Skip to main content
Top
Published in: Clinical & Experimental Metastasis 2/2008

01-04-2008 | Research Paper

Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis

Authors: Jude R. Canon, Martine Roudier, Rebecca Bryant, Sean Morony, Marina Stolina, Paul J. Kostenuik, William C. Dougall

Published in: Clinical & Experimental Metastasis | Issue 2/2008

Login to get access

Abstract

Bone metastases cause severe skeletal morbidity including fractures and hypercalcemia. Tumor cells in bone induce activation of osteoclasts, which mediate bone resorption and release of growth factors from bone matrix, resulting in a “vicious cycle” of bone breakdown and tumor proliferation. Receptor activator of NF-κB ligand (RANKL) is an essential mediator of osteoclast formation, function, and survival, and is blocked by a soluble decoy receptor, osteoprotegerin (OPG). In human malignancies that metastasize to bone, dysregulation of the RANK/RANKL/OPG pathway can increase the RANKL:OPG ratio, a condition which favors excessive osteolysis. In a mouse model of bone metastasis, RANKL protein levels in MDA-MB-231 (MDA-231) tumor-bearing bones were significantly higher than tumor-free bones. The resulting tumor-induced osteoclastogenesis and osteolysis was dose-dependently inhibited by recombinant OPG-Fc treatment, supporting the essential role for RANKL in this process. Using bioluminescence imaging in a mouse model of metastasis, we monitored the anti-tumor efficacy of RANKL inhibition on MDA-231 human breast cancer cells in a temporal manner. Treatment with OPG-Fc in vivo inhibited growth of MDA-231 tumor cells in bony sites when given both as a preventative (dosed day 0) and as a therapeutic agent for established bone metastases (dosed day 7). One mechanism by which RANKL inhibition reduced tumor burden appears to be indirect through inhibition of the “vicious cycle” and involved an increase in tumor cell apoptosis, as measured by active caspase-3. Here, we demonstrate for the first time that OPG-Fc treatment of mice with established bone metastases resulted in an overall improvement in survival.
Literature
2.
go back to reference Taube T, Elomaa I, Blomqvist C et al (1994) Histomorphometric evidence for osteoclast-mediated bone resorption in metastatic breast cancer. Bone 15:161–166PubMedCrossRef Taube T, Elomaa I, Blomqvist C et al (1994) Histomorphometric evidence for osteoclast-mediated bone resorption in metastatic breast cancer. Bone 15:161–166PubMedCrossRef
3.
go back to reference Coleman RE (2001) Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 27:165–176PubMedCrossRef Coleman RE (2001) Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 27:165–176PubMedCrossRef
4.
go back to reference Fuller K, Wong B, Fox S et al (1998) TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J Exp Med 188:997–1001PubMedCrossRef Fuller K, Wong B, Fox S et al (1998) TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J Exp Med 188:997–1001PubMedCrossRef
5.
go back to reference Kong YY, Yoshida H, Sarosi I et al (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323PubMedCrossRef Kong YY, Yoshida H, Sarosi I et al (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323PubMedCrossRef
6.
go back to reference Lacey DL, Tan HL, Lu J et al (2000) Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am J Pathol 157:435–448PubMed Lacey DL, Tan HL, Lu J et al (2000) Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am J Pathol 157:435–448PubMed
7.
go back to reference Lacey DL, Timms E, Tan HL et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176PubMedCrossRef Lacey DL, Timms E, Tan HL et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176PubMedCrossRef
8.
go back to reference Bucay N, Sarosi I, Dunstan CR et al (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268PubMedCrossRef Bucay N, Sarosi I, Dunstan CR et al (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268PubMedCrossRef
9.
go back to reference Simonet WS, Lacey DL, Dunstan CR et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319PubMedCrossRef Simonet WS, Lacey DL, Dunstan CR et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319PubMedCrossRef
10.
go back to reference Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342PubMedCrossRef Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342PubMedCrossRef
12.
go back to reference Terpos E, Szydlo R, Apperley JF et al (2003) Soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood 102:1064–1069PubMedCrossRef Terpos E, Szydlo R, Apperley JF et al (2003) Soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood 102:1064–1069PubMedCrossRef
13.
go back to reference Mountzios G, Dimopolous M-A, Bamias A et al (2006) Abnormal bone remodeling process is due to an imbalance in the receptor activator of nuclear factor/kB ligand (RANKL)/osteoprotegerin (OPG) axis in patients with solid tumors metastatic to the skeleton. Acta Oncol 46:221–229CrossRef Mountzios G, Dimopolous M-A, Bamias A et al (2006) Abnormal bone remodeling process is due to an imbalance in the receptor activator of nuclear factor/kB ligand (RANKL)/osteoprotegerin (OPG) axis in patients with solid tumors metastatic to the skeleton. Acta Oncol 46:221–229CrossRef
14.
go back to reference Morony S, Capparelli C, Sarosi I et al (2001) Osteoprotegerin inhibits osteolysis and decreases skeletal tumor burden in syngeneic and nude mouse models of experimental bone metastasis. Cancer Res 61:4432–4436PubMed Morony S, Capparelli C, Sarosi I et al (2001) Osteoprotegerin inhibits osteolysis and decreases skeletal tumor burden in syngeneic and nude mouse models of experimental bone metastasis. Cancer Res 61:4432–4436PubMed
15.
go back to reference Miller R, Jones J, Tometsko M et al (2005) Antitumor efficacy of the RANK ligand inhibitor OPG-Fc in the MDA-231 breast cancer and PC3 prostate cancer experimental osteolytic metastases models. J Bone Miner Res 20:S117CrossRef Miller R, Jones J, Tometsko M et al (2005) Antitumor efficacy of the RANK ligand inhibitor OPG-Fc in the MDA-231 breast cancer and PC3 prostate cancer experimental osteolytic metastases models. J Bone Miner Res 20:S117CrossRef
16.
go back to reference Zheng Y, Zhou H, Brennan K et al (2007) Inhibition of bone resorption, rather than direct cytotoxicity, mediates the anti-tumour actions of ibandronate and osteoprotegerin in a murine model of breast cancer bone metastasis. Bone 40:471–478PubMedCrossRef Zheng Y, Zhou H, Brennan K et al (2007) Inhibition of bone resorption, rather than direct cytotoxicity, mediates the anti-tumour actions of ibandronate and osteoprotegerin in a murine model of breast cancer bone metastasis. Bone 40:471–478PubMedCrossRef
17.
go back to reference Morony S, Sarosi I, Doerr N et al (2000) OPG prevents bone destruction and decreases skeletal tumor burden in an experimental model of tumor metastasis to bone. J Bone Miner Res 15:S209CrossRef Morony S, Sarosi I, Doerr N et al (2000) OPG prevents bone destruction and decreases skeletal tumor burden in an experimental model of tumor metastasis to bone. J Bone Miner Res 15:S209CrossRef
18.
go back to reference Dougall WC, Chaisson M (2006) The RANK/RANKL/OPG triad in cancer-induced bone diseases. Cancer Metastasis Rev 25:541–549PubMedCrossRef Dougall WC, Chaisson M (2006) The RANK/RANKL/OPG triad in cancer-induced bone diseases. Cancer Metastasis Rev 25:541–549PubMedCrossRef
19.
go back to reference Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593PubMedCrossRef Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593PubMedCrossRef
20.
go back to reference Sasaki A, Boyce BF, Story B et al (1995) Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res 55:3551–3557PubMed Sasaki A, Boyce BF, Story B et al (1995) Bisphosphonate risedronate reduces metastatic human breast cancer burden in bone in nude mice. Cancer Res 55:3551–3557PubMed
21.
go back to reference Dull T, Zufferey R, Kelly M et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471PubMed Dull T, Zufferey R, Kelly M et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471PubMed
22.
go back to reference Morony S, Capparelli C, Lee R et al (1999) A chimeric form of osteoprotegerin inhibits hypercalcemia and bone resorption induced by IL-1beta, TNF-alpha, PTH, PTHrP, and 1,25(OH)2D3. J Bone Miner Res 14:1478–1485PubMedCrossRef Morony S, Capparelli C, Lee R et al (1999) A chimeric form of osteoprotegerin inhibits hypercalcemia and bone resorption induced by IL-1beta, TNF-alpha, PTH, PTHrP, and 1,25(OH)2D3. J Bone Miner Res 14:1478–1485PubMedCrossRef
23.
go back to reference Shimamura T, Amizuka N, Li M et al (2005) Histological observations on the microenvironment of osteolytic bone metastasis by breast carcinoma cell line. Biomed Res 26:159–172PubMedCrossRef Shimamura T, Amizuka N, Li M et al (2005) Histological observations on the microenvironment of osteolytic bone metastasis by breast carcinoma cell line. Biomed Res 26:159–172PubMedCrossRef
24.
go back to reference Kitazawa S, Kitazawa R (2002) RANK ligand is a prerequisite for cancer-associated osteolytic lesions. J Pathol 198:228–236PubMedCrossRef Kitazawa S, Kitazawa R (2002) RANK ligand is a prerequisite for cancer-associated osteolytic lesions. J Pathol 198:228–236PubMedCrossRef
25.
go back to reference Mancino AT, Klimberg VS, Yamamoto M et al (2001) Breast cancer increases osteoclastogenesis by secreting M-CSF and upregulating RANKL in stromal cells. J Surg Res 100:18–24PubMedCrossRef Mancino AT, Klimberg VS, Yamamoto M et al (2001) Breast cancer increases osteoclastogenesis by secreting M-CSF and upregulating RANKL in stromal cells. J Surg Res 100:18–24PubMedCrossRef
26.
go back to reference Thomas RJ, Guise TA, Yin JJ et al (1999) Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology 140:4451–4458PubMedCrossRef Thomas RJ, Guise TA, Yin JJ et al (1999) Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology 140:4451–4458PubMedCrossRef
27.
go back to reference van der Pluijm G, Que I, Sijmons B et al (2005) Interference with the microenvironmental support impairs the de novo formation of bone metastases in vivo. Cancer Res 65:7682–7690PubMed van der Pluijm G, Que I, Sijmons B et al (2005) Interference with the microenvironmental support impairs the de novo formation of bone metastases in vivo. Cancer Res 65:7682–7690PubMed
28.
go back to reference Morony S, Warmington K, Adamu S et al (2005) The RANKL inhibitor osteoprotegerin (OPG) causes greater suppression of bone resorption and hypercalcemia compared to bisphosphonates in two models of humoral hypercalcemia of malignancy. Endocrinology 146:3235–3243PubMedCrossRef Morony S, Warmington K, Adamu S et al (2005) The RANKL inhibitor osteoprotegerin (OPG) causes greater suppression of bone resorption and hypercalcemia compared to bisphosphonates in two models of humoral hypercalcemia of malignancy. Endocrinology 146:3235–3243PubMedCrossRef
29.
go back to reference Bendre MS, Margulies AG, Walser B et al (2005) Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappaB ligand pathway. Cancer Res 65:11001–11009PubMedCrossRef Bendre MS, Margulies AG, Walser B et al (2005) Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappaB ligand pathway. Cancer Res 65:11001–11009PubMedCrossRef
30.
go back to reference Jones DH, Nakashima T, Sanchez OH et al (2006) Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440:692–696PubMedCrossRef Jones DH, Nakashima T, Sanchez OH et al (2006) Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440:692–696PubMedCrossRef
31.
go back to reference Gonzalez-Suarez E, Branstetter D, Armstrong A et al (2007) RANK overexpression in transgenic mice with mouse mammary tumor virus promoter-controlled RANK increases proliferation and impairs alveolar differentiation in the mammary epithelia and disrupts lumen formation in cultured epithelial acini. Mol Cell Biol 27:1442–1454PubMedCrossRef Gonzalez-Suarez E, Branstetter D, Armstrong A et al (2007) RANK overexpression in transgenic mice with mouse mammary tumor virus promoter-controlled RANK increases proliferation and impairs alveolar differentiation in the mammary epithelia and disrupts lumen formation in cultured epithelial acini. Mol Cell Biol 27:1442–1454PubMedCrossRef
32.
go back to reference Roudier M, Chaisson M, Branstetter D et al (2006) RANK is expressed in human breast tumors and is functional on breast cancer cells. Breast Cancer 100(Supp 1):6124 Roudier M, Chaisson M, Branstetter D et al (2006) RANK is expressed in human breast tumors and is functional on breast cancer cells. Breast Cancer 100(Supp 1):6124
33.
go back to reference Vanderkerken K, De Leenheer E, Shipman C et al (2003) Recombinant osteoprotegerin decreases tumor burden and increases survival in a murine model of multiple myeloma. Cancer Res 63:287–289PubMed Vanderkerken K, De Leenheer E, Shipman C et al (2003) Recombinant osteoprotegerin decreases tumor burden and increases survival in a murine model of multiple myeloma. Cancer Res 63:287–289PubMed
34.
go back to reference Brown JE, Cook RJ, Major P et al (2005) Bone turnover markers as predictors of skeletal complications in prostate cancer, lung cancer, and other solid tumors. J Natl Cancer Inst 97:59–69PubMedCrossRef Brown JE, Cook RJ, Major P et al (2005) Bone turnover markers as predictors of skeletal complications in prostate cancer, lung cancer, and other solid tumors. J Natl Cancer Inst 97:59–69PubMedCrossRef
35.
go back to reference Coleman RE, Major P, Lipton A et al (2005) Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid. J Clin Oncol 23:4925–4935PubMedCrossRef Coleman RE, Major P, Lipton A et al (2005) Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid. J Clin Oncol 23:4925–4935PubMedCrossRef
Metadata
Title
Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis
Authors
Jude R. Canon
Martine Roudier
Rebecca Bryant
Sean Morony
Marina Stolina
Paul J. Kostenuik
William C. Dougall
Publication date
01-04-2008
Publisher
Springer Netherlands
Published in
Clinical & Experimental Metastasis / Issue 2/2008
Print ISSN: 0262-0898
Electronic ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-007-9127-1

Other articles of this Issue 2/2008

Clinical & Experimental Metastasis 2/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine