Skip to main content
Top
Published in: The International Journal of Cardiovascular Imaging 2/2016

01-02-2016 | Original Paper

3D-Dixon MRI based volumetry of peri- and epicardial fat

Authors: Rami Homsi, Michael Meier-Schroers, Jürgen Gieseke, Darius Dabir, Julian A. Luetkens, Daniel L. Kuetting, Claas P. Naehle, Christian Marx, Hans H. Schild, Daniel K. Thomas, Alois M. Sprinkart

Published in: The International Journal of Cardiovascular Imaging | Issue 2/2016

Login to get access

Abstract

There is growing evidence that pericardial and epicardial fat volume (PFV, EFV) are associated with cardiovascular risk. We evaluated a novel method for accurate measurement of PFV and EFV using a 3D-Dixon based cardiac magnetic resonance (CMR) approach. An electrocardiography triggered and respiratory navigator gated 3D-gradient echo pulse sequence was used for cardiac Dixon imaging. Based on this sequence, voxels predominantly containing fat were identified and added up for volumetry. After accuracy assessment in phantoms, consisting of muscle tissue and seven different fat samples (50–200 ml), the sequence was acquired in 34 healthy volunteers (22 male, BMI range 14–42 kg/m2, age range 21–79 years) at 1.5 T. Analysis was performed independently by two readers who draw two 3D-regions of interest, one for EFV and one for PFV. Additionally, EFV and PFV were compared between overweighted and non-overweighted subjects. The phantom study showed an excellent agreement of measured and true fat volumes (maximum difference = 6 %, linear correlation coefficient R = 1.00). PFV over all volunteers was 158.0 ± 126.4 ml and EFV was 77.0 ± 55.3 ml. PFV and EFV were highly correlated (R = 0.96). Inter-reader agreement was good with a mean difference of 0.2 ± 5.6 and 4.5 ± 4.2 ml for PFV/EFV, (R > 0.99, each). EFV and PFV differed significantly between subjects with BMI > 25 kg/m2 and BMI < 25 kg/m2, n = 17 each (PFV 219.0 ± 151.8 vs. 96.9 ± 44.7 ml and EFV 102.3 ± 66.3 vs. 51.7 ± 23.6 ml, p < 0.001, each). The proposed 3D-Dixon based method allows accurate measurement of cardiac fat volumes. It provides a valuable tool for cardiovascular risk stratification by CMR.
Literature
1.
go back to reference World Health Organization (2013) Cardiovascular diseases. World Health Organization, Switzerland, Fact Sheet 317 World Health Organization (2013) Cardiovascular diseases. World Health Organization, Switzerland, Fact Sheet 317
2.
go back to reference Dey D, Nakazato R, Li D, Berman DS (2012) Epicardial and thoracic fat—noninvasive measurement and clinical implications. Cardiovasc Diagn Ther 2(2):85–93PubMedCentralPubMed Dey D, Nakazato R, Li D, Berman DS (2012) Epicardial and thoracic fat—noninvasive measurement and clinical implications. Cardiovasc Diagn Ther 2(2):85–93PubMedCentralPubMed
3.
4.
go back to reference Iacobellis G, Corradi D, Sharma AM (2005) Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med 2(10):536–543CrossRefPubMed Iacobellis G, Corradi D, Sharma AM (2005) Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med 2(10):536–543CrossRefPubMed
5.
go back to reference Iacobellis G, Pistilli D, Gucciardo M et al (2005) Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with coronary artery disease. Cytokine 29(6):251–255PubMed Iacobellis G, Pistilli D, Gucciardo M et al (2005) Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with coronary artery disease. Cytokine 29(6):251–255PubMed
6.
go back to reference Yong HS, Kim EJ, Seo HS et al (2010) Pericardial fat is more abundant in patients with coronary atherosclerosis and even in the non-obese patients: evaluation with cardiac CT angiography. Int J Cardiovasc Imaging 26(Suppl 1):53–62CrossRefPubMed Yong HS, Kim EJ, Seo HS et al (2010) Pericardial fat is more abundant in patients with coronary atherosclerosis and even in the non-obese patients: evaluation with cardiac CT angiography. Int J Cardiovasc Imaging 26(Suppl 1):53–62CrossRefPubMed
8.
go back to reference Eggers H, Brendel B, Duijndam A, Herigault G (2011) Dual-echo Dixon imaging with flexible choice of echo times. Magn Reson Med 65(1):96–107CrossRefPubMed Eggers H, Brendel B, Duijndam A, Herigault G (2011) Dual-echo Dixon imaging with flexible choice of echo times. Magn Reson Med 65(1):96–107CrossRefPubMed
9.
go back to reference Yu H, Reeder SB, Shimakawa A, Brittain JH, Pelc NJ (2005) Field map estimation with a region growing scheme for iterative 3-point water-fat decomposition. Magn Reson Med 54(4):1032–1039CrossRefPubMed Yu H, Reeder SB, Shimakawa A, Brittain JH, Pelc NJ (2005) Field map estimation with a region growing scheme for iterative 3-point water-fat decomposition. Magn Reson Med 54(4):1032–1039CrossRefPubMed
10.
go back to reference Bornert P, Koken P, Nehrke K, Eggers H, Ostendorf P (2014) Water/fat-resolved whole-heart Dixon coronary MRA: an initial comparison. Magn Reson Med 71(1):156–163CrossRefPubMed Bornert P, Koken P, Nehrke K, Eggers H, Ostendorf P (2014) Water/fat-resolved whole-heart Dixon coronary MRA: an initial comparison. Magn Reson Med 71(1):156–163CrossRefPubMed
11.
go back to reference McConnell MV, Khasgiwala VC, Savord BJ et al (1997) Prospective adaptive navigator correction for breath-hold MR coronary angiography. Magn Reson Med 37(1):148–152CrossRefPubMed McConnell MV, Khasgiwala VC, Savord BJ et al (1997) Prospective adaptive navigator correction for breath-hold MR coronary angiography. Magn Reson Med 37(1):148–152CrossRefPubMed
12.
go back to reference Liu CY, Redheuil A, Ouwerkerk R, Lima JA, Bluemke DA (2010) Myocardial fat quantification in humans: evaluation by two-point water-fat imaging and localized proton spectroscopy. Magn Reson Med 63(4):892–901PubMedCentralCrossRefPubMed Liu CY, Redheuil A, Ouwerkerk R, Lima JA, Bluemke DA (2010) Myocardial fat quantification in humans: evaluation by two-point water-fat imaging and localized proton spectroscopy. Magn Reson Med 63(4):892–901PubMedCentralCrossRefPubMed
13.
go back to reference Brennan DD, Whelan PF, Robinson K et al (2005) Rapid automated measurement of body fat distribution from whole-body MRI. AJR Am J Roentgenol 185(2):418–423CrossRefPubMed Brennan DD, Whelan PF, Robinson K et al (2005) Rapid automated measurement of body fat distribution from whole-body MRI. AJR Am J Roentgenol 185(2):418–423CrossRefPubMed
14.
go back to reference DuBois D, DuBois EF (1916) Clinical calorimetry: tenth paper: A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med (Chic) XVII(6_2):863–871 DuBois D, DuBois EF (1916) Clinical calorimetry: tenth paper: A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med (Chic) XVII(6_2):863–871
15.
go back to reference Iacobellis G, Willens HJ, Barbaro G, Sharma AM (2008) Threshold values of high-risk echocardiographic epicardial fat thickness. Obesity (Silver Spring) 16(4):887–892CrossRef Iacobellis G, Willens HJ, Barbaro G, Sharma AM (2008) Threshold values of high-risk echocardiographic epicardial fat thickness. Obesity (Silver Spring) 16(4):887–892CrossRef
16.
go back to reference Jeong JW, Jeong MH, Yun KH et al (2007) Echocardiographic epicardial fat thickness and coronary artery disease. Circ J 71(4):536–539CrossRefPubMed Jeong JW, Jeong MH, Yun KH et al (2007) Echocardiographic epicardial fat thickness and coronary artery disease. Circ J 71(4):536–539CrossRefPubMed
17.
go back to reference Nyman K, Graner M, Pentikainen MO et al (2013) Cardiac steatosis and left ventricular function in men with metabolic syndrome. J Cardiovasc Magn Reson 15:103PubMedCentralCrossRefPubMed Nyman K, Graner M, Pentikainen MO et al (2013) Cardiac steatosis and left ventricular function in men with metabolic syndrome. J Cardiovasc Magn Reson 15:103PubMedCentralCrossRefPubMed
18.
go back to reference Graner M, Siren R, Nyman K et al (2013) Cardiac steatosis associates with visceral obesity in nondiabetic obese men. J Clin Endocrinol Metab 98(3):1189–1197CrossRefPubMed Graner M, Siren R, Nyman K et al (2013) Cardiac steatosis associates with visceral obesity in nondiabetic obese men. J Clin Endocrinol Metab 98(3):1189–1197CrossRefPubMed
19.
go back to reference Mazurek T, Zhang L, Zalewski A et al (2003) Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108(20):2460–2466CrossRefPubMed Mazurek T, Zhang L, Zalewski A et al (2003) Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108(20):2460–2466CrossRefPubMed
20.
go back to reference Rosito GA, Massaro JM, Hoffmann U et al (2008) Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham heart study. Circulation 117(5):605–613CrossRefPubMed Rosito GA, Massaro JM, Hoffmann U et al (2008) Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham heart study. Circulation 117(5):605–613CrossRefPubMed
21.
go back to reference Kukuk GM, Hittatiya K, Sprinkart AM et al (2015) Comparison between modified Dixon MRI techniques, MR spectroscopic relaxometry, and different histologic quantification methods in the assessment of hepatic steatosis. Eur Radiol 25(10):2869–2879CrossRefPubMed Kukuk GM, Hittatiya K, Sprinkart AM et al (2015) Comparison between modified Dixon MRI techniques, MR spectroscopic relaxometry, and different histologic quantification methods in the assessment of hepatic steatosis. Eur Radiol 25(10):2869–2879CrossRefPubMed
22.
go back to reference Corradi D, Maestri R, Callegari S et al (2004) The ventricular epicardial fat is related to the myocardial mass in normal, ischemic and hypertrophic hearts. Cardiovasc Pathol 13(6):313–316CrossRefPubMed Corradi D, Maestri R, Callegari S et al (2004) The ventricular epicardial fat is related to the myocardial mass in normal, ischemic and hypertrophic hearts. Cardiovasc Pathol 13(6):313–316CrossRefPubMed
23.
go back to reference Marchington JM, Pond CM (1990) Site-specific properties of pericardial and epicardial adipose tissue: the effects of insulin and high-fat feeding on lipogenesis and the incorporation of fatty acids in vitro. Int J Obes 14(12):1013–1022PubMed Marchington JM, Pond CM (1990) Site-specific properties of pericardial and epicardial adipose tissue: the effects of insulin and high-fat feeding on lipogenesis and the incorporation of fatty acids in vitro. Int J Obes 14(12):1013–1022PubMed
24.
go back to reference Talman AH, Psaltis PJ, Cameron JD, Meredith IT, Seneviratne SK, Wong DT (2014) Epicardial adipose tissue: far more than a fat depot. Cardiovasc Diagn Ther 4(6):416–429PubMedCentralPubMed Talman AH, Psaltis PJ, Cameron JD, Meredith IT, Seneviratne SK, Wong DT (2014) Epicardial adipose tissue: far more than a fat depot. Cardiovasc Diagn Ther 4(6):416–429PubMedCentralPubMed
25.
go back to reference Marchington JM, Mattacks CA, Pond CM (1989) Adipose tissue in the mammalian heart and pericardium: structure, foetal development and biochemical properties. Comp Biochem Physiol B Comp Biochem 94(2):225–232CrossRef Marchington JM, Mattacks CA, Pond CM (1989) Adipose tissue in the mammalian heart and pericardium: structure, foetal development and biochemical properties. Comp Biochem Physiol B Comp Biochem 94(2):225–232CrossRef
26.
go back to reference Fluchter S, Haghi D, Dinter D et al (2007) Volumetric assessment of epicardial adipose tissue with cardiovascular magnetic resonance imaging. Obesity (Silver Spring) 15(4):870–878CrossRef Fluchter S, Haghi D, Dinter D et al (2007) Volumetric assessment of epicardial adipose tissue with cardiovascular magnetic resonance imaging. Obesity (Silver Spring) 15(4):870–878CrossRef
27.
go back to reference Hua N, Chen Z, Phinikaridou A et al (2014) The influence of pericardial fat upon left ventricular function in obese females: evidence of a site-specific effect. J Cardiovasc Magn Reson 16:37PubMedCentralCrossRefPubMed Hua N, Chen Z, Phinikaridou A et al (2014) The influence of pericardial fat upon left ventricular function in obese females: evidence of a site-specific effect. J Cardiovasc Magn Reson 16:37PubMedCentralCrossRefPubMed
28.
go back to reference Elming MB, Lonborg J, Rasmussen T et al (2013) Measurements of pericardial adipose tissue using contrast enhanced cardiac multidetector computed tomography–comparison with cardiac magnetic resonance imaging. Int J Cardiovasc Imaging 29(6):1401–1407CrossRefPubMed Elming MB, Lonborg J, Rasmussen T et al (2013) Measurements of pericardial adipose tissue using contrast enhanced cardiac multidetector computed tomography–comparison with cardiac magnetic resonance imaging. Int J Cardiovasc Imaging 29(6):1401–1407CrossRefPubMed
29.
go back to reference Dey D, Suzuki Y, Suzuki S et al (2008) Automated quantitation of pericardiac fat from noncontrast CT. Invest Radiol 43(2):145–153CrossRefPubMed Dey D, Suzuki Y, Suzuki S et al (2008) Automated quantitation of pericardiac fat from noncontrast CT. Invest Radiol 43(2):145–153CrossRefPubMed
30.
go back to reference Yoshizumi T, Nakamura T, Yamane M et al (1999) Abdominal fat: standardized technique for measurement at CT. Radiology 211(1):283–286CrossRefPubMed Yoshizumi T, Nakamura T, Yamane M et al (1999) Abdominal fat: standardized technique for measurement at CT. Radiology 211(1):283–286CrossRefPubMed
31.
go back to reference Gorter PM, de Vos AM, van der Graaf Y et al (2008) Relation of epicardial and pericoronary fat to coronary atherosclerosis and coronary artery calcium in patients undergoing coronary angiography. Am J Cardiol 102(4):380–385CrossRefPubMed Gorter PM, de Vos AM, van der Graaf Y et al (2008) Relation of epicardial and pericoronary fat to coronary atherosclerosis and coronary artery calcium in patients undergoing coronary angiography. Am J Cardiol 102(4):380–385CrossRefPubMed
32.
go back to reference Nakazato R, Shmilovich H, Tamarappoo BK et al (2011) Interscan reproducibility of computer-aided epicardial and thoracic fat measurement from noncontrast cardiac CT. J Cardiovasc Comput Tomogr 5(3):172–179PubMedCentralCrossRefPubMed Nakazato R, Shmilovich H, Tamarappoo BK et al (2011) Interscan reproducibility of computer-aided epicardial and thoracic fat measurement from noncontrast cardiac CT. J Cardiovasc Comput Tomogr 5(3):172–179PubMedCentralCrossRefPubMed
33.
go back to reference Iacobellis G, Assael F, Ribaudo MC et al (2003) Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes Res 11(2):304–310CrossRefPubMed Iacobellis G, Assael F, Ribaudo MC et al (2003) Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes Res 11(2):304–310CrossRefPubMed
34.
go back to reference Ahn SG, Lim HS, Joe DY et al (2008) Relationship of epicardial adipose tissue by echocardiography to coronary artery disease. Heart 94(3):e7CrossRefPubMed Ahn SG, Lim HS, Joe DY et al (2008) Relationship of epicardial adipose tissue by echocardiography to coronary artery disease. Heart 94(3):e7CrossRefPubMed
35.
go back to reference Mookadam F, Goel R, Alharthi MS, Jiamsripong P, Cha S (2010) Epicardial fat and its association with cardiovascular risk: a cross-sectional observational study. Heart Views 11(3):103–108PubMedCentralCrossRefPubMed Mookadam F, Goel R, Alharthi MS, Jiamsripong P, Cha S (2010) Epicardial fat and its association with cardiovascular risk: a cross-sectional observational study. Heart Views 11(3):103–108PubMedCentralCrossRefPubMed
36.
go back to reference Iacobellis G, Willens HJ (2009) Echocardiographic epicardial fat: a review of research and clinical applications. J Am Soc Echocardiogr 22(12):1311–1319; quiz 1417–1318 Iacobellis G, Willens HJ (2009) Echocardiographic epicardial fat: a review of research and clinical applications. J Am Soc Echocardiogr 22(12):1311–1319; quiz 1417–1318
37.
go back to reference Ding J, Hsu FC, Harris TB et al (2009) The association of pericardial fat with incident coronary heart disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 90(3):499–504PubMedCentralCrossRefPubMed Ding J, Hsu FC, Harris TB et al (2009) The association of pericardial fat with incident coronary heart disease: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 90(3):499–504PubMedCentralCrossRefPubMed
38.
go back to reference Silaghi A, Piercecchi-Marti MD, Grino M et al (2008) Epicardial adipose tissue extent: relationship with age, body fat distribution, and coronaropathy. Obesity (Silver Spring) 16(11):2424–2430CrossRef Silaghi A, Piercecchi-Marti MD, Grino M et al (2008) Epicardial adipose tissue extent: relationship with age, body fat distribution, and coronaropathy. Obesity (Silver Spring) 16(11):2424–2430CrossRef
39.
go back to reference Perissinotto E, Pisent C, Sergi G, Grigoletto F (2002) Anthropometric measurements in the elderly: age and gender differences. Br J Nutr 87(2):177–186CrossRefPubMed Perissinotto E, Pisent C, Sergi G, Grigoletto F (2002) Anthropometric measurements in the elderly: age and gender differences. Br J Nutr 87(2):177–186CrossRefPubMed
Metadata
Title
3D-Dixon MRI based volumetry of peri- and epicardial fat
Authors
Rami Homsi
Michael Meier-Schroers
Jürgen Gieseke
Darius Dabir
Julian A. Luetkens
Daniel L. Kuetting
Claas P. Naehle
Christian Marx
Hans H. Schild
Daniel K. Thomas
Alois M. Sprinkart
Publication date
01-02-2016
Publisher
Springer Netherlands
Published in
The International Journal of Cardiovascular Imaging / Issue 2/2016
Print ISSN: 1569-5794
Electronic ISSN: 1875-8312
DOI
https://doi.org/10.1007/s10554-015-0778-8

Other articles of this Issue 2/2016

The International Journal of Cardiovascular Imaging 2/2016 Go to the issue