–377PubMedCrossRef Bloom HJG, Richardson WW (1957) Histological grading and prognosis in breast cancer; a study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer 11:359–377PubMedCrossRef
19.
go back to reference Zhonghua kou, Qiang Yi Xue Za Zhi (2011) Expression of transforming growth factor-β (1) and Ki-67 nuclear antigen in salivary gland mucoepidermoid carcinoma. [Article in Chinese] 46(1):20–3 Zhonghua kou, Qiang Yi Xue Za Zhi (2011) Expression of transforming growth factor-β (1) and Ki-67 nuclear antigen in salivary gland mucoepidermoid carcinoma. [Article in Chinese] 46(1):20–3
20.
go back to reference Bates RC, Mercurio AM (2005) The epithelial-mesenchymal transition (EMT) and colorectal cancer progression. Cancer Biol Ther 4:365–370PubMedCrossRef Bates RC, Mercurio AM (2005) The epithelial-mesenchymal transition (EMT) and colorectal cancer progression. Cancer Biol Ther 4:365–370PubMedCrossRef
21.
go back to reference Bates RC, Pursell BM, Mercurio AM (2007) Epithelial-mesenchymal transition and colorectal cancer: gaining insights into tumor progression using LIM 1863 cells. Cells Tissues Organs 185:29–39PubMedCrossRef Bates RC, Pursell BM, Mercurio AM (2007) Epithelial-mesenchymal transition and colorectal cancer: gaining insights into tumor progression using LIM 1863 cells. Cells Tissues Organs 185:29–39PubMedCrossRef
22.
go back to reference Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA et al (2007) Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J Cell Physiol 213:374–383PubMedCrossRef Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA et al (2007) Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J Cell Physiol 213:374–383PubMedCrossRef
23.
go back to reference Miyazono K (2009) Transforming growth factor-beta signaling in epithelial mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci 85:314–323PubMedCrossRef Miyazono K (2009) Transforming growth factor-beta signaling in epithelial mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci 85:314–323PubMedCrossRef
24.
go back to reference Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715PubMedCrossRef Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715PubMedCrossRef
25.
go back to reference Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3:e2888PubMedCrossRef Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 3:e2888PubMedCrossRef
26.
go back to reference Liu X, Sun Y, Weinberg RA, Lodish HF (2001) Ski/Sno and TGF-β signaling. Cytokine Growth Factor Rev 12(1):121–128CrossRef Liu X, Sun Y, Weinberg RA, Lodish HF (2001) Ski/Sno and TGF-β signaling. Cytokine Growth Factor Rev 12(1):121–128CrossRef
27.
28.
go back to reference Zhu Q, Pearson-White S, Luo K (2005) Requirement for the SnoN Oncoprotein in transforming growth factor-β induced oncogenic transformation of fibroblast cells. Mol Cell Biol 25(24):10731–10744. doi:10.1128/MCB.25.24 PubMedCrossRef Zhu Q, Pearson-White S, Luo K (2005) Requirement for the SnoN Oncoprotein in transforming growth factor-β induced oncogenic transformation of fibroblast cells. Mol Cell Biol 25(24):10731–10744. doi:10.​1128/​MCB.​25.​24 PubMedCrossRef
29.
go back to reference Pelzer T, Lyons GE, Kim S, Moreadith RW (1996) Cloning and characterization of the murine homolog of the sno proto-oncogene reveal a novel splice variant. Dev Dyn 205:114–125PubMedCrossRef Pelzer T, Lyons GE, Kim S, Moreadith RW (1996) Cloning and characterization of the murine homolog of the sno proto-oncogene reveal a novel splice variant. Dev Dyn 205:114–125PubMedCrossRef
30.
go back to reference Bonni S, Wang HR, Causing CG, Kavsak P, Stroschein SL, Luo K, Wrana JL (2001) TGF-β induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation. Nat Cell Biol 3:587–595PubMedCrossRef Bonni S, Wang HR, Causing CG, Kavsak P, Stroschein SL, Luo K, Wrana JL (2001) TGF-β induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation. Nat Cell Biol 3:587–595PubMedCrossRef
31.
go back to reference Stroschein SL, Bonni S, Wrana JL, Luo K (2001) Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN. Genes Dev 15:2822–2836PubMed Stroschein SL, Bonni S, Wrana JL, Luo K (2001) Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN. Genes Dev 15:2822–2836PubMed
32.
go back to reference Stroschein SL, Wang W, Zhou S, Zhou Q, Luo K (1999) Negative feedback regulation of TGF-β signaling by the SnoN oncoprotein. Science 286:771–774PubMedCrossRef Stroschein SL, Wang W, Zhou S, Zhou Q, Luo K (1999) Negative feedback regulation of TGF-β signaling by the SnoN oncoprotein. Science 286:771–774PubMedCrossRef
33.
go back to reference Schutte M, Hruban RH, Hedrick L, Cho KR, Nadasdy GM, Weinstein CL, Bova GS, Isaacs WB, Cairns P, Nawroz H, Sidransky D, Casero RA Jr, Meltzer PS, Hahn SA, Kern SE (1996) DPC4 gene in various tumor types. Cancer Res 56:2527–2530PubMed Schutte M, Hruban RH, Hedrick L, Cho KR, Nadasdy GM, Weinstein CL, Bova GS, Isaacs WB, Cairns P, Nawroz H, Sidransky D, Casero RA Jr, Meltzer PS, Hahn SA, Kern SE (1996) DPC4 gene in various tumor types. Cancer Res 56:2527–2530PubMed
35.
go back to reference Wakefield LM, Roberts AB (2002) TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 12:22–29PubMedCrossRef Wakefield LM, Roberts AB (2002) TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 12:22–29PubMedCrossRef
36.
go back to reference Bhowmick NA, Ghiassi M, Bakin A et al (2001) TGF-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 12:27–36PubMedCrossRef Bhowmick NA, Ghiassi M, Bakin A et al (2001) TGF-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 12:27–36PubMedCrossRef
37.
go back to reference Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA (2000) Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol 148:779–790PubMedCrossRef Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA (2000) Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol 148:779–790PubMedCrossRef
38.
go back to reference Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA (2007) A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res 13:7003–7011PubMedCrossRef Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA (2007) A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res 13:7003–7011PubMedCrossRef
39.
go back to reference Pyo SW, Hashimoto M, Kim YS et al (2007) Expression of E-cadherin, P-cadherin and N-cadherin in oral squamous cell carcinoma: correlation with the clinicopathologic features and patient outcome. J Craniomaxillofac Surg 35:1–9PubMedCrossRef Pyo SW, Hashimoto M, Kim YS et al (2007) Expression of E-cadherin, P-cadherin and N-cadherin in oral squamous cell carcinoma: correlation with the clinicopathologic features and patient outcome. J Craniomaxillofac Surg 35:1–9PubMedCrossRef
40.
go back to reference Kang Y, Massague J (2004) Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118:277–279PubMedCrossRef Kang Y, Massague J (2004) Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118:277–279PubMedCrossRef
41.
go back to reference Comijn J, Berx G, Vermassen P et al (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7:1267–1278PubMedCrossRef Comijn J, Berx G, Vermassen P et al (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7:1267–1278PubMedCrossRef
42.
go back to reference Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 9(7):415–428CrossRef Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 9(7):415–428CrossRef
43.
go back to reference Cano A, Perez-Moreno MA, Rodrigo I et al (2000) The transcription factor snail controls epithelial mesenchymal Transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83PubMedCrossRef Cano A, Perez-Moreno MA, Rodrigo I et al (2000) The transcription factor snail controls epithelial mesenchymal Transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83PubMedCrossRef
44.
go back to reference Nagata M, Goto K, Ehata S et al (2006) Nuclear and cytoplasmic c-Ski differently modulate cellular functions. Genes Cells 11:1267–1280PubMedCrossRef Nagata M, Goto K, Ehata S et al (2006) Nuclear and cytoplasmic c-Ski differently modulate cellular functions. Genes Cells 11:1267–1280PubMedCrossRef
45.
go back to reference Oft M, Akhurst RJ, Balmain A (2002) Metastasis are driven by sequential elevation of H-ras and Smad2 levels. Nat Cell Biol 4(7):487–494PubMedCrossRef Oft M, Akhurst RJ, Balmain A (2002) Metastasis are driven by sequential elevation of H-ras and Smad2 levels. Nat Cell Biol 4(7):487–494PubMedCrossRef
46.
go back to reference Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A (2005) TGF-β and the Smad signaling pathway support Transcriptomic Reprogramming during Epithelial-Mesenchymal cell Transition. Mol Biol Cell 16:1987–2002PubMedCrossRef Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A (2005) TGF-β and the Smad signaling pathway support Transcriptomic Reprogramming during Epithelial-Mesenchymal cell Transition. Mol Biol Cell 16:1987–2002PubMedCrossRef
47.
go back to reference Sun Y, Liu X, Ng-Eaton E, Lodish HF, Weinberg RA (1999) SnoN and Ski protooncoproteins are rapidly degraded in response to transforming growth factor-β signaling. Proc Natl Acad Sci USA 96:12442–12447PubMedCrossRef Sun Y, Liu X, Ng-Eaton E, Lodish HF, Weinberg RA (1999) SnoN and Ski protooncoproteins are rapidly degraded in response to transforming growth factor-β signaling. Proc Natl Acad Sci USA 96:12442–12447PubMedCrossRef
48.
go back to reference Zhu Q, Krakowski AR, Ariel R, Dunham EE, Bandyopadhyay A, Berdeaux R, Martin GS, Sun L, Luo K (2007) Dual role of SnoN in mammalian tumorigenesis. Mol Cell Biol 27:324–339PubMedCrossRef Zhu Q, Krakowski AR, Ariel R, Dunham EE, Bandyopadhyay A, Berdeaux R, Martin GS, Sun L, Luo K (2007) Dual role of SnoN in mammalian tumorigenesis. Mol Cell Biol 27:324–339PubMedCrossRef
49.
go back to reference Duivenvoorden WC, Hirte HW, Singh G (1999) TGF-β1 acts as an inducer of matrix metalloproteinase expression and activity in human bone-metastasizing cancer cells. Clin Exp Metastasis 17:27–34PubMedCrossRef Duivenvoorden WC, Hirte HW, Singh G (1999) TGF-β1 acts as an inducer of matrix metalloproteinase expression and activity in human bone-metastasizing cancer cells. Clin Exp Metastasis 17:27–34PubMedCrossRef
50.
go back to reference Kim ES, Sohn YW, Moon A (2007) TGF-β-induced transcriptional activation of MMP-2 is mediated by activating transcription factor (ATF) 2 in human breast epithelial cells. Cancer Lett 252:147–156PubMedCrossRef Kim ES, Sohn YW, Moon A (2007) TGF-β-induced transcriptional activation of MMP-2 is mediated by activating transcription factor (ATF) 2 in human breast epithelial cells. Cancer Lett 252:147–156PubMedCrossRef
51.
go back to reference Coussens LM, Tinkle CL, Hanahan D, Werb Z (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103:481–490PubMedCrossRef Coussens LM, Tinkle CL, Hanahan D, Werb Z (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103:481–490PubMedCrossRef
Metadata
Title
Cooperative involvement of NFAT and SnoN mediates transforming growth factor-β (TGF-β) induced EMT in metastatic breast cancer (MDA-MB 231) cells
Authors
Suman Sengupta
Samir Jana
Subir Biswas
Palash Kumar Mandal
Arindam Bhattacharyya
Publication date
01-12-2013
Publisher
Springer Netherlands
Published in
Clinical & Experimental Metastasis / Issue 8/2013
Print ISSN: 0262-0898
Electronic ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-013-9600-y

Other articles of this Issue 8/2013

Clinical & Experimental Metastasis 8/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine