Skip to main content
Top
Published in: Clinical & Experimental Metastasis 2/2008

01-04-2008 | Review

Syndecan-1: a dynamic regulator of the myeloma microenvironment

Authors: Ralph D. Sanderson, Yang Yang

Published in: Clinical & Experimental Metastasis | Issue 2/2008

Login to get access

Abstract

Emerging data in myeloma and other cancers indicates that heparan sulfate proteoglycans promote tumor progression by enhancing their growth and metastasis. By acting as key regulators of cell signaling via their interactions with multiple growth and angiogenic factors, heparan sulfates mediate a shift in the microenvironment that supports the tumor as an ‘organ’ and promotes an aggressive tumor phenotype. In addition, enzymatic remodeling of heparan sulfate proteoglycans provides a mechanism for rapid, localized and dynamic modulation of proteoglycan function thereby tightly regulating activities within the tumor microenvironment. New data from animal models demonstrates that heparan sulfate or the enzymes that regulate heparan sulfate are viable targets for cancer therapy. This strategy of targeting heparan sulfate may be particularly effective for attacking cancers like myeloma where extensive genetic chaos renders them unlikely to respond well to agents that target a single signaling pathway.
Literature
1.
go back to reference Bernfield M, Gotte M, Park PW et al (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777PubMed Bernfield M, Gotte M, Park PW et al (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777PubMed
2.
go back to reference Lander AD, Selleck SB (2000) The elusive functions of proteoglycans: in vivo veritas. J Cell Biol 148(2):227–232PubMed Lander AD, Selleck SB (2000) The elusive functions of proteoglycans: in vivo veritas. J Cell Biol 148(2):227–232PubMed
3.
go back to reference Woods A, Couchman JR (1998) Syndecans: synergistic activators of cell adhesion. Trends Cell Biol 8(5):189–192PubMed Woods A, Couchman JR (1998) Syndecans: synergistic activators of cell adhesion. Trends Cell Biol 8(5):189–192PubMed
4.
go back to reference Iozzo RV, San Antonio JD (2001) Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 108(3):349–355PubMed Iozzo RV, San Antonio JD (2001) Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 108(3):349–355PubMed
5.
go back to reference Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446(7139):1030–1037PubMed Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446(7139):1030–1037PubMed
6.
go back to reference Goger B, Halden Y, Rek A et al (2002) Different affinities of glycosaminoglycan oligosaccharides for monomeric and dimeric interleukin-8: a model for chemokine regulation at inflammatory sites. Biochemistry 41(5):1640–1646PubMed Goger B, Halden Y, Rek A et al (2002) Different affinities of glycosaminoglycan oligosaccharides for monomeric and dimeric interleukin-8: a model for chemokine regulation at inflammatory sites. Biochemistry 41(5):1640–1646PubMed
7.
go back to reference Filla MS, Dam P, Rapraeger AC (1998) The cell surface proteoglycan syndecan-1 mediates fibroblast growth factor-2 binding and activity. J Cell Physiol 174(3):310–321PubMed Filla MS, Dam P, Rapraeger AC (1998) The cell surface proteoglycan syndecan-1 mediates fibroblast growth factor-2 binding and activity. J Cell Physiol 174(3):310–321PubMed
8.
go back to reference Perrimon N, Bernfield M (2001) Cellular functions of proteoglycans–an overview. Semin Cell Dev Biol 12(2):65–67PubMed Perrimon N, Bernfield M (2001) Cellular functions of proteoglycans–an overview. Semin Cell Dev Biol 12(2):65–67PubMed
9.
go back to reference Sasisekharan R, Shriver Z, Venkataraman G et al (2002) Roles of heparan-sulphate glycosaminoglycans in cancer. Nat Rev Cancer 2(7):521–528PubMed Sasisekharan R, Shriver Z, Venkataraman G et al (2002) Roles of heparan-sulphate glycosaminoglycans in cancer. Nat Rev Cancer 2(7):521–528PubMed
10.
go back to reference Blackhall FH, Merry CL, Davies EJ et al (2001) Heparan sulfate proteoglycans and cancer. Br J Cancer 85(8):1094–1098PubMed Blackhall FH, Merry CL, Davies EJ et al (2001) Heparan sulfate proteoglycans and cancer. Br J Cancer 85(8):1094–1098PubMed
11.
go back to reference Fears CY, Woods A (2006) The role of syndecans in disease and wound healing. Matrix Biol 25(7):443–456PubMed Fears CY, Woods A (2006) The role of syndecans in disease and wound healing. Matrix Biol 25(7):443–456PubMed
12.
go back to reference Beauvais DM, Rapraeger AC (2004) Syndecans in tumor cell adhesion and signaling. Reprod Biol Endocrinol 2(1):3PubMed Beauvais DM, Rapraeger AC (2004) Syndecans in tumor cell adhesion and signaling. Reprod Biol Endocrinol 2(1):3PubMed
13.
go back to reference Esko JD, Rostand KS, Weinke JL (1988) Tumor formation dependent on proteoglycan biosynthesis. Science 241(4869):1092–1096PubMed Esko JD, Rostand KS, Weinke JL (1988) Tumor formation dependent on proteoglycan biosynthesis. Science 241(4869):1092–1096PubMed
14.
go back to reference Alexander CM, Reichsman F, Hinkes MT et al (2000) Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Nat Genet 25(3):329–332PubMed Alexander CM, Reichsman F, Hinkes MT et al (2000) Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Nat Genet 25(3):329–332PubMed
15.
go back to reference Perrimon N, Bernfield M (2000) Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404(6779):725–728PubMed Perrimon N, Bernfield M (2000) Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404(6779):725–728PubMed
16.
go back to reference Capurro MI, Xiang YY, Lobe C et al (2005) Glypican-3 promotes the growth of hepatocellular carcinoma by stimulating canonical Wnt signaling. Cancer Res 65(14):6245–6254PubMed Capurro MI, Xiang YY, Lobe C et al (2005) Glypican-3 promotes the growth of hepatocellular carcinoma by stimulating canonical Wnt signaling. Cancer Res 65(14):6245–6254PubMed
17.
go back to reference Sharma B, Handler M, Eichstetter I et al (1998) Antisense targeting of perlecan blocks tumor growth and angiogenesis in vivo. J Clin Invest 102(8):1599–1608PubMed Sharma B, Handler M, Eichstetter I et al (1998) Antisense targeting of perlecan blocks tumor growth and angiogenesis in vivo. J Clin Invest 102(8):1599–1608PubMed
18.
go back to reference Mathiak M, Yenisey C, Grant DS et al (1997) A role for perlecan in the suppression of growth and invasion in fibrocarcinoma cells. Cancer Res 57(11):2130–2136PubMed Mathiak M, Yenisey C, Grant DS et al (1997) A role for perlecan in the suppression of growth and invasion in fibrocarcinoma cells. Cancer Res 57(11):2130–2136PubMed
19.
go back to reference Savore C, Zhang C, Muir C et al (2005) Perlecan knockdown in metastatic prostate cancer cells reduces heparin-binding growth factor responses in vitro and tumor growth in vivo. Clin Exp Metastasis 22(5):377–390PubMed Savore C, Zhang C, Muir C et al (2005) Perlecan knockdown in metastatic prostate cancer cells reduces heparin-binding growth factor responses in vitro and tumor growth in vivo. Clin Exp Metastasis 22(5):377–390PubMed
20.
go back to reference Dhodapkar MV, Kelly T, Theus A et al (1997) Elevated levels of shed syndecan-1 correlate with tumor mass and decreased matrix metalloproteinase-9 activity in the serum of patients with multiple myeloma. Br J Hematol 99:368–371 Dhodapkar MV, Kelly T, Theus A et al (1997) Elevated levels of shed syndecan-1 correlate with tumor mass and decreased matrix metalloproteinase-9 activity in the serum of patients with multiple myeloma. Br J Hematol 99:368–371
21.
go back to reference Joensuu H, Anttonen A, Eriksson M et al (2002) Soluble syndecan-1 and serum basic fibroblast growth factor are new prognostic factors in lung cancer. Cancer Res 62(18):5210–5217PubMed Joensuu H, Anttonen A, Eriksson M et al (2002) Soluble syndecan-1 and serum basic fibroblast growth factor are new prognostic factors in lung cancer. Cancer Res 62(18):5210–5217PubMed
22.
go back to reference Kleeff J, Ishiwata T, Kumbasar A et al (1998) The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. J Clin Invest 102(9):1662–1673PubMedCrossRef Kleeff J, Ishiwata T, Kumbasar A et al (1998) The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. J Clin Invest 102(9):1662–1673PubMedCrossRef
23.
go back to reference Matsuda K, Maruyama H, Guo F et al (2001) Glypican-1 is overexpressed in human breast cancer and modulates the mitogenic effects of multiple heparin-binding growth factors in breast cancer cells. Cancer Res 61(14):5562–5569PubMed Matsuda K, Maruyama H, Guo F et al (2001) Glypican-1 is overexpressed in human breast cancer and modulates the mitogenic effects of multiple heparin-binding growth factors in breast cancer cells. Cancer Res 61(14):5562–5569PubMed
24.
go back to reference Sanderson RD (2001) Heparan sulfate proteoglycans in invasion and metastasis. Semin Cell Dev Biol 12(2):89–98PubMed Sanderson RD (2001) Heparan sulfate proteoglycans in invasion and metastasis. Semin Cell Dev Biol 12(2):89–98PubMed
25.
go back to reference Yu WH, Woessner JF Jr (2000) Heparan sulfate proteoglycans as extracellular docking molecules for matrilysin (matrix metalloproteinase 7). J Biol Chem 275(6):4183–4191PubMed Yu WH, Woessner JF Jr (2000) Heparan sulfate proteoglycans as extracellular docking molecules for matrilysin (matrix metalloproteinase 7). J Biol Chem 275(6):4183–4191PubMed
26.
go back to reference Liebersbach BF, Sanderson RD (1994) Expression of syndecan-1 inhibits cell invasion into type I collagen. J Biol Chem 269:20013–20019PubMed Liebersbach BF, Sanderson RD (1994) Expression of syndecan-1 inhibits cell invasion into type I collagen. J Biol Chem 269:20013–20019PubMed
27.
go back to reference Borsig L, Wong R, Feramisco J et al (2001) Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci USA 98(6):3352–3357PubMed Borsig L, Wong R, Feramisco J et al (2001) Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci USA 98(6):3352–3357PubMed
28.
go back to reference Turnbull J, Powell A, Guimond S (2001) Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends Cell Biol 11(2):75–82PubMed Turnbull J, Powell A, Guimond S (2001) Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends Cell Biol 11(2):75–82PubMed
29.
go back to reference Selleck SB (2000) Proteoglycans and pattern formation: sugar biochemistry meets developmental genetics. Trends Genet 16(5):206–212PubMed Selleck SB (2000) Proteoglycans and pattern formation: sugar biochemistry meets developmental genetics. Trends Genet 16(5):206–212PubMed
30.
go back to reference Gallagher JT (2001) Heparan sulfate: growth control with a restricted sequence menu. J Clin Invest 108(3):357–361PubMed Gallagher JT (2001) Heparan sulfate: growth control with a restricted sequence menu. J Clin Invest 108(3):357–361PubMed
31.
go back to reference Lindahl U, Kusche-Gullberg M, Kjellen L (1998) Regulated diversity of heparan sulfate. J Biol Chem 273(39):24979–24982PubMed Lindahl U, Kusche-Gullberg M, Kjellen L (1998) Regulated diversity of heparan sulfate. J Biol Chem 273(39):24979–24982PubMed
32.
go back to reference Sasisekharan R, Venkataraman G (2000) Heparin and heparan sulfate: biosynthesis, structure and function. Curr Opin Chem Biol 4(6):626–631PubMed Sasisekharan R, Venkataraman G (2000) Heparin and heparan sulfate: biosynthesis, structure and function. Curr Opin Chem Biol 4(6):626–631PubMed
33.
go back to reference Underhill CB, Keller JM (1975) A transformation-dependent difference in the heparan sulfate associated with the cell surface. Biochem Biophys Res Commun 63:448–454PubMed Underhill CB, Keller JM (1975) A transformation-dependent difference in the heparan sulfate associated with the cell surface. Biochem Biophys Res Commun 63:448–454PubMed
34.
go back to reference Winterbourne DJ, Mora PT (1978) Altered metabolism of heparan sulphate in simian virus 40 transformed cloned mouse cells. J Biol Chem 253:5109–5120PubMed Winterbourne DJ, Mora PT (1978) Altered metabolism of heparan sulphate in simian virus 40 transformed cloned mouse cells. J Biol Chem 253:5109–5120PubMed
35.
go back to reference David G, Van Den Berghe H (1983) Transformed mouse mammary epithelial cells synthesize undersulfated basement membrane proteoglycan. J Biol Chem 258(12):7338–7344PubMed David G, Van Den Berghe H (1983) Transformed mouse mammary epithelial cells synthesize undersulfated basement membrane proteoglycan. J Biol Chem 258(12):7338–7344PubMed
36.
go back to reference Robinson J, Viti M, Höök M (1984) Structure and properties of an under-sulfated heparan sulfate proteoglycan synthesized by a rat hepatoma cell line. J Cell Biol 98:946–953PubMed Robinson J, Viti M, Höök M (1984) Structure and properties of an under-sulfated heparan sulfate proteoglycan synthesized by a rat hepatoma cell line. J Cell Biol 98:946–953PubMed
37.
go back to reference Sanderson RD, Turnbull JE, Gallagher JT et al (1994) Fine structure of heparan sulfate regulates syndecan-1 function and cell behavior. J Biol Chem 269(18):13100–13106PubMed Sanderson RD, Turnbull JE, Gallagher JT et al (1994) Fine structure of heparan sulfate regulates syndecan-1 function and cell behavior. J Biol Chem 269(18):13100–13106PubMed
38.
go back to reference Jayson GC, Lyon M, Paraskeva C et al (1998) Heparan sulfate undergoes specific structural changes during the progression from human colon adenoma to carcinoma in vitro. J Biol Chem 273(1):51–57PubMed Jayson GC, Lyon M, Paraskeva C et al (1998) Heparan sulfate undergoes specific structural changes during the progression from human colon adenoma to carcinoma in vitro. J Biol Chem 273(1):51–57PubMed
39.
go back to reference Safaiyan F, Lindahl U, Salmivirta M (1998) Selective reduction of 6-O-sulfation in heparan sulfate from transformed mammary epithelial cells. Eur J Biochem 252(3):576–582PubMed Safaiyan F, Lindahl U, Salmivirta M (1998) Selective reduction of 6-O-sulfation in heparan sulfate from transformed mammary epithelial cells. Eur J Biochem 252(3):576–582PubMed
40.
go back to reference Vlodavsky I, Friedmann Y, Elkin M et al (1999) Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat Med 5(7):793–802PubMed Vlodavsky I, Friedmann Y, Elkin M et al (1999) Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat Med 5(7):793–802PubMed
41.
go back to reference Kussie PH, Hulmes JD, Ludwig DL et al (1999) Cloning and functional expression of a human heparanase gene. Biochem Biophys Res Commun 261(1):183–187PubMed Kussie PH, Hulmes JD, Ludwig DL et al (1999) Cloning and functional expression of a human heparanase gene. Biochem Biophys Res Commun 261(1):183–187PubMed
42.
go back to reference Hulett MD, Freeman C, Hamdorf BJ et al (1999) Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med 5(7):803–809PubMed Hulett MD, Freeman C, Hamdorf BJ et al (1999) Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med 5(7):803–809PubMed
43.
go back to reference Toyoshima M, Nakajima M (1999) Human heparanase. Purification, characterization, cloning, and expression. J Biol Chem 274(34):24153–24160PubMed Toyoshima M, Nakajima M (1999) Human heparanase. Purification, characterization, cloning, and expression. J Biol Chem 274(34):24153–24160PubMed
44.
go back to reference Vlodavsky I, Friedmann Y (2001) Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest 108(3):341–347PubMed Vlodavsky I, Friedmann Y (2001) Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest 108(3):341–347PubMed
45.
go back to reference Bitan M, Polliack A, Zecchina G et al (2002) Heparanase expression in human leukemias is restricted to acute myeloid leukemias. Exp Hematol 30(1):34–41PubMed Bitan M, Polliack A, Zecchina G et al (2002) Heparanase expression in human leukemias is restricted to acute myeloid leukemias. Exp Hematol 30(1):34–41PubMed
46.
go back to reference Kato M, Wang H, Kainulainen V et al (1998) Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nat Med 4(6):691–697PubMed Kato M, Wang H, Kainulainen V et al (1998) Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nat Med 4(6):691–697PubMed
47.
go back to reference Vlodavsky I, Goldshmidt O, Zcharia E et al (2002) Mammalian heparanase: involvement in cancer metastasis, angiogenesis and normal development. Semin Cancer Biol 12(2):121–129PubMed Vlodavsky I, Goldshmidt O, Zcharia E et al (2002) Mammalian heparanase: involvement in cancer metastasis, angiogenesis and normal development. Semin Cancer Biol 12(2):121–129PubMed
48.
go back to reference Ilan N, Elkin M, Vlodavsky I (2006) Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 38(12):2018–2039PubMed Ilan N, Elkin M, Vlodavsky I (2006) Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 38(12):2018–2039PubMed
49.
go back to reference Whitelock JM, Murdoch AD, Iozzo RV et al (1996) The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem 271(17):10079–10086PubMed Whitelock JM, Murdoch AD, Iozzo RV et al (1996) The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem 271(17):10079–10086PubMed
50.
go back to reference Elkin M, Ilan N, Ishai-Michaeli R et al (2001) Heparanase as mediator of angiogenesis: mode of action. FASEB J 15(9):1661–1663PubMed Elkin M, Ilan N, Ishai-Michaeli R et al (2001) Heparanase as mediator of angiogenesis: mode of action. FASEB J 15(9):1661–1663PubMed
51.
go back to reference Vreys V, Delande N, Zhang Z et al (2005) Cellular uptake of mammalian heparanase precursor involves low density lipoprotein receptor-related proteins, mannose 6-phosphate receptors, and heparan sulfate proteoglycans. J Biol Chem 280(39):33141–33148PubMed Vreys V, Delande N, Zhang Z et al (2005) Cellular uptake of mammalian heparanase precursor involves low density lipoprotein receptor-related proteins, mannose 6-phosphate receptors, and heparan sulfate proteoglycans. J Biol Chem 280(39):33141–33148PubMed
52.
go back to reference Cohen T, Gitay-Goren H, Sharon R et al (1995) VEGF121, a vascular endothelial growth factor (VEGF) isoform lacking heparin binding ability, requires cell-surface heparan sulfates for efficient binding to the VEGF receptors of human melanoma cells. J Biol Chem 270(19):11322–11326PubMed Cohen T, Gitay-Goren H, Sharon R et al (1995) VEGF121, a vascular endothelial growth factor (VEGF) isoform lacking heparin binding ability, requires cell-surface heparan sulfates for efficient binding to the VEGF receptors of human melanoma cells. J Biol Chem 270(19):11322–11326PubMed
53.
go back to reference Gitay-Goren H, Soker S, Vlodavsky I et al (1992) The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules. J Biol Chem 267(9):6093–6098PubMed Gitay-Goren H, Soker S, Vlodavsky I et al (1992) The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules. J Biol Chem 267(9):6093–6098PubMed
54.
go back to reference Chiang MK, Flanagan JG (1995) Interactions between the Flk-1 receptor, vascular endothelial growth factor, and cell surface proteoglycan identified with a soluble receptor reagent. Growth Factors 12(1):1–10PubMed Chiang MK, Flanagan JG (1995) Interactions between the Flk-1 receptor, vascular endothelial growth factor, and cell surface proteoglycan identified with a soluble receptor reagent. Growth Factors 12(1):1–10PubMed
55.
go back to reference Dougher AM, Wasserstrom H, Torley L et al (1997) Identification of a heparin binding peptide on the extracellular domain of the KDR VEGF receptor. Growth Factors 14(4):257–268PubMed Dougher AM, Wasserstrom H, Torley L et al (1997) Identification of a heparin binding peptide on the extracellular domain of the KDR VEGF receptor. Growth Factors 14(4):257–268PubMed
56.
go back to reference Fuster MM, Wang L, Castagnola J et al (2007) Genetic alteration of endothelial heparan sulfate selectively inhibits tumor angiogenesis. J Cell Biol 177(3):539–549PubMed Fuster MM, Wang L, Castagnola J et al (2007) Genetic alteration of endothelial heparan sulfate selectively inhibits tumor angiogenesis. J Cell Biol 177(3):539–549PubMed
57.
go back to reference Ruhrberg C, Gerhardt H, Golding M et al (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16(20):2684–2698PubMed Ruhrberg C, Gerhardt H, Golding M et al (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16(20):2684–2698PubMed
58.
go back to reference Gengrinovitch S, Berman B, David G et al (1999) Glypican-1 is a VEGF165 binding proteoglycan that acts as an extracellular chaperone for VEGF165. J Biol Chem 274(16):10816–10822PubMed Gengrinovitch S, Berman B, David G et al (1999) Glypican-1 is a VEGF165 binding proteoglycan that acts as an extracellular chaperone for VEGF165. J Biol Chem 274(16):10816–10822PubMed
59.
go back to reference Ai X, Do AT, Lozynska O et al (2003) QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J Cell Biol 162(2):341–351PubMed Ai X, Do AT, Lozynska O et al (2003) QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J Cell Biol 162(2):341–351PubMed
60.
go back to reference Dhoot GK, Gustafsson MK, Ai X et al (2001) Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science 293(5535):1663–1666PubMed Dhoot GK, Gustafsson MK, Ai X et al (2001) Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science 293(5535):1663–1666PubMed
61.
go back to reference Morimoto-Tomita M, Uchimura K, Werb Z et al (2002) Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans. J Biol Chem 277(51):49175–49185PubMed Morimoto-Tomita M, Uchimura K, Werb Z et al (2002) Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans. J Biol Chem 277(51):49175–49185PubMed
62.
go back to reference Lai JP, Chien J, Strome SE et al (2004) HSulf-1 modulates HGF-mediated tumor cell invasion and signaling in head and neck squamous carcinoma. Oncogene 23(7):1439–1447PubMed Lai JP, Chien J, Strome SE et al (2004) HSulf-1 modulates HGF-mediated tumor cell invasion and signaling in head and neck squamous carcinoma. Oncogene 23(7):1439–1447PubMed
63.
go back to reference Uchimura K, Morimoto-Tomita M, Bistrup A et al (2006) HSulf-2, an extracellular endoglucosamine-6-sulfatase, selectively mobilizes heparin-bound growth factors and chemokines: effects on VEGF, FGF-1, and SDF-1. BMC Biochem 7:2PubMed Uchimura K, Morimoto-Tomita M, Bistrup A et al (2006) HSulf-2, an extracellular endoglucosamine-6-sulfatase, selectively mobilizes heparin-bound growth factors and chemokines: effects on VEGF, FGF-1, and SDF-1. BMC Biochem 7:2PubMed
64.
go back to reference Morimoto-Tomita M, Uchimura K, Bistrup A et al (2005) Sulf-2, a proangiogenic heparan sulfate endosulfatase, is upregulated in breast cancer. Neoplasia 7(11):1001–1010PubMed Morimoto-Tomita M, Uchimura K, Bistrup A et al (2005) Sulf-2, a proangiogenic heparan sulfate endosulfatase, is upregulated in breast cancer. Neoplasia 7(11):1001–1010PubMed
65.
go back to reference Narita K, Chien J, Mullany SA et al (2007) Loss of HSulf-1 expression enhances autocrine signaling mediated by amphiregulin in breast cancer. J Biol Chem 282(19):14413–14420PubMed Narita K, Chien J, Mullany SA et al (2007) Loss of HSulf-1 expression enhances autocrine signaling mediated by amphiregulin in breast cancer. J Biol Chem 282(19):14413–14420PubMed
66.
go back to reference Staub J, Chien J, Pan Y et al (2007) Epigenetic silencing of HSulf-1 in ovarian cancer: implications in chemoresistance. Oncogene 26(34):4969–4978PubMed Staub J, Chien J, Pan Y et al (2007) Epigenetic silencing of HSulf-1 in ovarian cancer: implications in chemoresistance. Oncogene 26(34):4969–4978PubMed
67.
go back to reference Lai JP, Chien JR, Moser DR et al (2004) hSulf1 Sulfatase promotes apoptosis of hepatocellular cancer cells by decreasing heparin-binding growth factor signaling. Gastroenterology 126(1):231–248PubMed Lai JP, Chien JR, Moser DR et al (2004) hSulf1 Sulfatase promotes apoptosis of hepatocellular cancer cells by decreasing heparin-binding growth factor signaling. Gastroenterology 126(1):231–248PubMed
68.
go back to reference Dai Y, Yang Y, MacLeod V et al (2005) HSulf-1 and HSulf-2 are potent inhibitors of myeloma tumor growth in vivo. J Biol Chem 280(48):40066–40073PubMed Dai Y, Yang Y, MacLeod V et al (2005) HSulf-1 and HSulf-2 are potent inhibitors of myeloma tumor growth in vivo. J Biol Chem 280(48):40066–40073PubMed
69.
go back to reference Jalkanen M, Rapraeger A, Saunders S et al (1987) Cell surface proteoglycan of mouse mammary epithelial cells is shed by cleavage of its matrix-binding ectodomain from its membrane-associated domain. J Cell Biol 105:3087–3096PubMed Jalkanen M, Rapraeger A, Saunders S et al (1987) Cell surface proteoglycan of mouse mammary epithelial cells is shed by cleavage of its matrix-binding ectodomain from its membrane-associated domain. J Cell Biol 105:3087–3096PubMed
70.
go back to reference Sanderson RD, Yang Y, Suva LJ et al (2004) Heparan sulfate proteoglycans and heparanase–partners in osteolytic tumor growth and metastasis. Matrix Biol 23(6):341–352PubMed Sanderson RD, Yang Y, Suva LJ et al (2004) Heparan sulfate proteoglycans and heparanase–partners in osteolytic tumor growth and metastasis. Matrix Biol 23(6):341–352PubMed
71.
go back to reference Li Q, Park PW, Wilson CL et al (2002) Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111(5):635–646PubMed Li Q, Park PW, Wilson CL et al (2002) Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111(5):635–646PubMed
72.
go back to reference Capurro M, Wanless IR, Sherman M et al (2003) Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology 125(1):89–97PubMed Capurro M, Wanless IR, Sherman M et al (2003) Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology 125(1):89–97PubMed
73.
go back to reference Nakatsura T, Kageshita T, Ito S et al (2004) Identification of glypican-3 as a novel tumor marker for melanoma. Clin Cancer Res 10(19):6612–6621PubMed Nakatsura T, Kageshita T, Ito S et al (2004) Identification of glypican-3 as a novel tumor marker for melanoma. Clin Cancer Res 10(19):6612–6621PubMed
74.
go back to reference Nakatsura T, Nishimura Y (2005) Usefulness of the novel oncofetal antigen glypican-3 for diagnosis of hepatocellular carcinoma and melanoma. BioDrugs 19(2):71–77PubMed Nakatsura T, Nishimura Y (2005) Usefulness of the novel oncofetal antigen glypican-3 for diagnosis of hepatocellular carcinoma and melanoma. BioDrugs 19(2):71–77PubMed
75.
go back to reference Seidel C, Sundan A, Hjorth M et al (2000) Serum syndecan-1: a new independent prognostic marker in multiple myeloma. Blood 95(2):388–392PubMed Seidel C, Sundan A, Hjorth M et al (2000) Serum syndecan-1: a new independent prognostic marker in multiple myeloma. Blood 95(2):388–392PubMed
76.
go back to reference Liu D, Shriver Z, Venkataraman G et al (2002) Tumor cell surface heparan sulfate as cryptic promoters or inhibitors of tumor growth and metastasis. Proc Natl Acad Sci USA 99(2):568–573PubMed Liu D, Shriver Z, Venkataraman G et al (2002) Tumor cell surface heparan sulfate as cryptic promoters or inhibitors of tumor growth and metastasis. Proc Natl Acad Sci USA 99(2):568–573PubMed
77.
go back to reference Ernst S, Langer R, Cooney CL et al (1995) Enzymatic degradation of glycosaminoglycans. Crit Rev Biochem Mol Biol 30(5):387–444PubMed Ernst S, Langer R, Cooney CL et al (1995) Enzymatic degradation of glycosaminoglycans. Crit Rev Biochem Mol Biol 30(5):387–444PubMed
78.
go back to reference Bergsagel D (1995) The incidence and epidemiology of plasma cell neoplasms. Stem Cells 13(Suppl 2):1–9PubMed Bergsagel D (1995) The incidence and epidemiology of plasma cell neoplasms. Stem Cells 13(Suppl 2):1–9PubMed
79.
go back to reference Barlogie B, Shaughnessy J, Epstein J et al (2006) Plasma cell myeloma. In: Lichtman MA, Beutler E, Kipps TJ et al (eds) Williams hematology, 7th edn. McGraw-Hill, New York Barlogie B, Shaughnessy J, Epstein J et al (2006) Plasma cell myeloma. In: Lichtman MA, Beutler E, Kipps TJ et al (eds) Williams hematology, 7th edn. McGraw-Hill, New York
80.
go back to reference Kuehl WM, Bergsagel PL (2002) Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer 2(3):175–187PubMed Kuehl WM, Bergsagel PL (2002) Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer 2(3):175–187PubMed
81.
go back to reference Anderson KC (2007) Targeted therapy of multiple myeloma based upon tumor-microenvironmental interactions. Exp Hematol 35(4 Suppl 1):155–162PubMed Anderson KC (2007) Targeted therapy of multiple myeloma based upon tumor-microenvironmental interactions. Exp Hematol 35(4 Suppl 1):155–162PubMed
82.
83.
go back to reference Roodman GD (2004) Pathogenesis of myeloma bone disease. Blood Cells Mol Dis 32(2):290–292PubMed Roodman GD (2004) Pathogenesis of myeloma bone disease. Blood Cells Mol Dis 32(2):290–292PubMed
84.
go back to reference Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2(8):584–593PubMed Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2(8):584–593PubMed
85.
go back to reference Ridley RC, Xiao H, Hata H et al (1993) Expression of syndecan regulates human myeloma plasma cell adhesion to type I collagen. Blood 81(3):767–774PubMed Ridley RC, Xiao H, Hata H et al (1993) Expression of syndecan regulates human myeloma plasma cell adhesion to type I collagen. Blood 81(3):767–774PubMed
86.
go back to reference Wijdenes J, Vooijs WC, Clement C et al (1996) A plasmocyte selective monoclonal antibody (B-B4) recognizes syndecan-1. Br J Haematol 94(2):318–323PubMed Wijdenes J, Vooijs WC, Clement C et al (1996) A plasmocyte selective monoclonal antibody (B-B4) recognizes syndecan-1. Br J Haematol 94(2):318–323PubMed
87.
go back to reference Chilosi M, Adami F, Lestani M et al (1999) CD138/syndecan-1: a useful immunohistochemical marker of normal and neoplastic plasma cells on routine trephine bone marrow biopsies. Mod Pathol 12(12):1101–1106PubMed Chilosi M, Adami F, Lestani M et al (1999) CD138/syndecan-1: a useful immunohistochemical marker of normal and neoplastic plasma cells on routine trephine bone marrow biopsies. Mod Pathol 12(12):1101–1106PubMed
88.
go back to reference Bayer-Garner IB, Sanderson RD, Dhodapkar MV et al (2001) Syndecan-1 (CD138) immunoreactivity in bone marrow biopsies of multiple myeloma: shed syndecan-1 accumulates in fibrotic regions. Mod Pathol 14(10):1052–1058PubMed Bayer-Garner IB, Sanderson RD, Dhodapkar MV et al (2001) Syndecan-1 (CD138) immunoreactivity in bone marrow biopsies of multiple myeloma: shed syndecan-1 accumulates in fibrotic regions. Mod Pathol 14(10):1052–1058PubMed
89.
go back to reference Witzig TE, Kimlinger T, Stenson M et al (1998) Syndecan-1 expression on malignant cells from the blood and marrow of patients with plasma cell proliferative disorders and B-cell chronic lymphocytic leukemia. Leuk Lymphoma 31(1–2):167–175PubMed Witzig TE, Kimlinger T, Stenson M et al (1998) Syndecan-1 expression on malignant cells from the blood and marrow of patients with plasma cell proliferative disorders and B-cell chronic lymphocytic leukemia. Leuk Lymphoma 31(1–2):167–175PubMed
90.
go back to reference Sanderson RD, Lalor P, Bernfield M (1989) B lymphocytes express and lose syndecan at specific stages of differentiation. Cell Regul 1(1):27–35PubMed Sanderson RD, Lalor P, Bernfield M (1989) B lymphocytes express and lose syndecan at specific stages of differentiation. Cell Regul 1(1):27–35PubMed
91.
go back to reference Zhan F, Tian E, Bumm K et al (2003) Gene expression profiling of human plasma cell differentiation and classification of multiple myeloma based on similarities to distinct stages of late-stage B-cell development. Blood 101(3):1128–1140PubMed Zhan F, Tian E, Bumm K et al (2003) Gene expression profiling of human plasma cell differentiation and classification of multiple myeloma based on similarities to distinct stages of late-stage B-cell development. Blood 101(3):1128–1140PubMed
92.
go back to reference Tassone P, Goldmacher VS, Neri P et al (2004) Cytotoxic activity of the maytansinoid immunoconjugate B-B4-DM1 against CD138+ multiple myeloma cells. Blood 104(12):3688–3696PubMed Tassone P, Goldmacher VS, Neri P et al (2004) Cytotoxic activity of the maytansinoid immunoconjugate B-B4-DM1 against CD138+ multiple myeloma cells. Blood 104(12):3688–3696PubMed
93.
go back to reference Post J, Vooijs WC, Bast BJ et al (1999) Efficacy of an anti-CD138 immunotoxin and doxorubicin on drug-resistant and drug-sensitive myeloma cells. Int J Cancer 83(4):571–576PubMed Post J, Vooijs WC, Bast BJ et al (1999) Efficacy of an anti-CD138 immunotoxin and doxorubicin on drug-resistant and drug-sensitive myeloma cells. Int J Cancer 83(4):571–576PubMed
94.
go back to reference Ragnarsson L, Stromberg T, Wijdenes J et al (2001) Multiple myeloma cells are killed by syndecan-1-directed superantigen-activated T cells. Cancer Immunol Immunother 50(7):382–390PubMed Ragnarsson L, Stromberg T, Wijdenes J et al (2001) Multiple myeloma cells are killed by syndecan-1-directed superantigen-activated T cells. Cancer Immunol Immunother 50(7):382–390PubMed
95.
go back to reference von Strandmann EP, Hansen HP, Reiners KS et al (2006) A novel bispecific protein (ULBP2-BB4) targeting the NKG2D receptor on natural killer (NK) cells and CD138 activates NK cells and has potent antitumor activity against human multiple myeloma in vitro and in vivo. Blood 107(5):1955–1962 von Strandmann EP, Hansen HP, Reiners KS et al (2006) A novel bispecific protein (ULBP2-BB4) targeting the NKG2D receptor on natural killer (NK) cells and CD138 activates NK cells and has potent antitumor activity against human multiple myeloma in vitro and in vivo. Blood 107(5):1955–1962
96.
go back to reference Dhodapkar KM, Krasovsky J, Williamson B et al (2002) Antitumor monoclonal antibodies enhance cross-presentation of cellular antigens and the generation of myeloma-specific killer T cells by dendritic cells. J Exp Med 195(1):125–133PubMed Dhodapkar KM, Krasovsky J, Williamson B et al (2002) Antitumor monoclonal antibodies enhance cross-presentation of cellular antigens and the generation of myeloma-specific killer T cells by dendritic cells. J Exp Med 195(1):125–133PubMed
97.
go back to reference Zimmermann P, Tomatis D, Rosas M et al (2001) Characterization of syntenin, a syndecan-binding PDZ protein, as a component of cell adhesion sites and microfilaments. Mol Biol Cell 12(2):339–350PubMed Zimmermann P, Tomatis D, Rosas M et al (2001) Characterization of syntenin, a syndecan-binding PDZ protein, as a component of cell adhesion sites and microfilaments. Mol Biol Cell 12(2):339–350PubMed
98.
go back to reference Couchman JR, Chen L, Woods A (2001) Syndecans and cell adhesion. Int Rev Cytol 207:113–150PubMed Couchman JR, Chen L, Woods A (2001) Syndecans and cell adhesion. Int Rev Cytol 207:113–150PubMed
99.
go back to reference Beauvais DM, Burbach BJ, Rapraeger AC (2004) The syndecan-1 ectodomain regulates alpha V beta 3 integrin activity in human mammary carcinoma cells. J Cell Biol 167(1):171–181PubMed Beauvais DM, Burbach BJ, Rapraeger AC (2004) The syndecan-1 ectodomain regulates alpha V beta 3 integrin activity in human mammary carcinoma cells. J Cell Biol 167(1):171–181PubMed
100.
go back to reference McQuade KJ, Beauvais DM, Burbach BJ et al (2006) Syndecan-1 regulates alpha V beta5 integrin activity in B82L fibroblasts. J Cell Sci 119(Pt 12):2445–2456PubMed McQuade KJ, Beauvais DM, Burbach BJ et al (2006) Syndecan-1 regulates alpha V beta5 integrin activity in B82L fibroblasts. J Cell Sci 119(Pt 12):2445–2456PubMed
101.
go back to reference Sanderson RD, Hinkes MT, Bernfield M (1992) Syndecan-1, a cell-surface proteoglycan, changes in size and abundance when keratinocytes stratify. J Invest Dermatol 99(4):390–396PubMed Sanderson RD, Hinkes MT, Bernfield M (1992) Syndecan-1, a cell-surface proteoglycan, changes in size and abundance when keratinocytes stratify. J Invest Dermatol 99(4):390–396PubMed
102.
go back to reference Stanley MJ, Liebersbach BF, Liu W et al (1995) Heparan sulfate-mediated cell aggregation: Syndecans-1 and -4 mediate intercellular adhesion following their transfection into human B lymphoid cells. J Biol Chem 270:5077–5083PubMed Stanley MJ, Liebersbach BF, Liu W et al (1995) Heparan sulfate-mediated cell aggregation: Syndecans-1 and -4 mediate intercellular adhesion following their transfection into human B lymphoid cells. J Biol Chem 270:5077–5083PubMed
103.
go back to reference Subramanian SV, Fitzgerald ML, Bernfield M (1997) Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation. J Biol Chem 272(23):14713–14720PubMed Subramanian SV, Fitzgerald ML, Bernfield M (1997) Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation. J Biol Chem 272(23):14713–14720PubMed
104.
go back to reference Fitzgerald ML, Wang Z, Park PW et al (2000) Shedding of syndecan-1 and -4 ectodomains is regulated by multiple signaling pathways and mediated by a TIMP-3-sensitive metalloproteinase. J Cell Biol 148(4):811–824PubMed Fitzgerald ML, Wang Z, Park PW et al (2000) Shedding of syndecan-1 and -4 ectodomains is regulated by multiple signaling pathways and mediated by a TIMP-3-sensitive metalloproteinase. J Cell Biol 148(4):811–824PubMed
105.
go back to reference Jourdan M, Ferlin M, Legouffe E et al (1998) The myeloma cell antigen syndecan-1 is lost by apoptotic myeloma cells. Br J Haematol 100(4):637–646PubMed Jourdan M, Ferlin M, Legouffe E et al (1998) The myeloma cell antigen syndecan-1 is lost by apoptotic myeloma cells. Br J Haematol 100(4):637–646PubMed
106.
go back to reference Lovell R, Dunn JA, Begum G et al (2005) Soluble syndecan-1 level at diagnosis is an independent prognostic factor in multiple myeloma and the extent of fall from diagnosis to plateau predicts for overall survival. Br J Haematol 130(4):542–548PubMed Lovell R, Dunn JA, Begum G et al (2005) Soluble syndecan-1 level at diagnosis is an independent prognostic factor in multiple myeloma and the extent of fall from diagnosis to plateau predicts for overall survival. Br J Haematol 130(4):542–548PubMed
107.
go back to reference Yang Y, Yaccoby S, Liu W et al (2002) Soluble syndecan-1 promotes growth of myeloma tumors in vivo. Blood 100(2):610–617PubMed Yang Y, Yaccoby S, Liu W et al (2002) Soluble syndecan-1 promotes growth of myeloma tumors in vivo. Blood 100(2):610–617PubMed
108.
go back to reference Andersen NF, Standal T, Nielsen JL et al (2005) Syndecan-1 and angiogenic cytokines in multiple myeloma: correlation with bone marrow angiogenesis and survival. Br J Haematol 128(2):210–217PubMed Andersen NF, Standal T, Nielsen JL et al (2005) Syndecan-1 and angiogenic cytokines in multiple myeloma: correlation with bone marrow angiogenesis and survival. Br J Haematol 128(2):210–217PubMed
109.
go back to reference Su G, Blaine SA, Qiao D et al (2007) Shedding of syndecan-1 by stromal fibroblasts stimulates human breast cancer cell proliferation via FGF2 activation. J Biol Chem 282(20):14906–14915PubMed Su G, Blaine SA, Qiao D et al (2007) Shedding of syndecan-1 by stromal fibroblasts stimulates human breast cancer cell proliferation via FGF2 activation. J Biol Chem 282(20):14906–14915PubMed
110.
go back to reference Maeda T, Desouky J, Friedl A (2006) Syndecan-1 expression by stromal fibroblasts promotes breast carcinoma growth in vivo and stimulates tumor angiogenesis. Oncogene 25(9):1408–1412PubMed Maeda T, Desouky J, Friedl A (2006) Syndecan-1 expression by stromal fibroblasts promotes breast carcinoma growth in vivo and stimulates tumor angiogenesis. Oncogene 25(9):1408–1412PubMed
111.
go back to reference Endo K, Takino T, Miyamori H et al (2003) Cleavage of syndecan-1 by membrane-type matrix metalloproteinase-1 stimulates cell migration. J Biol Chem 278:40764–40770PubMed Endo K, Takino T, Miyamori H et al (2003) Cleavage of syndecan-1 by membrane-type matrix metalloproteinase-1 stimulates cell migration. J Biol Chem 278:40764–40770PubMed
112.
go back to reference Brule S, Charnaux N, Sutton A et al (2006) The shedding of syndecan-4 and syndecan-1 from HeLa cells and human primary macrophages is accelerated by SDF-1/CXCL12 and mediated by the matrix metalloproteinase-9. Glycobiology 16(6):488–501PubMed Brule S, Charnaux N, Sutton A et al (2006) The shedding of syndecan-4 and syndecan-1 from HeLa cells and human primary macrophages is accelerated by SDF-1/CXCL12 and mediated by the matrix metalloproteinase-9. Glycobiology 16(6):488–501PubMed
113.
go back to reference Holen I, Drury NL, Hargreaves PG et al (2001) Evidence of a role for a non-matrix-type metalloproteinase activity in the shedding of syndecan-1 from human myeloma cells. Br J Haematol 114(2):414–421PubMed Holen I, Drury NL, Hargreaves PG et al (2001) Evidence of a role for a non-matrix-type metalloproteinase activity in the shedding of syndecan-1 from human myeloma cells. Br J Haematol 114(2):414–421PubMed
114.
go back to reference Kelly T, Miao HQ, Yang Y et al (2003) High heparanase activity in multiple myeloma is associated with elevated microvessel density. Cancer Res 63(24):8749–8756PubMed Kelly T, Miao HQ, Yang Y et al (2003) High heparanase activity in multiple myeloma is associated with elevated microvessel density. Cancer Res 63(24):8749–8756PubMed
115.
go back to reference Yang Y, Macleod V, Bendre M et al (2005) Heparanase promotes the spontaneous metastasis of myeloma cells to bone. Blood 105(3):1303–1309PubMed Yang Y, Macleod V, Bendre M et al (2005) Heparanase promotes the spontaneous metastasis of myeloma cells to bone. Blood 105(3):1303–1309PubMed
116.
go back to reference Kelly T, Suva LJ, Huang Y et al (2005) Expression of heparanase by primary breast tumors promotes bone resorption in the absence of detectable bone metastases. Cancer Res 65(13):5778–5784PubMed Kelly T, Suva LJ, Huang Y et al (2005) Expression of heparanase by primary breast tumors promotes bone resorption in the absence of detectable bone metastases. Cancer Res 65(13):5778–5784PubMed
117.
go back to reference Yang Y, Macleod V, Miao HQ et al (2007) Heparanase enhances syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis. J Biol Chem 282(18):13326–13333PubMed Yang Y, Macleod V, Miao HQ et al (2007) Heparanase enhances syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis. J Biol Chem 282(18):13326–13333PubMed
118.
go back to reference Mahtouk K, Hose D, Raynaud P et al (2007) Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma. Blood 109(11):4914–4923PubMed Mahtouk K, Hose D, Raynaud P et al (2007) Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma. Blood 109(11):4914–4923PubMed
119.
go back to reference Roodman GD (2002) Role of the bone marrow microenvironment in multiple myeloma. J Bone Miner Res 17(11):1921–1925PubMed Roodman GD (2002) Role of the bone marrow microenvironment in multiple myeloma. J Bone Miner Res 17(11):1921–1925PubMed
120.
go back to reference Anderson KC, Dalton WS (2002) Synopsis of a research roundtable presented on cell signaling in myeloma: regulation of growth and apoptosis–opportunities for new drug discovery. Mol Cancer Ther 1(14):1361–1365PubMed Anderson KC, Dalton WS (2002) Synopsis of a research roundtable presented on cell signaling in myeloma: regulation of growth and apoptosis–opportunities for new drug discovery. Mol Cancer Ther 1(14):1361–1365PubMed
121.
go back to reference Zhan F, Hardin J, Kordsmeier B et al (2002) Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 99(5):1745–1757PubMed Zhan F, Hardin J, Kordsmeier B et al (2002) Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 99(5):1745–1757PubMed
122.
go back to reference Tarte K, Zhan F, De Vos J et al (2003) Gene expression profiling of plasma cells and plasmablasts: toward a better understanding of the late stages of B-cell differentiation. Blood 102(2):592–600PubMed Tarte K, Zhan F, De Vos J et al (2003) Gene expression profiling of plasma cells and plasmablasts: toward a better understanding of the late stages of B-cell differentiation. Blood 102(2):592–600PubMed
123.
go back to reference Derksen PW, Keehnen RM, Evers LM et al (2002) Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma. Blood 99(4):1405–1410PubMed Derksen PW, Keehnen RM, Evers LM et al (2002) Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma. Blood 99(4):1405–1410PubMed
124.
go back to reference Seidel C, Borset M, Hjertner O et al (2000) High levels of soluble syndecan-1 in myeloma-derived bone marrow: modulation of hepatocyte growth factor activity. Blood 96(9):3139–3146PubMed Seidel C, Borset M, Hjertner O et al (2000) High levels of soluble syndecan-1 in myeloma-derived bone marrow: modulation of hepatocyte growth factor activity. Blood 96(9):3139–3146PubMed
125.
go back to reference Standal T, Seidel C, Hjertner O et al (2002) Osteoprotegerin is bound, internalized, and degraded by multiple myeloma cells. Blood 100(8):3002–3007PubMed Standal T, Seidel C, Hjertner O et al (2002) Osteoprotegerin is bound, internalized, and degraded by multiple myeloma cells. Blood 100(8):3002–3007PubMed
126.
go back to reference Lacey DL, Timms E, Tan HL et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2):165–176PubMed Lacey DL, Timms E, Tan HL et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2):165–176PubMed
127.
go back to reference Zhan F, Huang Y, Colla S et al (2006) The molecular classification of multiple myeloma. Blood 108(6):2020–2028PubMed Zhan F, Huang Y, Colla S et al (2006) The molecular classification of multiple myeloma. Blood 108(6):2020–2028PubMed
128.
go back to reference Yang Y, MacLeod V, Dai Y et al (2007) The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood 110(6):2041–2048PubMed Yang Y, MacLeod V, Dai Y et al (2007) The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood 110(6):2041–2048PubMed
129.
go back to reference Naggi A, Casu B, Perez M et al (2005) Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. J Biol Chem 280(13):12103–12113PubMed Naggi A, Casu B, Perez M et al (2005) Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. J Biol Chem 280(13):12103–12113PubMed
Metadata
Title
Syndecan-1: a dynamic regulator of the myeloma microenvironment
Authors
Ralph D. Sanderson
Yang Yang
Publication date
01-04-2008
Publisher
Springer Netherlands
Published in
Clinical & Experimental Metastasis / Issue 2/2008
Print ISSN: 0262-0898
Electronic ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-007-9125-3

Other articles of this Issue 2/2008

Clinical & Experimental Metastasis 2/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine