Skip to main content
Top
Published in: Clinical & Experimental Metastasis 7/2012

01-10-2012 | Research Paper

Stromal biomarkers in breast cancer development and progression

Authors: Jenny A. Rudnick, Charlotte Kuperwasser

Published in: Clinical & Experimental Metastasis | Issue 7/2012

Login to get access

Abstract

Breast cancer is a heterogeneous, multi-factorial disease of aberrant breast development whose etiology relies upon several microenvironmental changes within the tissue. Within the last decade, it has become widely accepted that tumor cells frequently rely on signals from an activated microenvironment in order to proliferate and survive within a tissue. This activated tissue microenvironment involves the appearance of αSMA + fibroblasts (referred to as “cancer associated fibroblasts”), the recruitment of various immune cells (macrophages, T cells, B cells, T regulatory cells), enhanced collagen I deposition, and epigenetic modifications of stromal cells. These stromal changes can predict patient survival and correlate with distinct breast tumor subtypes. Characterizing these stromal changes will facilitate their use as clinical biomarkers in breast cancer, and may facilitate their use as potential drug targets for adjuvant breast cancer therapy.
Literature
1.
go back to reference Mintz B, Illmensee K (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Nat Acad Sci USA 72(9):3585–3589PubMedCrossRef Mintz B, Illmensee K (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Nat Acad Sci USA 72(9):3585–3589PubMedCrossRef
2.
go back to reference Stoker AW, Hatier C, Bissell MJ (1990) The embryonic environment strongly attenuates v-src oncogenesis in mesenchymal and epithelial tissues, but not in endothelia. J Cell Biol 111(1):217–228PubMedCrossRef Stoker AW, Hatier C, Bissell MJ (1990) The embryonic environment strongly attenuates v-src oncogenesis in mesenchymal and epithelial tissues, but not in endothelia. J Cell Biol 111(1):217–228PubMedCrossRef
5.
go back to reference Bissell MJ, Radisky DC, Rizki A et al (2002) The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 70(9–10):537–546PubMedCrossRef Bissell MJ, Radisky DC, Rizki A et al (2002) The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 70(9–10):537–546PubMedCrossRef
6.
go back to reference Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315(26):1650–1659PubMedCrossRef Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315(26):1650–1659PubMedCrossRef
7.
go back to reference Tlsty TD, Coussens LM (2006) Tumor stroma and regulation of cancer development. Annu Rev Pathol 1:119–150PubMedCrossRef Tlsty TD, Coussens LM (2006) Tumor stroma and regulation of cancer development. Annu Rev Pathol 1:119–150PubMedCrossRef
8.
go back to reference Mori L, Bellini A, Stacey MA et al (2005) Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. Exp Cell Res 304(1):81–90PubMedCrossRef Mori L, Bellini A, Stacey MA et al (2005) Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. Exp Cell Res 304(1):81–90PubMedCrossRef
9.
go back to reference Wixler V, Hirner S, Muller JM et al (2007) Deficiency in the LIM-only protein Fhl2 impairs skin wound healing. J Cell Biol 177(1):163–172PubMedCrossRef Wixler V, Hirner S, Muller JM et al (2007) Deficiency in the LIM-only protein Fhl2 impairs skin wound healing. J Cell Biol 177(1):163–172PubMedCrossRef
10.
go back to reference Allinen M, Beroukhim R, Cai L et al (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6(1):17–32PubMedCrossRef Allinen M, Beroukhim R, Cai L et al (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6(1):17–32PubMedCrossRef
11.
go back to reference Casey T, Bond J, Tighe S et al (2009) Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res Treat 114(1):47–62PubMedCrossRef Casey T, Bond J, Tighe S et al (2009) Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res Treat 114(1):47–62PubMedCrossRef
12.
go back to reference Finak G, Bertos N, Pepin F et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14(5):518–527PubMedCrossRef Finak G, Bertos N, Pepin F et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14(5):518–527PubMedCrossRef
13.
go back to reference Ma XJ, Dahiya S, Richardson E et al (2009) Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res 11(1):R7PubMedCrossRef Ma XJ, Dahiya S, Richardson E et al (2009) Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res 11(1):R7PubMedCrossRef
14.
go back to reference Orimo A, Gupta PB, Sgroi DC et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348PubMedCrossRef Orimo A, Gupta PB, Sgroi DC et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348PubMedCrossRef
15.
go back to reference Erez N, Truitt M, Olson P et al (2010) Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17(2):135–147PubMedCrossRef Erez N, Truitt M, Olson P et al (2010) Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17(2):135–147PubMedCrossRef
16.
go back to reference Hwang RF, Moore T, Arumugam T et al (2008) Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res 68(3):918–926PubMedCrossRef Hwang RF, Moore T, Arumugam T et al (2008) Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res 68(3):918–926PubMedCrossRef
17.
go back to reference O’Connell JT, Sugimoto H, Cooke VG et al (2011) VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc Nat Acad Sci USA 108(38):16002–16007PubMedCrossRef O’Connell JT, Sugimoto H, Cooke VG et al (2011) VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc Nat Acad Sci USA 108(38):16002–16007PubMedCrossRef
18.
go back to reference Olumi AF, Grossfeld GD, Hayward SW et al (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59(19):5002–5011PubMed Olumi AF, Grossfeld GD, Hayward SW et al (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59(19):5002–5011PubMed
19.
go back to reference Kojima Y, Acar A, Eaton EN et al (2010) Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Nat Acad Sci USA 107(46):20009–20014PubMedCrossRef Kojima Y, Acar A, Eaton EN et al (2010) Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Nat Acad Sci USA 107(46):20009–20014PubMedCrossRef
20.
go back to reference Studebaker AW, Storci G, Werbeck JL et al (2008) Fibroblasts isolated from common sites of breast cancer metastasis enhance cancer cell growth rates and invasiveness in an interleukin-6-dependent manner. Cancer Res 68(21):9087–9095PubMedCrossRef Studebaker AW, Storci G, Werbeck JL et al (2008) Fibroblasts isolated from common sites of breast cancer metastasis enhance cancer cell growth rates and invasiveness in an interleukin-6-dependent manner. Cancer Res 68(21):9087–9095PubMedCrossRef
21.
go back to reference Rudnick JA, Arendt LM, Klebba I et al (2011) Functional heterogeneity of breast fibroblasts is defined by a prostaglandin secretory phenotype that promotes expansion of cancer-stem like cells. PLoS ONE 6(9):e24605PubMedCrossRef Rudnick JA, Arendt LM, Klebba I et al (2011) Functional heterogeneity of breast fibroblasts is defined by a prostaglandin secretory phenotype that promotes expansion of cancer-stem like cells. PLoS ONE 6(9):e24605PubMedCrossRef
22.
go back to reference Ronnov-Jessen L, Petersen OW, Koteliansky VE et al (1995) The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 95(2):859–873PubMedCrossRef Ronnov-Jessen L, Petersen OW, Koteliansky VE et al (1995) The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 95(2):859–873PubMedCrossRef
23.
go back to reference Liu R, Li H, Liu L et al (2012) Fibroblast activation protein: a potential therapeutic target in cancer. Cancer Biol Ther 13(3):123–129PubMedCrossRef Liu R, Li H, Liu L et al (2012) Fibroblast activation protein: a potential therapeutic target in cancer. Cancer Biol Ther 13(3):123–129PubMedCrossRef
24.
go back to reference Wolf BB, Quan C, Tran T et al (2008) On the edge of validation: cancer protease fibroblast activation protein. Mini Rev Med Chem 8(7):719–727PubMedCrossRef Wolf BB, Quan C, Tran T et al (2008) On the edge of validation: cancer protease fibroblast activation protein. Mini Rev Med Chem 8(7):719–727PubMedCrossRef
25.
go back to reference Lee J, Fassnacht M, Nair S et al (2005) Tumor immunotherapy targeting fibroblast activation protein, a product expressed in tumor-associated fibroblasts. Cancer Res 65(23):11156–11163PubMedCrossRef Lee J, Fassnacht M, Nair S et al (2005) Tumor immunotherapy targeting fibroblast activation protein, a product expressed in tumor-associated fibroblasts. Cancer Res 65(23):11156–11163PubMedCrossRef
26.
go back to reference Scanlan MJ, Raj BK, Calvo B et al (1994) Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Nat Acad Sci USA 91(12):5657–5661PubMedCrossRef Scanlan MJ, Raj BK, Calvo B et al (1994) Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Nat Acad Sci USA 91(12):5657–5661PubMedCrossRef
27.
go back to reference Park JE, Lenter MC, Zimmermann RN et al (1999) Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J Biol Chem 274(51):36505–36512PubMedCrossRef Park JE, Lenter MC, Zimmermann RN et al (1999) Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J Biol Chem 274(51):36505–36512PubMedCrossRef
28.
go back to reference Huang Y, Simms AE, Mazur A et al (2011) Fibroblast activation protein-alpha promotes tumor growth and invasion of breast cancer cells through non-enzymatic functions. Clin Exp Metastasis 28(6):567–579PubMedCrossRef Huang Y, Simms AE, Mazur A et al (2011) Fibroblast activation protein-alpha promotes tumor growth and invasion of breast cancer cells through non-enzymatic functions. Clin Exp Metastasis 28(6):567–579PubMedCrossRef
29.
go back to reference LeBeau AM, Brennen WN, Aggarwal S et al (2009) Targeting the cancer stroma with a fibroblast activation protein-activated promelittin protoxin. Mol Cancer Ther 8(5):1378–1386PubMedCrossRef LeBeau AM, Brennen WN, Aggarwal S et al (2009) Targeting the cancer stroma with a fibroblast activation protein-activated promelittin protoxin. Mol Cancer Ther 8(5):1378–1386PubMedCrossRef
30.
go back to reference Loeffler M, Kruger JA, Niethammer AG et al (2006) Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J Clin Invest 116(7):1955–1962PubMedCrossRef Loeffler M, Kruger JA, Niethammer AG et al (2006) Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J Clin Invest 116(7):1955–1962PubMedCrossRef
31.
go back to reference Tahtis K, Lee FT, Wheatley JM et al (2003) Expression and targeting of human fibroblast activation protein in a human skin/severe combined immunodeficient mouse breast cancer xenograft model. Mol Cancer Ther 2(8):729–737PubMed Tahtis K, Lee FT, Wheatley JM et al (2003) Expression and targeting of human fibroblast activation protein in a human skin/severe combined immunodeficient mouse breast cancer xenograft model. Mol Cancer Ther 2(8):729–737PubMed
32.
go back to reference Sotgia F, Martinez-Outschoorn UE, Howell A et al (2012) Caveolin-1 and Cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. Annu Rev Pathol 7:423–467PubMedCrossRef Sotgia F, Martinez-Outschoorn UE, Howell A et al (2012) Caveolin-1 and Cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. Annu Rev Pathol 7:423–467PubMedCrossRef
33.
go back to reference Koo JS, Park S, Kim SI et al (2011) The impact of caveolin protein expression in tumor stroma on prognosis of breast cancer. Tumour Biol 32(4):787–799PubMedCrossRef Koo JS, Park S, Kim SI et al (2011) The impact of caveolin protein expression in tumor stroma on prognosis of breast cancer. Tumour Biol 32(4):787–799PubMedCrossRef
34.
go back to reference Witkiewicz AK, Dasgupta A, Sammons S et al (2010) Loss of stromal caveolin-1 expression predicts poor clinical outcome in triple negative and basal-like breast cancers. Cancer Biol Ther 10(2):135–143PubMedCrossRef Witkiewicz AK, Dasgupta A, Sammons S et al (2010) Loss of stromal caveolin-1 expression predicts poor clinical outcome in triple negative and basal-like breast cancers. Cancer Biol Ther 10(2):135–143PubMedCrossRef
35.
go back to reference Witkiewicz AK, Dasgupta A, Sotgia F et al (2009) An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am J Pathol 174(6):2023–2034PubMedCrossRef Witkiewicz AK, Dasgupta A, Sotgia F et al (2009) An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am J Pathol 174(6):2023–2034PubMedCrossRef
36.
go back to reference Witkiewicz AK, Kline J, Queenan M et al (2011) Molecular profiling of a lethal tumor microenvironment, as defined by stromal caveolin-1 status in breast cancers. Cell Cycle 10(11):1794–1809PubMedCrossRef Witkiewicz AK, Kline J, Queenan M et al (2011) Molecular profiling of a lethal tumor microenvironment, as defined by stromal caveolin-1 status in breast cancers. Cell Cycle 10(11):1794–1809PubMedCrossRef
37.
go back to reference Goetz JG, Minguet S, Navarro-Lerida I et al (2011) Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146(1):148–163PubMedCrossRef Goetz JG, Minguet S, Navarro-Lerida I et al (2011) Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146(1):148–163PubMedCrossRef
38.
go back to reference Guttery DS, Shaw JA, Lloyd K et al (2010) Expression of tenascin-C and its isoforms in the breast. Cancer Metastasis Rev 29(4):595–606PubMedCrossRef Guttery DS, Shaw JA, Lloyd K et al (2010) Expression of tenascin-C and its isoforms in the breast. Cancer Metastasis Rev 29(4):595–606PubMedCrossRef
39.
go back to reference Howeedy AA, Virtanen I, Laitinen L et al (1990) Differential distribution of tenascin in the normal, hyperplastic, and neoplastic breast. Lab Investig 63(6):798–806PubMed Howeedy AA, Virtanen I, Laitinen L et al (1990) Differential distribution of tenascin in the normal, hyperplastic, and neoplastic breast. Lab Investig 63(6):798–806PubMed
40.
go back to reference Lightner VA, Marks JR, McCachren SS (1994) Epithelial cells are an important source of tenascin in normal and malignant human breast tissue. Exp Cell Res 210(2):177–184PubMedCrossRef Lightner VA, Marks JR, McCachren SS (1994) Epithelial cells are an important source of tenascin in normal and malignant human breast tissue. Exp Cell Res 210(2):177–184PubMedCrossRef
41.
go back to reference Kawakatsu H, Shiurba R, Obara M et al (1992) Human carcinoma cells synthesize and secrete tenascin in vitro. Jpn J Cancer Res 83(10):1073–1080PubMedCrossRef Kawakatsu H, Shiurba R, Obara M et al (1992) Human carcinoma cells synthesize and secrete tenascin in vitro. Jpn J Cancer Res 83(10):1073–1080PubMedCrossRef
42.
go back to reference Hancox RA, Allen MD, Holliday DL et al (2009) Tumour-associated tenascin-C isoforms promote breast cancer cell invasion and growth by matrix metalloproteinase-dependent and independent mechanisms. Breast Cancer Res 11(2):R24PubMedCrossRef Hancox RA, Allen MD, Holliday DL et al (2009) Tumour-associated tenascin-C isoforms promote breast cancer cell invasion and growth by matrix metalloproteinase-dependent and independent mechanisms. Breast Cancer Res 11(2):R24PubMedCrossRef
43.
go back to reference Dandachi N, Hauser-Kronberger C, More E et al (2001) Co-expression of tenascin-C and vimentin in human breast cancer cells indicates phenotypic transdifferentiation during tumour progression: correlation with histopathological parameters, hormone receptors, and oncoproteins. J Pathol 193(2):181–189PubMedCrossRef Dandachi N, Hauser-Kronberger C, More E et al (2001) Co-expression of tenascin-C and vimentin in human breast cancer cells indicates phenotypic transdifferentiation during tumour progression: correlation with histopathological parameters, hormone receptors, and oncoproteins. J Pathol 193(2):181–189PubMedCrossRef
44.
go back to reference Jahkola T, Toivonen T, Nordling S et al (1998) Expression of tenascin-C in intraductal carcinoma of human breast: relationship to invasion. Eur J Cancer 34(11):1687–1692PubMedCrossRef Jahkola T, Toivonen T, Nordling S et al (1998) Expression of tenascin-C in intraductal carcinoma of human breast: relationship to invasion. Eur J Cancer 34(11):1687–1692PubMedCrossRef
45.
go back to reference Jahkola T, Toivonen T, Virtanen I et al (1998) Tenascin-C expression in invasion border of early breast cancer: a predictor of local and distant recurrence. Br J Cancer 78(11):1507–1513PubMedCrossRef Jahkola T, Toivonen T, Virtanen I et al (1998) Tenascin-C expression in invasion border of early breast cancer: a predictor of local and distant recurrence. Br J Cancer 78(11):1507–1513PubMedCrossRef
46.
go back to reference Suwiwat S, Ricciardelli C, Tammi R et al (2004) Expression of extracellular matrix components versican, chondroitin sulfate, tenascin, and hyaluronan, and their association with disease outcome in node-negative breast cancer. Clin Cancer Res 10(7):2491–2498PubMedCrossRef Suwiwat S, Ricciardelli C, Tammi R et al (2004) Expression of extracellular matrix components versican, chondroitin sulfate, tenascin, and hyaluronan, and their association with disease outcome in node-negative breast cancer. Clin Cancer Res 10(7):2491–2498PubMedCrossRef
47.
go back to reference Jahkola T, Toivonen T, von Smitten K et al (1996) Expression of tenascin in invasion border of early breast cancer correlates with higher risk of distant metastasis. Int J Cancer 69(6):445–447PubMedCrossRef Jahkola T, Toivonen T, von Smitten K et al (1996) Expression of tenascin in invasion border of early breast cancer correlates with higher risk of distant metastasis. Int J Cancer 69(6):445–447PubMedCrossRef
48.
go back to reference Oskarsson T, Acharyya S, Zhang XH et al (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 17(7):867–874PubMedCrossRef Oskarsson T, Acharyya S, Zhang XH et al (2011) Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 17(7):867–874PubMedCrossRef
49.
go back to reference Minn AJ, Gupta GP, Padua D et al (2007) Lung metastasis genes couple breast tumor size and metastatic spread. Proc Nat Acad Sci USA 104(16):6740–6745PubMedCrossRef Minn AJ, Gupta GP, Padua D et al (2007) Lung metastasis genes couple breast tumor size and metastatic spread. Proc Nat Acad Sci USA 104(16):6740–6745PubMedCrossRef
50.
go back to reference Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436(7050):518–524PubMedCrossRef Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436(7050):518–524PubMedCrossRef
51.
go back to reference Nakahara H, Gabazza EC, Fujimoto H et al (2006) Deficiency of tenascin C attenuates allergen-induced bronchial asthma in the mouse. Eur J Immunol 36(12):3334–3345PubMedCrossRef Nakahara H, Gabazza EC, Fujimoto H et al (2006) Deficiency of tenascin C attenuates allergen-induced bronchial asthma in the mouse. Eur J Immunol 36(12):3334–3345PubMedCrossRef
52.
go back to reference Midwood K, Sacre S, Piccinini AM et al (2009) Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med 15(7):774–780PubMedCrossRef Midwood K, Sacre S, Piccinini AM et al (2009) Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med 15(7):774–780PubMedCrossRef
53.
go back to reference Houghton J, Wang TC (2005) Helicobacter pylori and gastric cancer: a new paradigm for inflammation-associated epithelial cancers. Gastroenterology 128(6):1567–1578PubMedCrossRef Houghton J, Wang TC (2005) Helicobacter pylori and gastric cancer: a new paradigm for inflammation-associated epithelial cancers. Gastroenterology 128(6):1567–1578PubMedCrossRef
54.
go back to reference Grivennikov S, Karin E, Terzic J et al (2009) IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15(2):103–113PubMedCrossRef Grivennikov S, Karin E, Terzic J et al (2009) IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15(2):103–113PubMedCrossRef
55.
go back to reference Park EJ, Lee JH, Yu GY et al (2010) Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140(2):197–208PubMedCrossRef Park EJ, Lee JH, Yu GY et al (2010) Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140(2):197–208PubMedCrossRef
56.
go back to reference de Visser KE, Korets LV, Coussens LM (2005) De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7(5):411–423PubMedCrossRef de Visser KE, Korets LV, Coussens LM (2005) De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7(5):411–423PubMedCrossRef
57.
go back to reference Greten FR, Eckmann L, Greten TF et al (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118(3):285–296PubMedCrossRef Greten FR, Eckmann L, Greten TF et al (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118(3):285–296PubMedCrossRef
58.
go back to reference Okayasu I, Ohkusa T, Kajiura K et al (1996) Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut 39(1):87–92PubMedCrossRef Okayasu I, Ohkusa T, Kajiura K et al (1996) Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut 39(1):87–92PubMedCrossRef
59.
go back to reference DeNardo DG, Barreto JB, Andreu P et al (2009) CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16(2):91–102PubMedCrossRef DeNardo DG, Barreto JB, Andreu P et al (2009) CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16(2):91–102PubMedCrossRef
60.
go back to reference Tan W, Zhang W, Strasner A et al (2011) Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 470(7335):548–553PubMedCrossRef Tan W, Zhang W, Strasner A et al (2011) Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 470(7335):548–553PubMedCrossRef
61.
go back to reference Yang L, Huang J, Ren X et al (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+ CD11b+ myeloid cells that promote metastasis. Cancer Cell 13(1):23–35PubMedCrossRef Yang L, Huang J, Ren X et al (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+ CD11b+ myeloid cells that promote metastasis. Cancer Cell 13(1):23–35PubMedCrossRef
62.
go back to reference Doedens AL, Stockmann C, Rubinstein MP et al (2010) Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res 70(19):7465–7475PubMedCrossRef Doedens AL, Stockmann C, Rubinstein MP et al (2010) Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res 70(19):7465–7475PubMedCrossRef
63.
go back to reference Mahmoud SM, Lee AH, Paish EC et al (2012) Tumour-infiltrating macrophages and clinical outcome in breast cancer. J Clin Pathol 65(2):159–163PubMedCrossRef Mahmoud SM, Lee AH, Paish EC et al (2012) Tumour-infiltrating macrophages and clinical outcome in breast cancer. J Clin Pathol 65(2):159–163PubMedCrossRef
64.
go back to reference Mahmoud SM, Lee AH, Paish EC et al (2012) The prognostic significance of B lymphocytes in invasive carcinoma of the breast. Breast Cancer Res Treat 132(2):545–553PubMedCrossRef Mahmoud SM, Lee AH, Paish EC et al (2012) The prognostic significance of B lymphocytes in invasive carcinoma of the breast. Breast Cancer Res Treat 132(2):545–553PubMedCrossRef
65.
go back to reference Mahmoud SM, Paish EC, Powe DG et al (2011) Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 29(15):1949–1955PubMedCrossRef Mahmoud SM, Paish EC, Powe DG et al (2011) Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 29(15):1949–1955PubMedCrossRef
66.
go back to reference Ruffell B, Au A, Rugo HS et al (2011) Leukocyte composition of human breast cancer. Proc Natl Acad Sci USA 109(8):2796–2801PubMedCrossRef Ruffell B, Au A, Rugo HS et al (2011) Leukocyte composition of human breast cancer. Proc Natl Acad Sci USA 109(8):2796–2801PubMedCrossRef
67.
go back to reference Denardo DG, Brennan DJ, Rexhepaj E et al (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1:54–67PubMedCrossRef Denardo DG, Brennan DJ, Rexhepaj E et al (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1:54–67PubMedCrossRef
68.
go back to reference Menard S, Tomasic G, Casalini P et al (1997) Lymphoid infiltration as a prognostic variable for early-onset breast carcinomas. Clin Cancer Res 3(5):817–819PubMed Menard S, Tomasic G, Casalini P et al (1997) Lymphoid infiltration as a prognostic variable for early-onset breast carcinomas. Clin Cancer Res 3(5):817–819PubMed
69.
go back to reference Calabro A, Beissbarth T, Kuner R et al (2009) Effects of infiltrating lymphocytes and estrogen receptor on gene expression and prognosis in breast cancer. Breast Cancer Res Treat 116(1):69–77PubMedCrossRef Calabro A, Beissbarth T, Kuner R et al (2009) Effects of infiltrating lymphocytes and estrogen receptor on gene expression and prognosis in breast cancer. Breast Cancer Res Treat 116(1):69–77PubMedCrossRef
70.
go back to reference Mukhtar RA, Nseyo O, Campbell MJ et al (2011) Tumor-associated macrophages in breast cancer as potential biomarkers for new treatments and diagnostics. Expert Rev Mol Diagn 11(1):91–100PubMedCrossRef Mukhtar RA, Nseyo O, Campbell MJ et al (2011) Tumor-associated macrophages in breast cancer as potential biomarkers for new treatments and diagnostics. Expert Rev Mol Diagn 11(1):91–100PubMedCrossRef
71.
go back to reference Lee AH, Happerfield LC, Bobrow LG et al (1997) Angiogenesis and inflammation in invasive carcinoma of the breast. J Clin Pathol 50(8):669–673PubMedCrossRef Lee AH, Happerfield LC, Bobrow LG et al (1997) Angiogenesis and inflammation in invasive carcinoma of the breast. J Clin Pathol 50(8):669–673PubMedCrossRef
72.
go back to reference Campbell MJ, Tonlaar NY, Garwood ER et al (2011) Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer Res Treat 128(3):703–711PubMedCrossRef Campbell MJ, Tonlaar NY, Garwood ER et al (2011) Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer Res Treat 128(3):703–711PubMedCrossRef
73.
go back to reference Leek RD, Lewis CE, Whitehouse R et al (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56(20):4625–4629PubMed Leek RD, Lewis CE, Whitehouse R et al (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56(20):4625–4629PubMed
74.
go back to reference Lin EY, Li JF, Gnatovskiy L et al (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66(23):11238–11246PubMedCrossRef Lin EY, Li JF, Gnatovskiy L et al (2006) Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res 66(23):11238–11246PubMedCrossRef
75.
go back to reference Fujimoto H, Sangai T, Ishii G et al (2009) Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer 125(6):1276–1284PubMedCrossRef Fujimoto H, Sangai T, Ishii G et al (2009) Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer 125(6):1276–1284PubMedCrossRef
76.
go back to reference Tsutsui S, Yasuda K, Suzuki K et al (2005) Macrophage infiltration and its prognostic implications in breast cancer: the relationship with VEGF expression and microvessel density. Oncol Rep 14(2):425–431PubMed Tsutsui S, Yasuda K, Suzuki K et al (2005) Macrophage infiltration and its prognostic implications in breast cancer: the relationship with VEGF expression and microvessel density. Oncol Rep 14(2):425–431PubMed
77.
go back to reference Bolat F, Kayaselcuk F, Nursal TZ et al (2006) Microvessel density, VEGF expression, and tumor-associated macrophages in breast tumors: correlations with prognostic parameters. J Exp Clin Cancer Res 25(3):365–372PubMed Bolat F, Kayaselcuk F, Nursal TZ et al (2006) Microvessel density, VEGF expression, and tumor-associated macrophages in breast tumors: correlations with prognostic parameters. J Exp Clin Cancer Res 25(3):365–372PubMed
78.
go back to reference Gottfried E, Kunz-Schughart LA, Weber A et al (2008) Expression of CD68 in non-myeloid cell types. Scand J Immunol 67(5):453–463PubMedCrossRef Gottfried E, Kunz-Schughart LA, Weber A et al (2008) Expression of CD68 in non-myeloid cell types. Scand J Immunol 67(5):453–463PubMedCrossRef
79.
go back to reference Meric JB, Rottey S, Olaussen K et al (2006) Cyclooxygenase-2 as a target for anticancer drug development. Crit Rev Oncol Hematol 59(1):51–64PubMedCrossRef Meric JB, Rottey S, Olaussen K et al (2006) Cyclooxygenase-2 as a target for anticancer drug development. Crit Rev Oncol Hematol 59(1):51–64PubMedCrossRef
80.
go back to reference Ricciotti E, Fitzgerald GA (2010) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 31(5):986–1000CrossRef Ricciotti E, Fitzgerald GA (2010) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 31(5):986–1000CrossRef
81.
go back to reference Denkert C, Winzer KJ, Muller BM et al (2003) Elevated expression of cyclooxygenase-2 is a negative prognostic factor for disease free survival and overall survival in patients with breast carcinoma. Cancer 97(12):2978–2987PubMedCrossRef Denkert C, Winzer KJ, Muller BM et al (2003) Elevated expression of cyclooxygenase-2 is a negative prognostic factor for disease free survival and overall survival in patients with breast carcinoma. Cancer 97(12):2978–2987PubMedCrossRef
82.
go back to reference Boland GP, Butt IS, Prasad R et al (2004) COX-2 expression is associated with an aggressive phenotype in ductal carcinoma in situ. Br J Cancer 90(2):423–429PubMedCrossRef Boland GP, Butt IS, Prasad R et al (2004) COX-2 expression is associated with an aggressive phenotype in ductal carcinoma in situ. Br J Cancer 90(2):423–429PubMedCrossRef
83.
go back to reference Wulfing P, Diallo R, Muller C et al (2003) Analysis of cyclooxygenase-2 expression in human breast cancer: high throughput tissue microarray analysis. J Cancer Res Clin Oncol 129(7):375–382PubMedCrossRef Wulfing P, Diallo R, Muller C et al (2003) Analysis of cyclooxygenase-2 expression in human breast cancer: high throughput tissue microarray analysis. J Cancer Res Clin Oncol 129(7):375–382PubMedCrossRef
84.
go back to reference Denkert C, Winzer KJ, Hauptmann S (2004) Prognostic impact of cyclooxygenase-2 in breast cancer. Clin Breast Cancer 4(6):428–433PubMedCrossRef Denkert C, Winzer KJ, Hauptmann S (2004) Prognostic impact of cyclooxygenase-2 in breast cancer. Clin Breast Cancer 4(6):428–433PubMedCrossRef
85.
go back to reference Hu M, Peluffo G, Chen H et al (2009) Role of COX-2 in epithelial-stromal cell interactions and progression of ductal carcinoma in situ of the breast. Proc Nat Acad Sci USA 106(9):3372–3377PubMedCrossRef Hu M, Peluffo G, Chen H et al (2009) Role of COX-2 in epithelial-stromal cell interactions and progression of ductal carcinoma in situ of the breast. Proc Nat Acad Sci USA 106(9):3372–3377PubMedCrossRef
86.
go back to reference Howe LR, Chang SH, Tolle KC et al (2005) HER2/neu-induced mammary tumorigenesis and angiogenesis are reduced in cyclooxygenase-2 knockout mice. Cancer Res 65(21):10113–10119PubMedCrossRef Howe LR, Chang SH, Tolle KC et al (2005) HER2/neu-induced mammary tumorigenesis and angiogenesis are reduced in cyclooxygenase-2 knockout mice. Cancer Res 65(21):10113–10119PubMedCrossRef
87.
go back to reference Perrone G, Santini D, Vincenzi B et al (2005) COX-2 expression in DCIS: correlation with VEGF, HER-2/neu, prognostic molecular markers and clinicopathological features. Histopathology 46(5):561–568PubMedCrossRef Perrone G, Santini D, Vincenzi B et al (2005) COX-2 expression in DCIS: correlation with VEGF, HER-2/neu, prognostic molecular markers and clinicopathological features. Histopathology 46(5):561–568PubMedCrossRef
88.
go back to reference Kerlikowske K, Molinaro AM, Gauthier ML et al (2010) Biomarker expression and risk of subsequent tumors after initial ductal carcinoma in situ diagnosis. J Nat Cancer Inst 102(9):627–637PubMedCrossRef Kerlikowske K, Molinaro AM, Gauthier ML et al (2010) Biomarker expression and risk of subsequent tumors after initial ductal carcinoma in situ diagnosis. J Nat Cancer Inst 102(9):627–637PubMedCrossRef
89.
go back to reference Radisky DC, Santisteban M, Berman HK et al (2011) p16(INK4a) expression and breast cancer risk in women with atypical hyperplasia. Cancer Prev Res (Phila) 4(12):1953–1960CrossRef Radisky DC, Santisteban M, Berman HK et al (2011) p16(INK4a) expression and breast cancer risk in women with atypical hyperplasia. Cancer Prev Res (Phila) 4(12):1953–1960CrossRef
90.
go back to reference Yang WT, Lewis MT, Hess K et al (2010) Decreased TGFbeta signaling and increased COX2 expression in high risk women with increased mammographic breast density. Breast Cancer Res Treat 119(2):305–314PubMedCrossRef Yang WT, Lewis MT, Hess K et al (2010) Decreased TGFbeta signaling and increased COX2 expression in high risk women with increased mammographic breast density. Breast Cancer Res Treat 119(2):305–314PubMedCrossRef
91.
go back to reference Hu M, Yao J, Carroll DK et al (2008) Regulation of in situ to invasive breast carcinoma transition. Cancer Cell 13(5):394–406PubMedCrossRef Hu M, Yao J, Carroll DK et al (2008) Regulation of in situ to invasive breast carcinoma transition. Cancer Cell 13(5):394–406PubMedCrossRef
92.
go back to reference Baglole CJ, Ray DM, Bernstein SH et al (2006) More than structural cells, fibroblasts create and orchestrate the tumor microenvironment. Immunol Invest 35(3–4):297–325PubMedCrossRef Baglole CJ, Ray DM, Bernstein SH et al (2006) More than structural cells, fibroblasts create and orchestrate the tumor microenvironment. Immunol Invest 35(3–4):297–325PubMedCrossRef
93.
go back to reference Ulrich CM, Bigler J, Potter JD (2006) Non-steroidal anti-inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics. Nat Rev Cancer 6(2):130–140PubMedCrossRef Ulrich CM, Bigler J, Potter JD (2006) Non-steroidal anti-inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics. Nat Rev Cancer 6(2):130–140PubMedCrossRef
94.
go back to reference Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer 9(2):108–122PubMedCrossRef Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer 9(2):108–122PubMedCrossRef
95.
go back to reference DuFort CC, Paszek MJ, Weaver VM (2011) Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol 12(5):308–319PubMedCrossRef DuFort CC, Paszek MJ, Weaver VM (2011) Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol 12(5):308–319PubMedCrossRef
96.
go back to reference Weaver VM, Petersen OW, Wang F et al (1997) Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137(1):231–245PubMedCrossRef Weaver VM, Petersen OW, Wang F et al (1997) Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137(1):231–245PubMedCrossRef
97.
go back to reference Paszek MJ, Zahir N, Johnson KR et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254PubMedCrossRef Paszek MJ, Zahir N, Johnson KR et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254PubMedCrossRef
98.
go back to reference Huang S, Ingber DE (2005) Cell tension, matrix mechanics, and cancer development. Cancer Cell 8(3):175–176PubMedCrossRef Huang S, Ingber DE (2005) Cell tension, matrix mechanics, and cancer development. Cancer Cell 8(3):175–176PubMedCrossRef
99.
go back to reference Provenzano PP, Inman DR, Eliceiri KW et al (2008) Collagen density promotes mammary tumor initiation and progression. BMC Med 6:11PubMedCrossRef Provenzano PP, Inman DR, Eliceiri KW et al (2008) Collagen density promotes mammary tumor initiation and progression. BMC Med 6:11PubMedCrossRef
100.
go back to reference Erler JT, Bennewith KL, Nicolau M et al (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440(7088):1222–1226PubMedCrossRef Erler JT, Bennewith KL, Nicolau M et al (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440(7088):1222–1226PubMedCrossRef
101.
go back to reference Kirschmann DA, Seftor EA, Nieva DR et al (1999) Differentially expressed genes associated with the metastatic phenotype in breast cancer. Breast Cancer Res Treat 55(2):127–136PubMedCrossRef Kirschmann DA, Seftor EA, Nieva DR et al (1999) Differentially expressed genes associated with the metastatic phenotype in breast cancer. Breast Cancer Res Treat 55(2):127–136PubMedCrossRef
102.
go back to reference Peyrol S, Raccurt M, Gerard F et al (1997) Lysyl oxidase gene expression in the stromal reaction to in situ and invasive ductal breast carcinoma. Am J Pathol 150(2):497–507PubMed Peyrol S, Raccurt M, Gerard F et al (1997) Lysyl oxidase gene expression in the stromal reaction to in situ and invasive ductal breast carcinoma. Am J Pathol 150(2):497–507PubMed
103.
go back to reference Kuperwasser C, Chavarria T, Wu M et al (2004) Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA 101(14):4966–4971PubMedCrossRef Kuperwasser C, Chavarria T, Wu M et al (2004) Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA 101(14):4966–4971PubMedCrossRef
104.
go back to reference Levental KR, Yu H, Kass L et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906PubMedCrossRef Levental KR, Yu H, Kass L et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906PubMedCrossRef
105.
go back to reference Decitre M, Gleyzal C, Raccurt M et al (1998) Lysyl oxidase-like protein localizes to sites of de novo fibrinogenesis in fibrosis and in the early stromal reaction of ductal breast carcinomas. Lab Invest 78(2):143–151PubMed Decitre M, Gleyzal C, Raccurt M et al (1998) Lysyl oxidase-like protein localizes to sites of de novo fibrinogenesis in fibrosis and in the early stromal reaction of ductal breast carcinomas. Lab Invest 78(2):143–151PubMed
106.
go back to reference Barry-Hamilton V, Spangler R, Marshall D et al (2010) Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med 16(9):1009–1017PubMedCrossRef Barry-Hamilton V, Spangler R, Marshall D et al (2010) Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med 16(9):1009–1017PubMedCrossRef
107.
go back to reference Hu M, Yao J, Cai L et al (2005) Distinct epigenetic changes in the stromal cells of breast cancers. Nat Genet 37(8):899–905PubMedCrossRef Hu M, Yao J, Cai L et al (2005) Distinct epigenetic changes in the stromal cells of breast cancers. Nat Genet 37(8):899–905PubMedCrossRef
108.
go back to reference Campbell I, Polyak K, Haviv I (2009) Clonal mutations in the cancer-associated fibroblasts: the case against genetic coevolution. Cancer Res 69(17):6765–6768 discussion 9PubMedCrossRef Campbell I, Polyak K, Haviv I (2009) Clonal mutations in the cancer-associated fibroblasts: the case against genetic coevolution. Cancer Res 69(17):6765–6768 discussion 9PubMedCrossRef
109.
go back to reference Enkelmann A, Heinzelmann J, von Eggeling F et al (2011) Specific protein and miRNA patterns characterise tumour-associated fibroblasts in bladder cancer. J Cancer Res Clin Oncol 137(5):751–759PubMedCrossRef Enkelmann A, Heinzelmann J, von Eggeling F et al (2011) Specific protein and miRNA patterns characterise tumour-associated fibroblasts in bladder cancer. J Cancer Res Clin Oncol 137(5):751–759PubMedCrossRef
110.
go back to reference Fiegl H, Millinger S, Goebel G et al (2006) Breast cancer DNA methylation profiles in cancer cells and tumor stroma: association with HER-2/neu status in primary breast cancer. Cancer Res 66(1):29–33PubMedCrossRef Fiegl H, Millinger S, Goebel G et al (2006) Breast cancer DNA methylation profiles in cancer cells and tumor stroma: association with HER-2/neu status in primary breast cancer. Cancer Res 66(1):29–33PubMedCrossRef
111.
go back to reference Orimo A, Weinberg RA (2006) Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5(15):1597–1601PubMedCrossRef Orimo A, Weinberg RA (2006) Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5(15):1597–1601PubMedCrossRef
112.
go back to reference Jiang L, Gonda TA, Gamble MV et al (2008) Global hypomethylation of genomic DNA in cancer-associated myofibroblasts. Cancer Res 68(23):9900–9908PubMedCrossRef Jiang L, Gonda TA, Gamble MV et al (2008) Global hypomethylation of genomic DNA in cancer-associated myofibroblasts. Cancer Res 68(23):9900–9908PubMedCrossRef
113.
go back to reference Ronnov-Jessen L, Petersen OW (1993) Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Invest 68(6):696–707PubMed Ronnov-Jessen L, Petersen OW (1993) Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Invest 68(6):696–707PubMed
114.
go back to reference Desmouliere A, Chaponnier C, Gabbiani G (2005) Tissue repair, contraction, and the myofibroblast. Wound Repair Regen 13(1):7–12PubMedCrossRef Desmouliere A, Chaponnier C, Gabbiani G (2005) Tissue repair, contraction, and the myofibroblast. Wound Repair Regen 13(1):7–12PubMedCrossRef
115.
go back to reference Krenning G, Zeisberg EM, Kalluri R (2010) The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 225(3):631–637PubMedCrossRef Krenning G, Zeisberg EM, Kalluri R (2010) The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 225(3):631–637PubMedCrossRef
116.
go back to reference Bechtel W, McGoohan S, Zeisberg EM et al (2010) Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med 16(5):544–550PubMedCrossRef Bechtel W, McGoohan S, Zeisberg EM et al (2010) Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med 16(5):544–550PubMedCrossRef
117.
go back to reference Cheng N, Chytil A, Shyr Y et al (2007) Enhanced hepatocyte growth factor signaling by type II transforming growth factor-beta receptor knockout fibroblasts promotes mammary tumorigenesis. Cancer Res 67(10):4869–4877PubMedCrossRef Cheng N, Chytil A, Shyr Y et al (2007) Enhanced hepatocyte growth factor signaling by type II transforming growth factor-beta receptor knockout fibroblasts promotes mammary tumorigenesis. Cancer Res 67(10):4869–4877PubMedCrossRef
118.
go back to reference Bhowmick NA, Chytil A, Plieth D et al (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303(5659):848–851PubMedCrossRef Bhowmick NA, Chytil A, Plieth D et al (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303(5659):848–851PubMedCrossRef
119.
go back to reference Trimboli AJ, Cantemir-Stone CZ, Li F et al (2009) Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 461(7267):1084–1091PubMedCrossRef Trimboli AJ, Cantemir-Stone CZ, Li F et al (2009) Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 461(7267):1084–1091PubMedCrossRef
120.
go back to reference Fazi F, Nervi C (2008) MicroRNA: basic mechanisms and transcriptional regulatory networks for cell fate determination. Cardiovasc Res 79(4):553–561PubMedCrossRef Fazi F, Nervi C (2008) MicroRNA: basic mechanisms and transcriptional regulatory networks for cell fate determination. Cardiovasc Res 79(4):553–561PubMedCrossRef
121.
go back to reference Gangaraju VK, Lin H (2009) MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 10(2):116–125PubMedCrossRef Gangaraju VK, Lin H (2009) MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 10(2):116–125PubMedCrossRef
122.
go back to reference Leung AK, Sharp PA (2006) Function and localization of microRNAs in mammalian cells. Cold Spring Harb Symp Quant Biol 71:29–38PubMedCrossRef Leung AK, Sharp PA (2006) Function and localization of microRNAs in mammalian cells. Cold Spring Harb Symp Quant Biol 71:29–38PubMedCrossRef
123.
go back to reference Tiscornia G, Izpisua Belmonte JC (2010) MicroRNAs in embryonic stem cell function and fate. Genes Dev 24(24):2732–2741PubMedCrossRef Tiscornia G, Izpisua Belmonte JC (2010) MicroRNAs in embryonic stem cell function and fate. Genes Dev 24(24):2732–2741PubMedCrossRef
124.
go back to reference Davis BN, Hata A (2010) microRNA in cancer: the involvement of aberrant microRNA biogenesis regulatory pathways. Genes Cancer 1(11):1100–1114CrossRef Davis BN, Hata A (2010) microRNA in cancer: the involvement of aberrant microRNA biogenesis regulatory pathways. Genes Cancer 1(11):1100–1114CrossRef
125.
go back to reference Farazi TA, Horlings HM, Ten Hoeve JJ et al (2011) MicroRNA sequence and expression analysis in breast tumors by deep sequencing. Cancer Res 71(13):4443–4453PubMedCrossRef Farazi TA, Horlings HM, Ten Hoeve JJ et al (2011) MicroRNA sequence and expression analysis in breast tumors by deep sequencing. Cancer Res 71(13):4443–4453PubMedCrossRef
126.
go back to reference Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139(4):693–706PubMedCrossRef Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139(4):693–706PubMedCrossRef
127.
go back to reference Iliopoulos D, Jaeger SA, Hirsch HA et al (2010) STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 39(4):493–506PubMedCrossRef Iliopoulos D, Jaeger SA, Hirsch HA et al (2010) STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 39(4):493–506PubMedCrossRef
128.
go back to reference Iorio MV, Ferracin M, Liu CG et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65(16):7065–7070PubMedCrossRef Iorio MV, Ferracin M, Liu CG et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65(16):7065–7070PubMedCrossRef
129.
go back to reference Jazbutyte V, Thum T (2010) MicroRNA-21: from cancer to cardiovascular disease. Curr Drug Targets 11(8):926–935PubMedCrossRef Jazbutyte V, Thum T (2010) MicroRNA-21: from cancer to cardiovascular disease. Curr Drug Targets 11(8):926–935PubMedCrossRef
130.
go back to reference Davis BN, Hilyard AC, Lagna G et al (2008) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454(7200):56–61PubMedCrossRef Davis BN, Hilyard AC, Lagna G et al (2008) SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454(7200):56–61PubMedCrossRef
131.
go back to reference Liu G, Friggeri A, Yang Y et al (2010) miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 207(8):1589–1597PubMedCrossRef Liu G, Friggeri A, Yang Y et al (2010) miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 207(8):1589–1597PubMedCrossRef
132.
go back to reference Thum T, Gross C, Fiedler J et al (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456(7224):980–984PubMedCrossRef Thum T, Gross C, Fiedler J et al (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456(7224):980–984PubMedCrossRef
133.
go back to reference Yao Q, Cao S, Li C et al (2011) Micro-RNA-21 regulates TGF-beta-induced myofibroblast differentiation by targeting PDCD4 in tumor-stroma interaction. Int J Cancer 128(8):1783–1792PubMedCrossRef Yao Q, Cao S, Li C et al (2011) Micro-RNA-21 regulates TGF-beta-induced myofibroblast differentiation by targeting PDCD4 in tumor-stroma interaction. Int J Cancer 128(8):1783–1792PubMedCrossRef
134.
go back to reference Lu Z, Liu M, Stribinskis V et al (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27(31):4373–4379PubMedCrossRef Lu Z, Liu M, Stribinskis V et al (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27(31):4373–4379PubMedCrossRef
135.
go back to reference Song B, Wang C, Liu J et al (2010) MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression. J Exp Clin Cancer Res 29:29PubMedCrossRef Song B, Wang C, Liu J et al (2010) MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression. J Exp Clin Cancer Res 29:29PubMedCrossRef
136.
go back to reference Zhu S, Wu H, Wu F et al (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18(3):350–359PubMedCrossRef Zhu S, Wu H, Wu F et al (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18(3):350–359PubMedCrossRef
137.
go back to reference Qian B, Katsaros D, Lu L et al (2008) High miR-21 expression in breast cancer associated with poor disease-free survival in early stage disease and high TGF-beta1. Breast Cancer Res Treat 117(1):131–140PubMedCrossRef Qian B, Katsaros D, Lu L et al (2008) High miR-21 expression in breast cancer associated with poor disease-free survival in early stage disease and high TGF-beta1. Breast Cancer Res Treat 117(1):131–140PubMedCrossRef
138.
go back to reference Farmer P, Bonnefoi H, Anderle P et al (2009) A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 15(1):68–74PubMedCrossRef Farmer P, Bonnefoi H, Anderle P et al (2009) A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 15(1):68–74PubMedCrossRef
139.
go back to reference Ostermann E, Garin-Chesa P, Heider KH et al (2008) Effective immunoconjugate therapy in cancer models targeting a serine protease of tumor fibroblasts. Clin Cancer Res 14(14):4584–4592PubMedCrossRef Ostermann E, Garin-Chesa P, Heider KH et al (2008) Effective immunoconjugate therapy in cancer models targeting a serine protease of tumor fibroblasts. Clin Cancer Res 14(14):4584–4592PubMedCrossRef
Metadata
Title
Stromal biomarkers in breast cancer development and progression
Authors
Jenny A. Rudnick
Charlotte Kuperwasser
Publication date
01-10-2012
Publisher
Springer Netherlands
Published in
Clinical & Experimental Metastasis / Issue 7/2012
Print ISSN: 0262-0898
Electronic ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-012-9499-8

Other articles of this Issue 7/2012

Clinical & Experimental Metastasis 7/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine