Skip to main content
Top
Published in: The International Journal of Cardiovascular Imaging 2/2011

Open Access 01-02-2011 | Original Paper

Fusion of 3D QCA and IVUS/OCT

Authors: Shengxian Tu, Niels R. Holm, Gerhard Koning, Zheng Huang, Johan H. C. Reiber

Published in: The International Journal of Cardiovascular Imaging | Issue 2/2011

Login to get access

Abstract

The combination/fusion of quantitative coronary angiography (QCA) and intravascular ultrasound (IVUS)/optical coherence tomography (OCT) depends to a great extend on the co-registration of X-ray angiography (XA) and IVUS/OCT. In this work a new and robust three-dimensional (3D) segmentation and registration approach is presented and validated. The approach starts with standard QCA of the vessel of interest in the two angiographic views (either biplane or two monoplane views). Next, the vessel of interest is reconstructed in 3D and registered with the corresponding IVUS/OCT pullback series by a distance mapping algorithm. The accuracy of the registration was retrospectively evaluated on 12 silicone phantoms with coronary stents implanted, and on 24 patients who underwent both coronary angiography and IVUS examinations of the left anterior descending artery. Stent borders or sidebranches were used as markers for the validation. While the most proximal marker was set as the baseline position for the distance mapping algorithm, the subsequent markers were used to evaluate the registration error. The correlation between the registration error and the distance from the evaluated marker to the baseline position was analyzed. The XA-IVUS registration error for the 12 phantoms was 0.03 ± 0.32 mm (P = 0.75). One OCT pullback series was excluded from the phantom study, since it did not cover the distal stent border. The XA-OCT registration error for the remaining 11 phantoms was 0.05 ± 0.25 mm (P = 0.49). For the in vivo validation, two patients were excluded due to insufficient image quality for the analysis. In total 78 sidebranches were identified from the remaining 22 patients and the registration error was evaluated on 56 markers. The registration error was 0.03 ± 0.45 mm (P = 0.67). The error was not correlated to the distance between the evaluated marker and the baseline position (P = 0.73). In conclusion, the new XA-IVUS/OCT co-registration approach is a straightforward and reliable solution to combine X-ray angiography and IVUS/OCT imaging for the assessment of the extent of coronary artery disease. It provides the interventional cardiologist with detailed information about vessel size and plaque size at every position along the vessel of interest, making this a suitable tool during the actual intervention.
Literature
1.
go back to reference Reiber JHC, Serruys PW, Kooijman CJ et al (1985) Assessment of short-, medium-, and long-term variations in arterial dimensions from computer-assisted quantitation of coronary cineangiograms. Circulation 71:280–288PubMed Reiber JHC, Serruys PW, Kooijman CJ et al (1985) Assessment of short-, medium-, and long-term variations in arterial dimensions from computer-assisted quantitation of coronary cineangiograms. Circulation 71:280–288PubMed
2.
go back to reference Reiber JHC, Tuinenburg JC, Koning G et al (2009) Chapter 2.2: quantitative coronary arteriography. In: Oudkerk M, Reiser MF (eds) Coronary radiology, medical radiology, 2nd revised edn, Springer, Berlin, pp 41–65 Reiber JHC, Tuinenburg JC, Koning G et al (2009) Chapter 2.2: quantitative coronary arteriography. In: Oudkerk M, Reiser MF (eds) Coronary radiology, medical radiology, 2nd revised edn, Springer, Berlin, pp 41–65
3.
go back to reference Goktekin O, Kaplan S, Dimopoulos K et al (2007) A new quantitative analysis system for the evaluation of coronary bifurcation lesions: comparison with current conventional methods. Catheter Cardiovasc Interv 69:172–180PubMedCrossRef Goktekin O, Kaplan S, Dimopoulos K et al (2007) A new quantitative analysis system for the evaluation of coronary bifurcation lesions: comparison with current conventional methods. Catheter Cardiovasc Interv 69:172–180PubMedCrossRef
4.
go back to reference Rittger H, Schertel B, Schmidt M et al (2009) Three-dimensional reconstruction allows accurate quantification and length measurements of coronary artery stenoses. EuroIntervention 5:127–132PubMedCrossRef Rittger H, Schertel B, Schmidt M et al (2009) Three-dimensional reconstruction allows accurate quantification and length measurements of coronary artery stenoses. EuroIntervention 5:127–132PubMedCrossRef
5.
go back to reference Tu S, Huang Z, Koning G et al (2010) A novel three-dimensional quantitative coronary angiography system: in vivo comparison with intravascular ultrasound for assessing arterial segment length. Catheter Cardiovasc Interv 76:291–298PubMedCrossRef Tu S, Huang Z, Koning G et al (2010) A novel three-dimensional quantitative coronary angiography system: in vivo comparison with intravascular ultrasound for assessing arterial segment length. Catheter Cardiovasc Interv 76:291–298PubMedCrossRef
6.
go back to reference Bruining N, Tanimoto S, Otsuka M et al (2008) Quantitative multi-modality imaging analysis of a bioabsorbable poly-L-lactid acid stent design in the acute phase: a comparison between 2 and 3D-QCA, QCU and QMSCT-CA. EuroIntervention 4:285–291PubMedCrossRef Bruining N, Tanimoto S, Otsuka M et al (2008) Quantitative multi-modality imaging analysis of a bioabsorbable poly-L-lactid acid stent design in the acute phase: a comparison between 2 and 3D-QCA, QCU and QMSCT-CA. EuroIntervention 4:285–291PubMedCrossRef
7.
go back to reference Schuurbiers JC, Lopez NG, Ligthart J et al (2009) In vivo validation of CAAS QCA-3D coronary reconstruction using fusion of angiography and intravascular ultrasound (ANGUS). Catheter Cardiovasc Interv 73:620–626PubMedCrossRef Schuurbiers JC, Lopez NG, Ligthart J et al (2009) In vivo validation of CAAS QCA-3D coronary reconstruction using fusion of angiography and intravascular ultrasound (ANGUS). Catheter Cardiovasc Interv 73:620–626PubMedCrossRef
8.
go back to reference Tu S, Koning G, Jukema W et al (2010) Assessment of obstruction length and optimal viewing angle from biplane X-ray angiograms. Int J Cardiovasc Imaging 26:5–17PubMedCrossRef Tu S, Koning G, Jukema W et al (2010) Assessment of obstruction length and optimal viewing angle from biplane X-ray angiograms. Int J Cardiovasc Imaging 26:5–17PubMedCrossRef
9.
go back to reference Green NE, Chen SJ, Hansgen AR et al (2005) Angiographic views used for percutaneous coronary interventions: a three dimensional analysis of physician-determined vs computer-generated views. Catheter Cardiovasc Interv 64:451–459PubMedCrossRef Green NE, Chen SJ, Hansgen AR et al (2005) Angiographic views used for percutaneous coronary interventions: a three dimensional analysis of physician-determined vs computer-generated views. Catheter Cardiovasc Interv 64:451–459PubMedCrossRef
10.
go back to reference Sadamatsu K, Sagara S, Yamawaki T et al (2009) Three-dimensional coronary imaging for the ostium of the left anterior descending artery. Int J Cardiovasc Imaging 25:223–228PubMedCrossRef Sadamatsu K, Sagara S, Yamawaki T et al (2009) Three-dimensional coronary imaging for the ostium of the left anterior descending artery. Int J Cardiovasc Imaging 25:223–228PubMedCrossRef
11.
go back to reference Gollapudi RR, Valencia R, Lee SS et al (2007) Utility of three-dimensional reconstruction of coronary angiography to guide percutaneous coronary intervention. Catheter Cardiovasc Interv 69:479–482PubMedCrossRef Gollapudi RR, Valencia R, Lee SS et al (2007) Utility of three-dimensional reconstruction of coronary angiography to guide percutaneous coronary intervention. Catheter Cardiovasc Interv 69:479–482PubMedCrossRef
12.
go back to reference Glagov S, Weisenberg E, Zarins CK et al (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375PubMedCrossRef Glagov S, Weisenberg E, Zarins CK et al (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375PubMedCrossRef
13.
go back to reference Dumay ACM (1992) Image reconstruction from biplane angiographic projections. Dissertation, Delft University of Technology Dumay ACM (1992) Image reconstruction from biplane angiographic projections. Dissertation, Delft University of Technology
14.
go back to reference Wahle A, Wellnhofer E, Mugaragu I et al (1995) Assessment of diffuse coronary artery disease by quantitative analysis of coronary morphology based upon 3-D reconstruction from biplane angiograms. IEEE Trans Med Imaging 14:230–241PubMedCrossRef Wahle A, Wellnhofer E, Mugaragu I et al (1995) Assessment of diffuse coronary artery disease by quantitative analysis of coronary morphology based upon 3-D reconstruction from biplane angiograms. IEEE Trans Med Imaging 14:230–241PubMedCrossRef
15.
go back to reference Chen SJ, Carroll JD, Messenger JC (2002) Quantitative Analysis of Reconstructed 3-D Coronary Arterial Tree and Intracoronary Devices. IEEE Trans Med Imaging 21:724–740PubMedCrossRef Chen SJ, Carroll JD, Messenger JC (2002) Quantitative Analysis of Reconstructed 3-D Coronary Arterial Tree and Intracoronary Devices. IEEE Trans Med Imaging 21:724–740PubMedCrossRef
16.
go back to reference Janssen JP, Koning G, De Koning PJH et al (2005) A new approach to contour detection in X-ray arteriograms: the wavecontour. Invest Radiol 40:514–520PubMedCrossRef Janssen JP, Koning G, De Koning PJH et al (2005) A new approach to contour detection in X-ray arteriograms: the wavecontour. Invest Radiol 40:514–520PubMedCrossRef
17.
go back to reference Reiber JHC, van der Zwet PM, Koning G et al (1993) Accuracy and precision of quantitative digital coronary arteriography: observer-, short-, and medium-term variabilities. Cathet Cardiovasc Diagn 28:187–198PubMed Reiber JHC, van der Zwet PM, Koning G et al (1993) Accuracy and precision of quantitative digital coronary arteriography: observer-, short-, and medium-term variabilities. Cathet Cardiovasc Diagn 28:187–198PubMed
18.
go back to reference Slager CJ, Wentzel JJ, Schuurbiers JCH et al (2000) True 3-Dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation. Circulation 102:511–516PubMed Slager CJ, Wentzel JJ, Schuurbiers JCH et al (2000) True 3-Dimensional reconstruction of coronary arteries in patients by fusion of angiography and IVUS (ANGUS) and its quantitative validation. Circulation 102:511–516PubMed
19.
go back to reference Wahle A, Lopez JJ, Olszewski ME et al (2006) Plaque development, vessel curvature, and wall shear stress in coronary arteries assessed by X-ray angiography and intravascular ultrasound. Med Image Anal 10:615–631PubMedCrossRef Wahle A, Lopez JJ, Olszewski ME et al (2006) Plaque development, vessel curvature, and wall shear stress in coronary arteries assessed by X-ray angiography and intravascular ultrasound. Med Image Anal 10:615–631PubMedCrossRef
20.
go back to reference Rotger D, Radeva P, Canero C et al (2001) Corresponding IVUS and angiogram image data. Proc Comput Cardiol 28:273–276 Rotger D, Radeva P, Canero C et al (2001) Corresponding IVUS and angiogram image data. Proc Comput Cardiol 28:273–276
21.
go back to reference Tu S, Koning G, Tuinenburg JC et al (2009) Coronary angiography enhancement for visualization. Int J Cardiovasc Imaging 25:657–667PubMedCrossRef Tu S, Koning G, Tuinenburg JC et al (2009) Coronary angiography enhancement for visualization. Int J Cardiovasc Imaging 25:657–667PubMedCrossRef
22.
go back to reference Moses JW, Leon MB, Popma JJ et al (2003) Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med 349:1315–1323PubMedCrossRef Moses JW, Leon MB, Popma JJ et al (2003) Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med 349:1315–1323PubMedCrossRef
23.
go back to reference Stone GW, Ellis SG, Cox DA et al (2004) A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med 350:221–231PubMedCrossRef Stone GW, Ellis SG, Cox DA et al (2004) A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med 350:221–231PubMedCrossRef
24.
go back to reference Stone GW, Moses JW, Ellis SG et al (2007) Safety and efficacy of sirolimus- and paclitaxel-eluting coronary stents. N Engl J Med 356:998–1008PubMedCrossRef Stone GW, Moses JW, Ellis SG et al (2007) Safety and efficacy of sirolimus- and paclitaxel-eluting coronary stents. N Engl J Med 356:998–1008PubMedCrossRef
25.
go back to reference Fujii K, Carlier SG, Mintz GS et al (2005) Stent underexpansion and residual reference segment stenosis are related to stent thrombosis after sirolimus-eluting stent implantation: an intravascular ultrasound study. J Am Coll Cardiol 45:995–998PubMedCrossRef Fujii K, Carlier SG, Mintz GS et al (2005) Stent underexpansion and residual reference segment stenosis are related to stent thrombosis after sirolimus-eluting stent implantation: an intravascular ultrasound study. J Am Coll Cardiol 45:995–998PubMedCrossRef
26.
go back to reference Costa MA, Angiolillo DJ, Tannenbaum M et al (2008) Impact of stent deployment procedural factors on long-term effectiveness and safety of sirolimus-eluting stents (final results of the multicenter prospective STLLR trial). Am J Cardiol 101:1704–1711PubMedCrossRef Costa MA, Angiolillo DJ, Tannenbaum M et al (2008) Impact of stent deployment procedural factors on long-term effectiveness and safety of sirolimus-eluting stents (final results of the multicenter prospective STLLR trial). Am J Cardiol 101:1704–1711PubMedCrossRef
27.
go back to reference Brown BG, Bolson E, Frimer M et al (1977) Quantitative coronary angiography: estimation of dimensions, hemodynamic resistance, and atheroma mass of coronary artery lesions using arteriography in 256 nonoperated patients. Circulation 55:329–337PubMed Brown BG, Bolson E, Frimer M et al (1977) Quantitative coronary angiography: estimation of dimensions, hemodynamic resistance, and atheroma mass of coronary artery lesions using arteriography in 256 nonoperated patients. Circulation 55:329–337PubMed
28.
go back to reference Koning G, Hekking E, Kemppainen JS et al (2001) Suitability of the Cordis StabilizerTM marker guide wire for quantitative coronary angiography calibration: an in vitro and in vivo study. Catheter Cardiovasc Interv 52:334–341PubMedCrossRef Koning G, Hekking E, Kemppainen JS et al (2001) Suitability of the Cordis StabilizerTM marker guide wire for quantitative coronary angiography calibration: an in vitro and in vivo study. Catheter Cardiovasc Interv 52:334–341PubMedCrossRef
29.
go back to reference Sawada T, Shite J, Negi N et al (2009) Factors that influence measurements and accurate evaluation of stent apposition by optical coherence tomography. Assessment using a phantom model. Circ J 73:1841–1847PubMedCrossRef Sawada T, Shite J, Negi N et al (2009) Factors that influence measurements and accurate evaluation of stent apposition by optical coherence tomography. Assessment using a phantom model. Circ J 73:1841–1847PubMedCrossRef
30.
go back to reference Geselschap JH, Heilbron MJ, Hussain FM et al (1998) The effect of angulation on intravascular ultrasound imaging observed in vascular phantoms. J Endovasc Surg 5:126–133PubMedCrossRef Geselschap JH, Heilbron MJ, Hussain FM et al (1998) The effect of angulation on intravascular ultrasound imaging observed in vascular phantoms. J Endovasc Surg 5:126–133PubMedCrossRef
31.
go back to reference Bruining N, von Birgelen C, de Feyter PJ et al (1998) ECG-gated versus nongated three-dimensional intracoronary untrasound analysis: implications for volumetric measurements. Cathe Cardiovasc Diagn 43:254–260CrossRef Bruining N, von Birgelen C, de Feyter PJ et al (1998) ECG-gated versus nongated three-dimensional intracoronary untrasound analysis: implications for volumetric measurements. Cathe Cardiovasc Diagn 43:254–260CrossRef
32.
go back to reference Tanaka K, Carlier SG, Mintz GS et al (2007) The accuracy of length measurements using different intravascular ultrasound motorized transducer pullback systems. Int J Cardiovasc Imaging 23:733–738PubMedCrossRef Tanaka K, Carlier SG, Mintz GS et al (2007) The accuracy of length measurements using different intravascular ultrasound motorized transducer pullback systems. Int J Cardiovasc Imaging 23:733–738PubMedCrossRef
Metadata
Title
Fusion of 3D QCA and IVUS/OCT
Authors
Shengxian Tu
Niels R. Holm
Gerhard Koning
Zheng Huang
Johan H. C. Reiber
Publication date
01-02-2011
Publisher
Springer Netherlands
Published in
The International Journal of Cardiovascular Imaging / Issue 2/2011
Print ISSN: 1569-5794
Electronic ISSN: 1875-8312
DOI
https://doi.org/10.1007/s10554-011-9809-2

Other articles of this Issue 2/2011

The International Journal of Cardiovascular Imaging 2/2011 Go to the issue

Editorial

OCT section