Skip to main content
Top
Published in: The International Journal of Cardiovascular Imaging 6/2011

01-07-2011 | Original Paper

Characterization of carotid artery plaques with USPIO-enhanced MRI: assessment of inflammation and vascularity as in vivo imaging biomarkers for plaque vulnerability

Authors: Stephan Metz, Ambros J. Beer, Marcus Settles, Jaroslav Pelisek, René M. Botnar, Ernst J. Rummeny, Peter Heider

Published in: The International Journal of Cardiovascular Imaging | Issue 6/2011

Login to get access

Abstract

To evaluate ultra small superparamagnetic iron oxide particles (USPIO) enhanced magnetic resonance (MR) imaging for characterization of atherosclerotic carotid plaques by assessing vascularity and plaque inflammation, besides contrast-enhanced MR angiography (CE-MRA) of the carotid artery stenosis. Twelve patients with severe carotid artery stenosis, scheduled for endarterectomy, underwent MRI of the carotid artery bifurcation using SHU 555 C at a dose of 40 μmol Fe/kg BW. The MR imaging protocol comprised pre- and post-contrast T2*-w, a first-pass CE-MRA and dynamic T1-w sequences. For quantitative data analysis, the signal intensities (SI) were measured and SNR-data (SNR = SIblood/plaque/bone marrow/standard deviationnoise) as well as ΔSI-data (SNRpost–SNRpre) were calculated. In addition, two radiologists rated the diagnostic performance of first-pass MRA according to a four level decision scale. Staining of anti-dextran (SHU 555 C) and anti-CD68 (macrophages) was performed for immunohistological confirmation. Plaque sections with a T2*-w signal decline (intracellular USPIO accumulation in macrophages) showed significantly changes (mean −14%, 95% CI, −5 to −20%; P < 0.01) and corresponding plaque regions had significantly higher (15.15 ± 1.76 vs. 5.22 ± 1.50; P < 0.01) T1-w enhancement data (global estimation of vascularity). The first-pass MRA of the supra-aortal vessels provided images of diagnostic quality. Representative immunohistology sections revealed colocalization of dextran- and CD68-immunoreactive cells. USPIO-enhanced MRI is feasible for in vivo assessment of vascularity and macrophage content in atherosclerotic carotid plaques, determining an association of these potential imaging biomarkers of plaque vulnerability. Diagnostic MRA of the supra-aortal vessels can be imaged additionally with a single administration of SHU 555 C.
Literature
1.
go back to reference Nederkoorn PJ, van der Graaf Y, Hunink MG (2003) Duplex ultrasound and magnetic resonance angiography compared with digital subtraction angiography in carotid artery stenosis: a systematic review. Stroke 34:1324–1332PubMedCrossRef Nederkoorn PJ, van der Graaf Y, Hunink MG (2003) Duplex ultrasound and magnetic resonance angiography compared with digital subtraction angiography in carotid artery stenosis: a systematic review. Stroke 34:1324–1332PubMedCrossRef
2.
go back to reference Naghavi M, Libby P, Falk E et al (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation 108:1772–1778PubMedCrossRef Naghavi M, Libby P, Falk E et al (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation 108:1772–1778PubMedCrossRef
3.
go back to reference Naghavi M, Libby P, Falk E et al (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 108:1664–1672PubMedCrossRef Naghavi M, Libby P, Falk E et al (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 108:1664–1672PubMedCrossRef
4.
go back to reference McCarthy MJ, Loftus IM, Thompson MM et al (1999) Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology. J Vasc Surg 30:261–268PubMedCrossRef McCarthy MJ, Loftus IM, Thompson MM et al (1999) Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology. J Vasc Surg 30:261–268PubMedCrossRef
5.
go back to reference Jain RK, Finn AV, Kolodgie FD et al (2007) Antiangiogenic therapy for normalization of atherosclerotic plaque vasculature: a potential strategy for plaque stabilization. Nat Clin Pract Cardiovasc Med 4:491–502PubMedCrossRef Jain RK, Finn AV, Kolodgie FD et al (2007) Antiangiogenic therapy for normalization of atherosclerotic plaque vasculature: a potential strategy for plaque stabilization. Nat Clin Pract Cardiovasc Med 4:491–502PubMedCrossRef
7.
go back to reference Daldrup-Link HE, Simon GH, Brasch RC (2006) Imaging of tumor angiogenesis: current approaches and future prospects. Curr Pharm Des 12:2661–2672PubMedCrossRef Daldrup-Link HE, Simon GH, Brasch RC (2006) Imaging of tumor angiogenesis: current approaches and future prospects. Curr Pharm Des 12:2661–2672PubMedCrossRef
8.
go back to reference Jeswani T, Padhani AR (2005) Imaging tumour angiogenesis. Cancer Imag 5:131–138CrossRef Jeswani T, Padhani AR (2005) Imaging tumour angiogenesis. Cancer Imag 5:131–138CrossRef
9.
go back to reference Kerwin WS, O’Brien KD, Ferguson MS et al (2006) Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology 241:459–468PubMedCrossRef Kerwin WS, O’Brien KD, Ferguson MS et al (2006) Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study. Radiology 241:459–468PubMedCrossRef
10.
go back to reference Wasserman BA, Casal SG, Astor BC et al (2005) Wash-in kinetics for gadolinium-enhanced magnetic resonance imaging of carotid atheroma. J Magn Reson Imag 21:91–95CrossRef Wasserman BA, Casal SG, Astor BC et al (2005) Wash-in kinetics for gadolinium-enhanced magnetic resonance imaging of carotid atheroma. J Magn Reson Imag 21:91–95CrossRef
11.
go back to reference Kooi ME, Cappendijk VC, Cleutjens KB et al (2003) Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107:2453–2458PubMedCrossRef Kooi ME, Cappendijk VC, Cleutjens KB et al (2003) Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107:2453–2458PubMedCrossRef
12.
go back to reference Corot C, Petry KG, Trivedi R et al (2004) Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Invest Radiol 39:619–625PubMedCrossRef Corot C, Petry KG, Trivedi R et al (2004) Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Invest Radiol 39:619–625PubMedCrossRef
13.
go back to reference Trivedi RA JMUK-I, Graves MJ et al (2004) In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI. Stroke 35:1631–1635PubMedCrossRef Trivedi RA JMUK-I, Graves MJ et al (2004) In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI. Stroke 35:1631–1635PubMedCrossRef
14.
go back to reference Frank H, Weissleder R, Brady TJ (1994) Enhancement of MR angiography with iron oxide: preliminary studies in whole-blood phantom and in animals. AJR Am J Roentgenol 162:209–213PubMed Frank H, Weissleder R, Brady TJ (1994) Enhancement of MR angiography with iron oxide: preliminary studies in whole-blood phantom and in animals. AJR Am J Roentgenol 162:209–213PubMed
15.
go back to reference Stillman AE, Wilke N, Li D et al (1996) Ultrasmall superparamagnetic iron oxide to enhance MRA of the renal and coronary arteries: studies in human patients. J Comput Assist Tomogr 20:51–55PubMedCrossRef Stillman AE, Wilke N, Li D et al (1996) Ultrasmall superparamagnetic iron oxide to enhance MRA of the renal and coronary arteries: studies in human patients. J Comput Assist Tomogr 20:51–55PubMedCrossRef
16.
go back to reference Brasch R, Pham C, Shames D et al (1997) Assessing tumor angiogenesis using macromolecular MR imaging contrast media. J Magn Reson Imag 7:68–74CrossRef Brasch R, Pham C, Shames D et al (1997) Assessing tumor angiogenesis using macromolecular MR imaging contrast media. J Magn Reson Imag 7:68–74CrossRef
17.
go back to reference Parmelee DJ, Walovitch RC, Ouellet HS et al (1997) Preclinical evaluation of the pharmacokinetics, biodistribution, and elimination of MS-325, a blood pool agent for magnetic resonance imaging. Invest Radiol 32:741–747PubMedCrossRef Parmelee DJ, Walovitch RC, Ouellet HS et al (1997) Preclinical evaluation of the pharmacokinetics, biodistribution, and elimination of MS-325, a blood pool agent for magnetic resonance imaging. Invest Radiol 32:741–747PubMedCrossRef
18.
go back to reference Weissleder R, Elizondo G, Wittenberg J et al (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175:489–493PubMed Weissleder R, Elizondo G, Wittenberg J et al (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175:489–493PubMed
19.
go back to reference Frericks BB, Wacker F, Loddenkemper C et al (2009) Magnetic resonance imaging of experimental inflammatory bowel disease: quantitative and qualitative analyses with histopathologic correlation in a rat model using the ultrasmall iron oxide SHU 555 C. Invest Radiol 44:23–30PubMedCrossRef Frericks BB, Wacker F, Loddenkemper C et al (2009) Magnetic resonance imaging of experimental inflammatory bowel disease: quantitative and qualitative analyses with histopathologic correlation in a rat model using the ultrasmall iron oxide SHU 555 C. Invest Radiol 44:23–30PubMedCrossRef
20.
go back to reference Turetschek K, Preda A, Novikov V et al (2004) Tumor microvascular changes in antiangiogenic treatment: assessment by magnetic resonance contrast media of different molecular weights. J Magn Reson Imag 20:138–144CrossRef Turetschek K, Preda A, Novikov V et al (2004) Tumor microvascular changes in antiangiogenic treatment: assessment by magnetic resonance contrast media of different molecular weights. J Magn Reson Imag 20:138–144CrossRef
21.
go back to reference Metz S, Lohr S, Settles M et al (2006) Ferumoxtran-10-enhanced MR imaging of the bone marrow before and after conditioning therapy in patients with non-Hodgkin lymphomas. Eur Radiol 16:598–607PubMedCrossRef Metz S, Lohr S, Settles M et al (2006) Ferumoxtran-10-enhanced MR imaging of the bone marrow before and after conditioning therapy in patients with non-Hodgkin lymphomas. Eur Radiol 16:598–607PubMedCrossRef
22.
go back to reference Chambon C, Clement O, Le Blanche A et al (1993) Superparamagnetic iron oxides as positive MR contrast agents: in vitro and in vivo evidence. Magn Reson Imag 11:509–519CrossRef Chambon C, Clement O, Le Blanche A et al (1993) Superparamagnetic iron oxides as positive MR contrast agents: in vitro and in vivo evidence. Magn Reson Imag 11:509–519CrossRef
23.
go back to reference Guimaraes R, Clement O, Bittoun J et al (1994) MR lymphography with superparamagnetic iron nanoparticles in rats: pathologic basis for contrast enhancement. AJR Am J Roentgenol 162:201–207PubMed Guimaraes R, Clement O, Bittoun J et al (1994) MR lymphography with superparamagnetic iron nanoparticles in rats: pathologic basis for contrast enhancement. AJR Am J Roentgenol 162:201–207PubMed
24.
go back to reference Vassallo P, Matei C, Heston WD et al (1994) AMI-227-enhanced MR lymphography: usefulness for differentiating reactive from tumor-bearing lymph nodes. Radiology 193:501–506PubMed Vassallo P, Matei C, Heston WD et al (1994) AMI-227-enhanced MR lymphography: usefulness for differentiating reactive from tumor-bearing lymph nodes. Radiology 193:501–506PubMed
25.
go back to reference Daldrup-Link HE, Rummeny EJ, Ihssen B et al (2002) Iron-oxide-enhanced MR imaging of bone marrow in patients with non-Hodgkin’s lymphoma: differentiation between tumor infiltration and hypercellular bone marrow. Eur Radiol 12:1557–1566PubMedCrossRef Daldrup-Link HE, Rummeny EJ, Ihssen B et al (2002) Iron-oxide-enhanced MR imaging of bone marrow in patients with non-Hodgkin’s lymphoma: differentiation between tumor infiltration and hypercellular bone marrow. Eur Radiol 12:1557–1566PubMedCrossRef
26.
go back to reference Hamm B, Staks T, Taupitz M et al (1994) Contrast-enhanced MR imaging of liver and spleen: first experience in humans with a new superparamagnetic iron oxide. J Magn Reson Imag 4:659–668CrossRef Hamm B, Staks T, Taupitz M et al (1994) Contrast-enhanced MR imaging of liver and spleen: first experience in humans with a new superparamagnetic iron oxide. J Magn Reson Imag 4:659–668CrossRef
27.
go back to reference Reimer P, Rummeny EJ, Daldrup HE et al (1995) Clinical results with Resovist: a phase 2 clinical trial. Radiology 195:489–496PubMed Reimer P, Rummeny EJ, Daldrup HE et al (1995) Clinical results with Resovist: a phase 2 clinical trial. Radiology 195:489–496PubMed
28.
go back to reference Weitschies W, Rheinländer T, Ebert W et al. (1998) Verfahren und Vorrichtung zur Abtrennung magnetischer Materialien aus pharmazeutischen Zubereitungen, deren Ausgangs- oder Zwischenprodukten sowie mit Hilfe dieser Vorrichtung hergestellte Mittel. German Patent Application DE 196 32 4165 Weitschies W, Rheinländer T, Ebert W et al. (1998) Verfahren und Vorrichtung zur Abtrennung magnetischer Materialien aus pharmazeutischen Zubereitungen, deren Ausgangs- oder Zwischenprodukten sowie mit Hilfe dieser Vorrichtung hergestellte Mittel. German Patent Application DE 196 32 4165
29.
go back to reference Clarke SE, Weinmann HJ, Dai E et al (2000) Comparison of two blood pool contrast agents for 0.5-T MR angiography: experimental study in rabbits. Radiology 214:787–794PubMed Clarke SE, Weinmann HJ, Dai E et al (2000) Comparison of two blood pool contrast agents for 0.5-T MR angiography: experimental study in rabbits. Radiology 214:787–794PubMed
30.
go back to reference Bremerich J, Bilecen D, Reimer P (2007) MR angiography with blood pool contrast agents. Eur Radiol 17:3017–3024PubMedCrossRef Bremerich J, Bilecen D, Reimer P (2007) MR angiography with blood pool contrast agents. Eur Radiol 17:3017–3024PubMedCrossRef
31.
go back to reference Kopp AF, Laniado M, Dammann F et al (1997) MR imaging of the liver with Resovist: safety, efficacy, and pharmacodynamic properties. Radiology 204:749–756PubMed Kopp AF, Laniado M, Dammann F et al (1997) MR imaging of the liver with Resovist: safety, efficacy, and pharmacodynamic properties. Radiology 204:749–756PubMed
32.
go back to reference Tombach B, Reimer P, Bremer C et al (2004) First-pass and equilibrium-MRA of the aortoiliac region with a superparamagnetic iron oxide blood pool MR contrast agent (SH U 555 C): results of a human pilot study. NMR Biomed 17:500–506PubMedCrossRef Tombach B, Reimer P, Bremer C et al (2004) First-pass and equilibrium-MRA of the aortoiliac region with a superparamagnetic iron oxide blood pool MR contrast agent (SH U 555 C): results of a human pilot study. NMR Biomed 17:500–506PubMedCrossRef
33.
go back to reference Seneterre E, Weissleder R, Jaramillo D et al (1991) Bone marrow: ultrasmall superparamagnetic iron oxide for MR imaging. Radiology 179:529–533PubMed Seneterre E, Weissleder R, Jaramillo D et al (1991) Bone marrow: ultrasmall superparamagnetic iron oxide for MR imaging. Radiology 179:529–533PubMed
34.
go back to reference Neuwelt EA, Hamilton BE, Varallyay CG et al (2009) Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int 75:465–474PubMedCrossRef Neuwelt EA, Hamilton BE, Varallyay CG et al (2009) Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int 75:465–474PubMedCrossRef
35.
go back to reference Saam T, Hatsukami TS, Takaya N et al (2007) The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment. Radiology 244:64–77PubMedCrossRef Saam T, Hatsukami TS, Takaya N et al (2007) The vulnerable, or high-risk, atherosclerotic plaque: noninvasive MR imaging for characterization and assessment. Radiology 244:64–77PubMedCrossRef
36.
go back to reference Barrett T, Kobayashi H, Brechbiel M et al (2006) Macromolecular MRI contrast agents for imaging tumor angiogenesis. Eur J Radiol 60:353–366PubMedCrossRef Barrett T, Kobayashi H, Brechbiel M et al (2006) Macromolecular MRI contrast agents for imaging tumor angiogenesis. Eur J Radiol 60:353–366PubMedCrossRef
37.
go back to reference Calcagno C, Cornily JC, Hyafil F et al (2008) Detection of neovessels in atherosclerotic plaques of rabbits using dynamic contrast enhanced MRI and 18F-FDG PET. Arterioscler Thromb Vasc Biol 28:1311–1317PubMedCrossRef Calcagno C, Cornily JC, Hyafil F et al (2008) Detection of neovessels in atherosclerotic plaques of rabbits using dynamic contrast enhanced MRI and 18F-FDG PET. Arterioscler Thromb Vasc Biol 28:1311–1317PubMedCrossRef
38.
go back to reference Howarth SP, Tang TY, Trivedi R et al (2009) Utility of USPIO-enhanced MR imaging to identify inflammation and the fibrous cap: a comparison of symptomatic and asymptomatic individuals. Eur J Radiol 70:555–560PubMedCrossRef Howarth SP, Tang TY, Trivedi R et al (2009) Utility of USPIO-enhanced MR imaging to identify inflammation and the fibrous cap: a comparison of symptomatic and asymptomatic individuals. Eur J Radiol 70:555–560PubMedCrossRef
39.
go back to reference Tang TY, Patterson AJ, Miller SR et al (2009) Temporal dependence of in vivo USPIO-enhanced MRI signal changes in human carotid atheromatous plaques. Neuroradiology 51:457–465PubMedCrossRef Tang TY, Patterson AJ, Miller SR et al (2009) Temporal dependence of in vivo USPIO-enhanced MRI signal changes in human carotid atheromatous plaques. Neuroradiology 51:457–465PubMedCrossRef
40.
go back to reference Billotey C, Wilhelm C, Devaud M et al (2003) Cell internalization of anionic maghemite nanoparticles: quantitative effect on magnetic resonance imaging. Magn Reson Med 49:646–654PubMedCrossRef Billotey C, Wilhelm C, Devaud M et al (2003) Cell internalization of anionic maghemite nanoparticles: quantitative effect on magnetic resonance imaging. Magn Reson Med 49:646–654PubMedCrossRef
41.
go back to reference Metz S, Bonaterra G, Rudelius M et al (2004) Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol 14:1851–1858PubMedCrossRef Metz S, Bonaterra G, Rudelius M et al (2004) Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol 14:1851–1858PubMedCrossRef
42.
go back to reference Wagner S, Schnorr J, Pilgrimm H et al (2002) Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging: preclinical in vivo characterization. Invest Radiol 37:167–177PubMedCrossRef Wagner S, Schnorr J, Pilgrimm H et al (2002) Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging: preclinical in vivo characterization. Invest Radiol 37:167–177PubMedCrossRef
43.
go back to reference Tang T, Howarth SP, Miller SR et al (2006) Assessment of inflammatory burden contralateral to the symptomatic carotid stenosis using high-resolution ultrasmall, superparamagnetic iron oxide-enhanced MRI. Stroke 37:2266–2270PubMedCrossRef Tang T, Howarth SP, Miller SR et al (2006) Assessment of inflammatory burden contralateral to the symptomatic carotid stenosis using high-resolution ultrasmall, superparamagnetic iron oxide-enhanced MRI. Stroke 37:2266–2270PubMedCrossRef
44.
go back to reference Tang TY, Howarth SP, Miller SR et al (2009) The ATHEROMA (Atorvastatin therapy: effects on reduction of macrophage activity) Study. Evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J Am Coll Cardiol 53:2039–2050PubMedCrossRef Tang TY, Howarth SP, Miller SR et al (2009) The ATHEROMA (Atorvastatin therapy: effects on reduction of macrophage activity) Study. Evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J Am Coll Cardiol 53:2039–2050PubMedCrossRef
45.
go back to reference Hinton-Yates DP, Cury RC, Wald LL et al (2007) 3.0 T plaque imaging. Top Magn Reson Imag 18:389–400CrossRef Hinton-Yates DP, Cury RC, Wald LL et al (2007) 3.0 T plaque imaging. Top Magn Reson Imag 18:389–400CrossRef
46.
go back to reference Gleich B, Weizenecker J (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435:1214–1217PubMedCrossRef Gleich B, Weizenecker J (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435:1214–1217PubMedCrossRef
Metadata
Title
Characterization of carotid artery plaques with USPIO-enhanced MRI: assessment of inflammation and vascularity as in vivo imaging biomarkers for plaque vulnerability
Authors
Stephan Metz
Ambros J. Beer
Marcus Settles
Jaroslav Pelisek
René M. Botnar
Ernst J. Rummeny
Peter Heider
Publication date
01-07-2011
Publisher
Springer Netherlands
Published in
The International Journal of Cardiovascular Imaging / Issue 6/2011
Print ISSN: 1569-5794
Electronic ISSN: 1875-8312
DOI
https://doi.org/10.1007/s10554-010-9736-7

Other articles of this Issue 6/2011

The International Journal of Cardiovascular Imaging 6/2011 Go to the issue