Skip to main content
Top
Published in: The International Journal of Cardiovascular Imaging 7/2011

Open Access 01-10-2011 | Original Paper

Contrast-enhanced whole-heart coronary MRA at 3.0T for the evaluation of cardiac venous anatomy

Authors: Heng Ma, Qing Tang, Qi Yang, Xiaoming Bi, Han Li, Lan Ge, Kai Lin, Dong Xu, Xiangying Du, Jie Lu, Jing An, Lixin Jin, Renate Jerecic, Kuncheng Li, Debiao Li

Published in: The International Journal of Cardiovascular Imaging | Issue 7/2011

Login to get access

Abstract

This study was designed to evaluate the value of contrast-enhanced whole-heart coronary MRA (CMRA) at 3.0T in depicting the cardiac venous anatomy. In cardiac resynchronization therapy (CRT), left ventricular (LV) pacing is achieved by positioning the LV lead in one of the tributaries of the coronary sinus (CS). Pre-implantation knowledge of the venous anatomy may help determine whether transvenous LV lead placement for CRT is feasible. Images of 51 subjects undergoing contrast-enhanced whole-heart CMRA at 3.0T were retrospectively analyzed. Data acquisition was performed using electrocardiography-triggered, navigator-gated, inversion-recovery prepared, segmented gradient-echo sequence. A 32-element cardiac coil was used for data acquisition. The visibility of the cardiac veins was graded visually using a 4-point scale (1: poor–4: excellent). The paired Student t test was used to evaluate differences in diameters of the ostium of the CS in anteroposterior and superoinferior direction. The cardiac veins were finally evaluated in 48 subjects with three anatomic variations. The diameter of the CS ostium in the superoinferior direction (1.13 ± 0.26 cm) was larger than in the anteroposterior direction (0.82 ± 0.19 cm) (P < 0.05). The mean visibility score of CS, posterior interventricular vein, posterior vein of the left ventricle, left marginal vein, and anterior interventricular vein was 4.0 ± 0.0, 3.4 ± 0.5, 3.4 ± 0.5, 3.0 ± 0.8, and 3.3 ± 0.5, respectively. In conclusion, contrast-enhanced whole-heart CMRA at 3.0T can depict the normal and variant cardiac venous anatomy.
Literature
1.
go back to reference Kadish A, Mehra M (2005) Heart failure devices: implantable cardioverter-defibrillators and biventricular pacing therapy. Circulation 111:3327–3335PubMedCrossRef Kadish A, Mehra M (2005) Heart failure devices: implantable cardioverter-defibrillators and biventricular pacing therapy. Circulation 111:3327–3335PubMedCrossRef
2.
go back to reference Knackstedt C, Mühlenbruch G, Mischke K, Schimpf T, Spüntrup E, Günther RW, Sanli B, Kelm M, Schauerte P, Mahnken AH (2008) Imaging of the coronary venous system in patients with congestive heart failure: comparison of 16 slice MSCT and retrograde coronary sinus venography: comparative imaging of coronary venous system. Int J Cardiovasc Imaging 24:783–791PubMedCrossRef Knackstedt C, Mühlenbruch G, Mischke K, Schimpf T, Spüntrup E, Günther RW, Sanli B, Kelm M, Schauerte P, Mahnken AH (2008) Imaging of the coronary venous system in patients with congestive heart failure: comparison of 16 slice MSCT and retrograde coronary sinus venography: comparative imaging of coronary venous system. Int J Cardiovasc Imaging 24:783–791PubMedCrossRef
3.
go back to reference Mlynarski R, Sosnowski M, Wlodyka A, Chromik K, Kargul W, Tendera M (2009) Optimal image reconstruction intervals for noninvasive visualization of the cardiac venous system with a 64-slice computed tomography. Int J Cardiovasc Imaging 25:635–641PubMedCrossRef Mlynarski R, Sosnowski M, Wlodyka A, Chromik K, Kargul W, Tendera M (2009) Optimal image reconstruction intervals for noninvasive visualization of the cardiac venous system with a 64-slice computed tomography. Int J Cardiovasc Imaging 25:635–641PubMedCrossRef
4.
go back to reference Jongbloed MR, Lamb HJ, Bax JJ, Schuijf JD, de Roos A, van der Wall EE, Schalij MJ (2005) Noninvasive visualization of the cardiac venous system using multislice computed tomography. J Am Coll Cardiol 45:749–753PubMedCrossRef Jongbloed MR, Lamb HJ, Bax JJ, Schuijf JD, de Roos A, van der Wall EE, Schalij MJ (2005) Noninvasive visualization of the cardiac venous system using multislice computed tomography. J Am Coll Cardiol 45:749–753PubMedCrossRef
5.
go back to reference Van de Veire NR, Schuijf JD, De Sutter J, Devos D, Bleeker GB, de Roos A, van der Wall EE, Schalij MJ, Bax JJ (2006) Non-invasive visualization of the cardiac venous system in coronary artery disease patients using 64-slice computed tomography. J Am Coll Cardiol 48:1832–1838PubMedCrossRef Van de Veire NR, Schuijf JD, De Sutter J, Devos D, Bleeker GB, de Roos A, van der Wall EE, Schalij MJ, Bax JJ (2006) Non-invasive visualization of the cardiac venous system in coronary artery disease patients using 64-slice computed tomography. J Am Coll Cardiol 48:1832–1838PubMedCrossRef
6.
go back to reference Younger JF, Plein S, Crean A, Ball SG, Greenwood JP (2009) Visualization of coronary venous anatomy by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 11:26PubMedCrossRef Younger JF, Plein S, Crean A, Ball SG, Greenwood JP (2009) Visualization of coronary venous anatomy by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 11:26PubMedCrossRef
7.
go back to reference Nezafat R, Han Y, Peters DC, Herzka DA, Wylie JV, Goddu B, Kissinger KK, Yeon SB, Zimetbaum PJ, Manning WJ (2007) Coronary magnetic resonance vein imaging: imaging contrast, sequence, and timing. Magn Reson Med 58:1196–1206PubMedCrossRef Nezafat R, Han Y, Peters DC, Herzka DA, Wylie JV, Goddu B, Kissinger KK, Yeon SB, Zimetbaum PJ, Manning WJ (2007) Coronary magnetic resonance vein imaging: imaging contrast, sequence, and timing. Magn Reson Med 58:1196–1206PubMedCrossRef
8.
go back to reference Rasche V, Binner L, Cavagna F, Hombach V, Kunze M, Spiess J, Stuber M, Merkle N (2007) Whole-heart coronary vein imaging: a comparison between non-contrast-agent- and contrast-agent-enhanced visualization of the coronary venous system. Magn Reson Med 57:1019–1026PubMedCrossRef Rasche V, Binner L, Cavagna F, Hombach V, Kunze M, Spiess J, Stuber M, Merkle N (2007) Whole-heart coronary vein imaging: a comparison between non-contrast-agent- and contrast-agent-enhanced visualization of the coronary venous system. Magn Reson Med 57:1019–1026PubMedCrossRef
9.
go back to reference Chiribiri A, Kelle S, Götze S, Kriatselis C, Thouet T, Tangcharoen T, Paetsch I, Schnackenburg B, Fleck E, Nagel E (2008) Visualization of the cardiac venous system using cardiac magnetic resonance. Am J Cardiol 101:407–412PubMedCrossRef Chiribiri A, Kelle S, Götze S, Kriatselis C, Thouet T, Tangcharoen T, Paetsch I, Schnackenburg B, Fleck E, Nagel E (2008) Visualization of the cardiac venous system using cardiac magnetic resonance. Am J Cardiol 101:407–412PubMedCrossRef
10.
go back to reference Stoeck CT, Han Y, Peters DC, Hu P, Yeon SB, Kissinger KV, Goddu B, Goepfert L, Manning WJ, Kozerke S, Nezafat R (2009) Whole heart magnetization-prepared steady-state free precession coronary vein MRI. J Magn Reson Imaging 29:1293–1299PubMedCrossRef Stoeck CT, Han Y, Peters DC, Hu P, Yeon SB, Kissinger KV, Goddu B, Goepfert L, Manning WJ, Kozerke S, Nezafat R (2009) Whole heart magnetization-prepared steady-state free precession coronary vein MRI. J Magn Reson Imaging 29:1293–1299PubMedCrossRef
11.
go back to reference Bi X, Carr JC, Li D (2007) Whole-heart coronary magnetic resonance angiography at 3 Tesla in 5 minutes with slow infusion of Gd-BOPTA, a high-relaxivity clinical contrast agent. Magn Reson Med 58:1–7PubMedCrossRef Bi X, Carr JC, Li D (2007) Whole-heart coronary magnetic resonance angiography at 3 Tesla in 5 minutes with slow infusion of Gd-BOPTA, a high-relaxivity clinical contrast agent. Magn Reson Med 58:1–7PubMedCrossRef
12.
go back to reference Liu X, Bi X, Huang J, Jerecic R, Carr J, Li D (2008) Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0 T: comparison with steady-state free precession technique at 1.5 T. Invest Radiol 43:663–668PubMedCrossRef Liu X, Bi X, Huang J, Jerecic R, Carr J, Li D (2008) Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0 T: comparison with steady-state free precession technique at 1.5 T. Invest Radiol 43:663–668PubMedCrossRef
13.
go back to reference Yang Q, Li K, Liu X, Bi X, Liu Z, An J, Zhang A, Jerecic R, Li D (2009) Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0-T: a comparative study with X-ray angiography in a single center. J Am Coll Cardiol 54:69–76PubMedCrossRef Yang Q, Li K, Liu X, Bi X, Liu Z, An J, Zhang A, Jerecic R, Li D (2009) Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0-T: a comparative study with X-ray angiography in a single center. J Am Coll Cardiol 54:69–76PubMedCrossRef
14.
go back to reference Wijetunga M, Cuoco F, Ravi ND, Fuisz A, Strickberger SA (2006) Characterization of the coronary sinus ostium by cardiac magnetic resonance imaging. Am J Cardiol 98:1400–1402PubMedCrossRef Wijetunga M, Cuoco F, Ravi ND, Fuisz A, Strickberger SA (2006) Characterization of the coronary sinus ostium by cardiac magnetic resonance imaging. Am J Cardiol 98:1400–1402PubMedCrossRef
15.
go back to reference Sakuma H, Ichikawa Y, Chino S, Hirano T, Makino K, Takeda K (2006) Detection of coronary artery stenosis with whole-heart coronary magnetic resonance angiography. J Am Coll Cardiol 48:1946–1950PubMedCrossRef Sakuma H, Ichikawa Y, Chino S, Hirano T, Makino K, Takeda K (2006) Detection of coronary artery stenosis with whole-heart coronary magnetic resonance angiography. J Am Coll Cardiol 48:1946–1950PubMedCrossRef
16.
go back to reference Yang PC, Nguyen P, Shimakawa A, Brittain J, Pauly J, Nishimura D, Hu B, McConnell M (2004) Spiral magnetic resonance coronary angiography–direct comparison of 1.5 Tesla vs. 3 Tesla. J Cardiovasc Magn Reson 6:877–884PubMedCrossRef Yang PC, Nguyen P, Shimakawa A, Brittain J, Pauly J, Nishimura D, Hu B, McConnell M (2004) Spiral magnetic resonance coronary angiography–direct comparison of 1.5 Tesla vs. 3 Tesla. J Cardiovasc Magn Reson 6:877–884PubMedCrossRef
17.
go back to reference Sommer T, Hackenbroch M, Hofer U, Schmiedel A, Willinek WA, Flacke S, Gieseke J, Träber F, Fimmers R, Litt H, Schild H (2005) Coronary MR angiography at 3.0 T versus that at 1.5 T: initial results in patients suspected of having coronary artery disease. Radiology 234:718–725PubMedCrossRef Sommer T, Hackenbroch M, Hofer U, Schmiedel A, Willinek WA, Flacke S, Gieseke J, Träber F, Fimmers R, Litt H, Schild H (2005) Coronary MR angiography at 3.0 T versus that at 1.5 T: initial results in patients suspected of having coronary artery disease. Radiology 234:718–725PubMedCrossRef
18.
go back to reference Bi X, Deshpande V, Simonetti O, Laub G, Li D (2005) Three-dimensional breathhold SSFP coronary MRA: a comparison between 1.5T and 3.0T. J Magn Reson Imaging 22:206–212PubMedCrossRef Bi X, Deshpande V, Simonetti O, Laub G, Li D (2005) Three-dimensional breathhold SSFP coronary MRA: a comparison between 1.5T and 3.0T. J Magn Reson Imaging 22:206–212PubMedCrossRef
19.
go back to reference Stuber M, Botnar RM, Fischer SE, Lamerichs R, Smink J, Harvey P, Manning WJ (2002) Preliminary report on in vivo coronary MRA at 3 Tesla in humans. Magn Reson Med 48:425–429PubMedCrossRef Stuber M, Botnar RM, Fischer SE, Lamerichs R, Smink J, Harvey P, Manning WJ (2002) Preliminary report on in vivo coronary MRA at 3 Tesla in humans. Magn Reson Med 48:425–429PubMedCrossRef
20.
go back to reference Nehrke K, Börnert P, Mazurkewitz P, Winkelmann R, Grässlin I (2006) Free-breathing whole-heart coronary MR angiography on a clinical scanner in four minutes. J Magn Reson Imaging 23:752–756PubMedCrossRef Nehrke K, Börnert P, Mazurkewitz P, Winkelmann R, Grässlin I (2006) Free-breathing whole-heart coronary MR angiography on a clinical scanner in four minutes. J Magn Reson Imaging 23:752–756PubMedCrossRef
21.
go back to reference Niendorf T, Hardy CJ, Giaquinto RO, Gross P, Cline HE, Zhu Y, Kenwood G, Cohen S, Grant AK, Joshi S, Rofsky NM, Sodickson DK (2006) Toward single breath-hold whole-heart coverage coronary MRA using highly accelerated parallel imaging with a 32-channel MR system. Magn Reson Med 56:167–176PubMedCrossRef Niendorf T, Hardy CJ, Giaquinto RO, Gross P, Cline HE, Zhu Y, Kenwood G, Cohen S, Grant AK, Joshi S, Rofsky NM, Sodickson DK (2006) Toward single breath-hold whole-heart coverage coronary MRA using highly accelerated parallel imaging with a 32-channel MR system. Magn Reson Med 56:167–176PubMedCrossRef
22.
go back to reference Niendorf T, Sodickson DK (2008) Highly accelerated cardiovascular MR imaging using many channel technology: concepts and clinical applications. Eur Radiol 18:87–102PubMedCrossRef Niendorf T, Sodickson DK (2008) Highly accelerated cardiovascular MR imaging using many channel technology: concepts and clinical applications. Eur Radiol 18:87–102PubMedCrossRef
23.
go back to reference Meisel E, Pfeiffer D, Engelmann L, Tebbenjohanns J, Schubert B, Hahn S, Fleck E, Butter C (2001) Investigation of coronary venous anatomy by retrograde venography in patients with malignant ventricular tachycardia. Circulation 104:442–447PubMedCrossRef Meisel E, Pfeiffer D, Engelmann L, Tebbenjohanns J, Schubert B, Hahn S, Fleck E, Butter C (2001) Investigation of coronary venous anatomy by retrograde venography in patients with malignant ventricular tachycardia. Circulation 104:442–447PubMedCrossRef
Metadata
Title
Contrast-enhanced whole-heart coronary MRA at 3.0T for the evaluation of cardiac venous anatomy
Authors
Heng Ma
Qing Tang
Qi Yang
Xiaoming Bi
Han Li
Lan Ge
Kai Lin
Dong Xu
Xiangying Du
Jie Lu
Jing An
Lixin Jin
Renate Jerecic
Kuncheng Li
Debiao Li
Publication date
01-10-2011
Publisher
Springer Netherlands
Published in
The International Journal of Cardiovascular Imaging / Issue 7/2011
Print ISSN: 1569-5794
Electronic ISSN: 1875-8312
DOI
https://doi.org/10.1007/s10554-010-9757-2

Other articles of this Issue 7/2011

The International Journal of Cardiovascular Imaging 7/2011 Go to the issue