Skip to main content
Top
Published in: Brain Topography 6/2018

01-11-2018 | Original Paper

Response Hand and Motor Set Differentially Modulate the Connectivity of Brain Pathways During Simple Uni-manual Motor Behavior

Authors: Alexandra Morris, Mathura Ravishankar, Lena Pivetta, Asadur Chowdury, Dimitri Falco, Jessica S. Damoiseaux, David R. Rosenberg, Steven L. Bressler, Vaibhav A. Diwadkar

Published in: Brain Topography | Issue 6/2018

Login to get access

Abstract

We investigated the flexible modulation of undirected functional connectivity (uFC) of brain pathways during simple uni-manual responding. Two questions were central to our interests: (1) does response hand (dominant vs. non-dominant) differentially modulate connectivity and (2) are these effects related to responding under varying motor sets. fMRI data were acquired in twenty right-handed volunteers who responded with their right (dominant) or left (non-dominant) hand (blocked across acquisitions). Within acquisitions, the task oscillated between periodic responses (promoting the emergence of motor sets) or randomly induced responses (disrupting the emergence of motor sets). Conjunction analyses revealed eight shared nodes across response hand and condition, time series from which were analyzed. For right hand responses connectivity of the M1 ←→ Thalamus and SMA ←→ Parietal pathways was more significantly modulated during periodic responding. By comparison, for left hand responses, connectivity between five network pairs (including M1 and SMA, insula, basal ganglia, premotor cortex, parietal cortex, thalamus) was more significantly modulated during random responding. uFC analyses were complemented by directed FC based on multivariate autoregressive models of times series from the nodes. These results were complementary and highlighted significant modulation of dFC for SMA → Thalamus, SMA → M1, basal ganglia → Insula and basal ganglia → Thalamus. The results demonstrate complex effects of motor organization and task demand and response hand on different connectivity classes of fMRI data. The brain’s sub-networks are flexibly modulated by factors related to motor organization and/or task demand, and our results have implications for assessment of medical conditions associated with motor dysfunction.
Literature
go back to reference Abboud R, Noronha C, Diwadkar VA (2017) Motor system dysfunction in the schizophrenia diathesis: neural systems to neurotransmitters. Eur Psychiatry 44:125–133CrossRefPubMedPubMedCentral Abboud R, Noronha C, Diwadkar VA (2017) Motor system dysfunction in the schizophrenia diathesis: neural systems to neurotransmitters. Eur Psychiatry 44:125–133CrossRefPubMedPubMedCentral
go back to reference Adhikari BM, Epstein CM, Dhamala M (2018) Enhanced brain network activity in complex movement rhythms: a simultaneous functional magnetic resonance imaging and electroencephalography study. Brain Connect 8(2):68–81CrossRefPubMed Adhikari BM, Epstein CM, Dhamala M (2018) Enhanced brain network activity in complex movement rhythms: a simultaneous functional magnetic resonance imaging and electroencephalography study. Brain Connect 8(2):68–81CrossRefPubMed
go back to reference Ahissar E, Oram T (2015) Thalamic relay or cortico-thalamic processing? Old question, new answers. Cereb Cortex 25(4):845–848CrossRefPubMed Ahissar E, Oram T (2015) Thalamic relay or cortico-thalamic processing? Old question, new answers. Cereb Cortex 25(4):845–848CrossRefPubMed
go back to reference Alahmadi AA, Pardini M, Samson RS, D’Angelo E, Friston KJ, Toosy AT et al (2015) Differential involvement of cortical and cerebellar areas using dominant and nondominant hands: an FMRI study. Hum Brain Mapp 36(12):5079–5100CrossRefPubMedPubMedCentral Alahmadi AA, Pardini M, Samson RS, D’Angelo E, Friston KJ, Toosy AT et al (2015) Differential involvement of cortical and cerebellar areas using dominant and nondominant hands: an FMRI study. Hum Brain Mapp 36(12):5079–5100CrossRefPubMedPubMedCentral
go back to reference Amunts K, Schlaug G, Schleicher A, Steinmetz H, Dabringhaus A, Roland PE et al (1996) Asymmetry in the human motor cortex and handedness. Neuroimage 4(3 Pt 1):216–222CrossRefPubMed Amunts K, Schlaug G, Schleicher A, Steinmetz H, Dabringhaus A, Roland PE et al (1996) Asymmetry in the human motor cortex and handedness. Neuroimage 4(3 Pt 1):216–222CrossRefPubMed
go back to reference Ardila A, Bernal B, Rosselli M (2018) Executive functions brain system: an activation likelihood estimation meta-analytic study. Arch Clin Neuropsychol 33(4):379–405CrossRefPubMed Ardila A, Bernal B, Rosselli M (2018) Executive functions brain system: an activation likelihood estimation meta-analytic study. Arch Clin Neuropsychol 33(4):379–405CrossRefPubMed
go back to reference Asemi A, Ramaseshan K, Burgess A, Diwadkar VA, Bressler SL (2015) Dorsal anterior cingulate cortex modulates supplementary motor area in coordinated unimanual motor behavior. Front Hum Neurosci 9:309CrossRefPubMedPubMedCentral Asemi A, Ramaseshan K, Burgess A, Diwadkar VA, Bressler SL (2015) Dorsal anterior cingulate cortex modulates supplementary motor area in coordinated unimanual motor behavior. Front Hum Neurosci 9:309CrossRefPubMedPubMedCentral
go back to reference Bressler SL, Seth AK (2011) Wiener-Granger causality: a well established methodology. Neuroimage 58(2):323–329CrossRefPubMed Bressler SL, Seth AK (2011) Wiener-Granger causality: a well established methodology. Neuroimage 58(2):323–329CrossRefPubMed
go back to reference Bressler SL, Tognoli E (2006) Operational principles of neurocognitive networks. Int J Psychophysiol 60(2):139–148CrossRefPubMed Bressler SL, Tognoli E (2006) Operational principles of neurocognitive networks. Int J Psychophysiol 60(2):139–148CrossRefPubMed
go back to reference Bressler SL, Tang W, Sylvester CM, Shulman GL, Corbetta M (2008) Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. J Neurosci 28(40):10056–10061CrossRefPubMedPubMedCentral Bressler SL, Tang W, Sylvester CM, Shulman GL, Corbetta M (2008) Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. J Neurosci 28(40):10056–10061CrossRefPubMedPubMedCentral
go back to reference Buchanan RW, Heinrichs DW (1989) The Neurological Evaluation Scale (NES): a structured instrument for the assessment of neurological signs in schizophrenia. Psychiatry Res 27:335–350CrossRefPubMed Buchanan RW, Heinrichs DW (1989) The Neurological Evaluation Scale (NES): a structured instrument for the assessment of neurological signs in schizophrenia. Psychiatry Res 27:335–350CrossRefPubMed
go back to reference Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA et al (1998) A common network of functional areas for attention and eye movements. Neuron 21(4):761–773CrossRefPubMed Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA et al (1998) A common network of functional areas for attention and eye movements. Neuron 21(4):761–773CrossRefPubMed
go back to reference Cunnington R, Windischberger C, Deecke L, Moser E (2003) The preparation and readiness for voluntary movement: a high-field event-related fMRI study of the Bereitschafts-BOLD response. Neuroimage 20(1):404–412CrossRefPubMed Cunnington R, Windischberger C, Deecke L, Moser E (2003) The preparation and readiness for voluntary movement: a high-field event-related fMRI study of the Bereitschafts-BOLD response. Neuroimage 20(1):404–412CrossRefPubMed
go back to reference Diwadkar VA, Murphy ER, Freedman RR (2014) Temporal sequencing of brain activations during naturally occurring thermoregulatory events. Cereb Cortex 24:3006–3013CrossRefPubMed Diwadkar VA, Murphy ER, Freedman RR (2014) Temporal sequencing of brain activations during naturally occurring thermoregulatory events. Cereb Cortex 24:3006–3013CrossRefPubMed
go back to reference Diwadkar VA, Asemi A, Burgess A, Chowdury A, Bressler SL (2017a) Potentiation of motor sub-networks for motor control but not working memory: interaction of dACC and SMA revealed by resting-state directed functional connectivity. PLoS ONE, 12(3), e0172531CrossRefPubMedPubMedCentral Diwadkar VA, Asemi A, Burgess A, Chowdury A, Bressler SL (2017a) Potentiation of motor sub-networks for motor control but not working memory: interaction of dACC and SMA revealed by resting-state directed functional connectivity. PLoS ONE, 12(3), e0172531CrossRefPubMedPubMedCentral
go back to reference Diwadkar VA, Bellani M, Chowdury A, Savazzi S, Perlini C, Marinelli V et al (2017b) Activations in gray and white matter are modulated by uni-manual responses during within and inter-hemispheric transfer: effects of response hand and right-handedness. Brain Imaging Behav. https://doi.org/10.1007/s11682-017-9750-7 CrossRef Diwadkar VA, Bellani M, Chowdury A, Savazzi S, Perlini C, Marinelli V et al (2017b) Activations in gray and white matter are modulated by uni-manual responses during within and inter-hemispheric transfer: effects of response hand and right-handedness. Brain Imaging Behav. https://​doi.​org/​10.​1007/​s11682-017-9750-7 CrossRef
go back to reference Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT (2012) Activation likelihood estimation meta-analysis revisited. Neuroimage 59(3):2349–2361CrossRefPubMed Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT (2012) Activation likelihood estimation meta-analysis revisited. Neuroimage 59(3):2349–2361CrossRefPubMed
go back to reference First MD, Gibbon M, Spitzer RL, Williams JBW, Benjamin LS (1997) Structured clinical interview for DSM-IV axis II personality disorders. Biometrics Research Department, NYSPI, New York First MD, Gibbon M, Spitzer RL, Williams JBW, Benjamin LS (1997) Structured clinical interview for DSM-IV axis II personality disorders. Biometrics Research Department, NYSPI, New York
go back to reference Fogassi L, Luppino G (2005) Motor functions of the parietal lobe. Curr Opin Neurobiol 15(6):626–631CrossRefPubMed Fogassi L, Luppino G (2005) Motor functions of the parietal lobe. Curr Opin Neurobiol 15(6):626–631CrossRefPubMed
go back to reference Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: from action organization to intention understanding. Science 308(5722):662–667CrossRefPubMed Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: from action organization to intention understanding. Science 308(5722):662–667CrossRefPubMed
go back to reference Friedman A, Burgess A, Ramaseshan K, Easter P, Khatib D, Chowdury A et al (2017) Brain network dysfunction in obsessive-compulsive disorder induced by simple uni-manual behavior: the role of the dorsal anterior cingulate cortex. Psychiatry Res Neuroimaging 260:6–15CrossRefPubMed Friedman A, Burgess A, Ramaseshan K, Easter P, Khatib D, Chowdury A et al (2017) Brain network dysfunction in obsessive-compulsive disorder induced by simple uni-manual behavior: the role of the dorsal anterior cingulate cortex. Psychiatry Res Neuroimaging 260:6–15CrossRefPubMed
go back to reference Gao Q, Duan X, Chen H (2011) Evaluation of effective connectivity of motor areas during motor imagery and execution using conditional Granger causality. Neuroimage 54(2):1280–1288CrossRefPubMed Gao Q, Duan X, Chen H (2011) Evaluation of effective connectivity of motor areas during motor imagery and execution using conditional Granger causality. Neuroimage 54(2):1280–1288CrossRefPubMed
go back to reference Ghaziri J, Tucholka A, Girard G, Houde JC, Boucher O, Gilbert G et al (2017) The corticocortical structural connectivity of the human insula. Cereb Cortex 27(2):1216–1228CrossRefPubMed Ghaziri J, Tucholka A, Girard G, Houde JC, Boucher O, Gilbert G et al (2017) The corticocortical structural connectivity of the human insula. Cereb Cortex 27(2):1216–1228CrossRefPubMed
go back to reference Goble DJ, Coxon JP, Van Impe A, De Vos J, Wenderoth N, Swinnen SP (2010) The neural control of bimanual movements in the elderly: brain regions exhibiting age-related increases in activity, frequency-induced neural modulation, and task-specific compensatory recruitment. Hum Brain Mapp 31(8):1281–1295PubMed Goble DJ, Coxon JP, Van Impe A, De Vos J, Wenderoth N, Swinnen SP (2010) The neural control of bimanual movements in the elderly: brain regions exhibiting age-related increases in activity, frequency-induced neural modulation, and task-specific compensatory recruitment. Hum Brain Mapp 31(8):1281–1295PubMed
go back to reference Goense JB, Logothetis NK (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18(9):631–640CrossRefPubMed Goense JB, Logothetis NK (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18(9):631–640CrossRefPubMed
go back to reference Grafton ST, Mazziotta JC, Woods RP, Phelps ME (1992) Human functional anatomy of visually guided finger movements. Brain 115(Pt 2):565–587CrossRefPubMed Grafton ST, Mazziotta JC, Woods RP, Phelps ME (1992) Human functional anatomy of visually guided finger movements. Brain 115(Pt 2):565–587CrossRefPubMed
go back to reference Grafton ST, Hazeltine E, Ivry RB (2002) Motor sequence learning with the nondominant left hand. A PET functional imaging study. Exp Brain Res 146(3):369–378CrossRefPubMed Grafton ST, Hazeltine E, Ivry RB (2002) Motor sequence learning with the nondominant left hand. A PET functional imaging study. Exp Brain Res 146(3):369–378CrossRefPubMed
go back to reference Grefkes C, Eickhoff SB, Nowak DA, Dafotakis M, Fink GR (2008) Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM. Neuroimage 41(4):1382–1394CrossRefPubMed Grefkes C, Eickhoff SB, Nowak DA, Dafotakis M, Fink GR (2008) Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM. Neuroimage 41(4):1382–1394CrossRefPubMed
go back to reference Guo Y, Schmitz TW, Mur M, Ferreira CS, Anderson MC (2017) A supramodal role of the basal ganglia in memory and motor inhibition: meta-analytic evidence. Neuropsychologia 108:117–134CrossRefPubMed Guo Y, Schmitz TW, Mur M, Ferreira CS, Anderson MC (2017) A supramodal role of the basal ganglia in memory and motor inhibition: meta-analytic evidence. Neuropsychologia 108:117–134CrossRefPubMed
go back to reference Guye M, Parker GJ, Symms M, Boulby P, Wheeler-Kingshott CA, Salek-Haddadi A et al (2003) Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo. Neuroimage 19(4):1349–1360CrossRefPubMed Guye M, Parker GJ, Symms M, Boulby P, Wheeler-Kingshott CA, Salek-Haddadi A et al (2003) Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo. Neuroimage 19(4):1349–1360CrossRefPubMed
go back to reference Haaland KY, Harrington DL, Knight RT (2000) Neural representations of skilled movement. Brain 123(Pt 11):2306–2313CrossRefPubMed Haaland KY, Harrington DL, Knight RT (2000) Neural representations of skilled movement. Brain 123(Pt 11):2306–2313CrossRefPubMed
go back to reference Haaland KY, Elsinger CL, Mayer AR, Durgerian S, Rao SM (2004) Motor sequence complexity and performing hand produce differential patterns of hemispheric lateralization. J Cogn Neurosci 16(4):621–636CrossRefPubMed Haaland KY, Elsinger CL, Mayer AR, Durgerian S, Rao SM (2004) Motor sequence complexity and performing hand produce differential patterns of hemispheric lateralization. J Cogn Neurosci 16(4):621–636CrossRefPubMed
go back to reference Hoffstaedter F, Grefkes C, Caspers S, Roski C, Palomero-Gallagher N, Laird AR et al (2014) The role of anterior midcingulate cortex in cognitive motor control: evidence from functional connectivity analyses. Hum Brain Mapp 35(6):2741–2753CrossRefPubMed Hoffstaedter F, Grefkes C, Caspers S, Roski C, Palomero-Gallagher N, Laird AR et al (2014) The role of anterior midcingulate cortex in cognitive motor control: evidence from functional connectivity analyses. Hum Brain Mapp 35(6):2741–2753CrossRefPubMed
go back to reference Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB (1999) Stimulus-dependent BOLD and perfusion dynamics in human V1. Neuroimage 9(6 Pt 1):573–585CrossRefPubMed Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB (1999) Stimulus-dependent BOLD and perfusion dynamics in human V1. Neuroimage 9(6 Pt 1):573–585CrossRefPubMed
go back to reference Jagtap P, Diwadkar VA (2016) Effective connectivity of ascending and descending frontalthalamic pathways during sustained attention: complex brain network interactions in adolescence. Hum Brain Mapp 37(7):2557–2570CrossRefPubMedPubMedCentral Jagtap P, Diwadkar VA (2016) Effective connectivity of ascending and descending frontalthalamic pathways during sustained attention: complex brain network interactions in adolescence. Hum Brain Mapp 37(7):2557–2570CrossRefPubMedPubMedCentral
go back to reference Kim SG, Ashe J, Hendrich K, Ellermann JM, Merkle H, Ugurbil K et al (1993) Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 261(5121):615–617CrossRefPubMed Kim SG, Ashe J, Hendrich K, Ellermann JM, Merkle H, Ugurbil K et al (1993) Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 261(5121):615–617CrossRefPubMed
go back to reference Kolodny T, Mevorach C, Shalev L (2017) Isolating response inhibition in the brain: parietal versus frontal contribution. Cortex 88:173–185CrossRefPubMed Kolodny T, Mevorach C, Shalev L (2017) Isolating response inhibition in the brain: parietal versus frontal contribution. Cortex 88:173–185CrossRefPubMed
go back to reference Lehericy S, Bardinet E, Tremblay L, Van de Moortele PF, Pochon JB, Dormont D et al (2006) Motor control in basal ganglia circuits using fMRI and brain atlas approaches. Cereb Cortex 16(2):149–161CrossRefPubMed Lehericy S, Bardinet E, Tremblay L, Van de Moortele PF, Pochon JB, Dormont D et al (2006) Motor control in basal ganglia circuits using fMRI and brain atlas approaches. Cereb Cortex 16(2):149–161CrossRefPubMed
go back to reference Liepmann H (1905) The left hemisphere and action. Republished in 1908 in Drei Aufsatze aus dem Apraxiegebiet. Karger, Berlin Liepmann H (1905) The left hemisphere and action. Republished in 1908 in Drei Aufsatze aus dem Apraxiegebiet. Karger, Berlin
go back to reference Lotze M, Erb M, Flor H, Huelsmann E, Godde B, Grodd W (2000) fMRI evaluation of somatotopic representation in human primary motor cortex. Neuroimage 11(5 Pt 1):473–481CrossRefPubMed Lotze M, Erb M, Flor H, Huelsmann E, Godde B, Grodd W (2000) fMRI evaluation of somatotopic representation in human primary motor cortex. Neuroimage 11(5 Pt 1):473–481CrossRefPubMed
go back to reference Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19(3):1233–1239CrossRefPubMed Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19(3):1233–1239CrossRefPubMed
go back to reference Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202CrossRefPubMed Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202CrossRefPubMed
go back to reference Muzik O, Diwadkar VA (2016) In vivo correlates of thermoregulatory defense in humans: temporal course of sub-cortical and cortical responses assessed with fMRI. Hum Brain Mapp 37(9):3188–3202CrossRefPubMed Muzik O, Diwadkar VA (2016) In vivo correlates of thermoregulatory defense in humans: temporal course of sub-cortical and cortical responses assessed with fMRI. Hum Brain Mapp 37(9):3188–3202CrossRefPubMed
go back to reference Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9(11):856–869CrossRefPubMed Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9(11):856–869CrossRefPubMed
go back to reference Nichols T, Brett M, Andersson J, Wager T, Poline JB (2005) Valid conjunction inference with the minimum statistic. Neuroimage 25(3):653–660CrossRefPubMed Nichols T, Brett M, Andersson J, Wager T, Poline JB (2005) Valid conjunction inference with the minimum statistic. Neuroimage 25(3):653–660CrossRefPubMed
go back to reference Nuber S, Petrasch-Parwez E, Winner B, Winkler J, von Horsten S, Schmidt T et al (2008) Neurodegeneration and motor dysfunction in a conditional model of Parkinson’s disease. J Neurosci 28(10):2471–2484CrossRefPubMed Nuber S, Petrasch-Parwez E, Winner B, Winkler J, von Horsten S, Schmidt T et al (2008) Neurodegeneration and motor dysfunction in a conditional model of Parkinson’s disease. J Neurosci 28(10):2471–2484CrossRefPubMed
go back to reference Park HJ, Friston K (2013) Structural and functional brain networks: from connections to cognition. Science 342(6158):1238411CrossRefPubMed Park HJ, Friston K (2013) Structural and functional brain networks: from connections to cognition. Science 342(6158):1238411CrossRefPubMed
go back to reference Passingham RE, Stephan KE, Kotter R (2002) The anatomical basis of functional localization in the cortex. Nat Rev Neurosci 3(8):606–616CrossRefPubMed Passingham RE, Stephan KE, Kotter R (2002) The anatomical basis of functional localization in the cortex. Nat Rev Neurosci 3(8):606–616CrossRefPubMed
go back to reference Paus T (2001) Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2(6):417–424CrossRefPubMed Paus T (2001) Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2(6):417–424CrossRefPubMed
go back to reference Pool EM, Rehme AK, Eickhoff SB, Fink GR, Grefkes C (2015) Functional resting-state connectivity of the human motor network: differences between right- and left-handers. Neuroimage 109:298–306CrossRefPubMedPubMedCentral Pool EM, Rehme AK, Eickhoff SB, Fink GR, Grefkes C (2015) Functional resting-state connectivity of the human motor network: differences between right- and left-handers. Neuroimage 109:298–306CrossRefPubMedPubMedCentral
go back to reference Pool EM, Leimbach M, Binder E, Nettekoven C, Eickhoff SB, Fink GR et al (2018) Network dynamics engaged in the modulation of motor behavior in stroke patients. Hum Brain Mapp 39(3):1078–1092CrossRefPubMed Pool EM, Leimbach M, Binder E, Nettekoven C, Eickhoff SB, Fink GR et al (2018) Network dynamics engaged in the modulation of motor behavior in stroke patients. Hum Brain Mapp 39(3):1078–1092CrossRefPubMed
go back to reference Price CJ, Friston KJ (2005) Functional ontologies for cognition: the systematic definition of structure and function. Cogn Neuropsychol 22(3):262–275CrossRefPubMed Price CJ, Friston KJ (2005) Functional ontologies for cognition: the systematic definition of structure and function. Cogn Neuropsychol 22(3):262–275CrossRefPubMed
go back to reference Rathelot JA, Dum RP, Strick PL (2017) Posterior parietal cortex contains a command apparatus for hand movements. Proc Natl Acad Sci USA 114(16):4255–4260CrossRefPubMed Rathelot JA, Dum RP, Strick PL (2017) Posterior parietal cortex contains a command apparatus for hand movements. Proc Natl Acad Sci USA 114(16):4255–4260CrossRefPubMed
go back to reference Sale MV, Reid LB, Cocchi L, Pagnozzi AM, Rose SE, Mattingley JB (2017) Brain changes following four weeks of unimanual motor training: evidence from behavior, neural stimulation, cortical thickness, and functional MRI. Hum Brain Mapp 38(9):4773–4787CrossRefPubMed Sale MV, Reid LB, Cocchi L, Pagnozzi AM, Rose SE, Mattingley JB (2017) Brain changes following four weeks of unimanual motor training: evidence from behavior, neural stimulation, cortical thickness, and functional MRI. Hum Brain Mapp 38(9):4773–4787CrossRefPubMed
go back to reference Sarfeld AS, Diekhoff S, Wang LE, Liuzzi G, Uludag K, Eickhoff SB et al (2012) Convergence of human brain mapping tools: neuronavigated TMS parameters and fMRI activity in the hand motor area. Hum Brain Mapp 33(5):1107–1123CrossRefPubMed Sarfeld AS, Diekhoff S, Wang LE, Liuzzi G, Uludag K, Eickhoff SB et al (2012) Convergence of human brain mapping tools: neuronavigated TMS parameters and fMRI activity in the hand motor area. Hum Brain Mapp 33(5):1107–1123CrossRefPubMed
go back to reference Seizeur R, Magro E, Prima S, Wiest-Daessle N, Maumet C, Morandi X (2014) Corticospinal tract asymmetry and handedness in right- and left-handers by diffusion tensor tractography. Surg Radiol Anat 36(2):111–124CrossRefPubMed Seizeur R, Magro E, Prima S, Wiest-Daessle N, Maumet C, Morandi X (2014) Corticospinal tract asymmetry and handedness in right- and left-handers by diffusion tensor tractography. Surg Radiol Anat 36(2):111–124CrossRefPubMed
go back to reference Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9(4):569–577CrossRefPubMed Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9(4):569–577CrossRefPubMed
go back to reference Silverstein B, Bressler S, Diwadkar VA (2016) Inferring the dysconnection syndrome in schizophrenia: interpretational considerations on methods for the network analyses of fMRI data. Front Psychiatry 7:132CrossRefPubMedPubMedCentral Silverstein B, Bressler S, Diwadkar VA (2016) Inferring the dysconnection syndrome in schizophrenia: interpretational considerations on methods for the network analyses of fMRI data. Front Psychiatry 7:132CrossRefPubMedPubMedCentral
go back to reference Singh KD (2012) Which “neural activity” do you mean? fMRI, MEG, oscillations and neurotransmitters. Neuroimage 62(2):1121–1130CrossRefPubMed Singh KD (2012) Which “neural activity” do you mean? fMRI, MEG, oscillations and neurotransmitters. Neuroimage 62(2):1121–1130CrossRefPubMed
go back to reference Singh LN, Higano S, Takahashi S, Kurihara N, Furuta S, Tamura H et al (1998) Comparison of ipsilateral activation between right and left handers: a functional MR imaging study. Neuroreport 9(8):1861–1866CrossRefPubMed Singh LN, Higano S, Takahashi S, Kurihara N, Furuta S, Tamura H et al (1998) Comparison of ipsilateral activation between right and left handers: a functional MR imaging study. Neuroreport 9(8):1861–1866CrossRefPubMed
go back to reference Sisti HM, Geurts M, Clerckx R, Gooijers J, Coxon JP, Heitger MH et al (2011) Testing multiple coordination constraints with a novel bimanual visuomotor task. PLoS ONE, 6(8), e23619CrossRefPubMedPubMedCentral Sisti HM, Geurts M, Clerckx R, Gooijers J, Coxon JP, Heitger MH et al (2011) Testing multiple coordination constraints with a novel bimanual visuomotor task. PLoS ONE, 6(8), e23619CrossRefPubMedPubMedCentral
go back to reference Tang W, Bressler SL, Sylvester CM, Shulman GL, Corbetta M (2012) Measuring Granger causality between cortical regions from voxelwise fMRI BOLD signals with LASSO. PLoS Comput Biol, 8(5), e1002513CrossRefPubMedPubMedCentral Tang W, Bressler SL, Sylvester CM, Shulman GL, Corbetta M (2012) Measuring Granger causality between cortical regions from voxelwise fMRI BOLD signals with LASSO. PLoS Comput Biol, 8(5), e1002513CrossRefPubMedPubMedCentral
go back to reference Tootell RB, Mendola JD, Hadjikhani NK, Liu AK, Dale AM (1998) The representation of the ipsilateral visual field in human cerebral cortex. Proc Natl Acad Sci USA 95(3):818–824CrossRefPubMed Tootell RB, Mendola JD, Hadjikhani NK, Liu AK, Dale AM (1998) The representation of the ipsilateral visual field in human cerebral cortex. Proc Natl Acad Sci USA 95(3):818–824CrossRefPubMed
go back to reference Tzourio-Mazoyer N, Petit L, Zago L, Crivello F, Vinuesa N, Joliot M et al (2015) Between-hand difference in ipsilateral deactivation is associated with hand lateralization: fMRI mapping of 284 volunteers balanced for handedness. Front Hum Neurosci 9:5CrossRefPubMedPubMedCentral Tzourio-Mazoyer N, Petit L, Zago L, Crivello F, Vinuesa N, Joliot M et al (2015) Between-hand difference in ipsilateral deactivation is associated with hand lateralization: fMRI mapping of 284 volunteers balanced for handedness. Front Hum Neurosci 9:5CrossRefPubMedPubMedCentral
go back to reference van den Berg FE, Swinnen SP, Wenderoth N (2011) Involvement of the primary motor cortex in controlling movements executed with the ipsilateral hand differs between left- and right-handers. J Cogn Neurosci 23(11):3456–3469CrossRefPubMed van den Berg FE, Swinnen SP, Wenderoth N (2011) Involvement of the primary motor cortex in controlling movements executed with the ipsilateral hand differs between left- and right-handers. J Cogn Neurosci 23(11):3456–3469CrossRefPubMed
go back to reference Velikova S, Locatelli M, Insacco C, Smeraldi E, Comi G, Leocani L (2010) Dysfunctional brain circuitry in obsessive-compulsive disorder: source and coherence analysis of EEG rhythms. Neuroimage 49(1):977–983CrossRefPubMed Velikova S, Locatelli M, Insacco C, Smeraldi E, Comi G, Leocani L (2010) Dysfunctional brain circuitry in obsessive-compulsive disorder: source and coherence analysis of EEG rhythms. Neuroimage 49(1):977–983CrossRefPubMed
go back to reference Volkmann J, Schnitzler A, Witte OW, Freund H (1998) Handedness and asymmetry of hand representation in human motor cortex. J Neurophysiol 79(4):2149–2154CrossRefPubMed Volkmann J, Schnitzler A, Witte OW, Freund H (1998) Handedness and asymmetry of hand representation in human motor cortex. J Neurophysiol 79(4):2149–2154CrossRefPubMed
go back to reference Ward BD (2000) Simultaneous inference for fMRI data. Medical College of Wisconsin, Milwaukee, WI Ward BD (2000) Simultaneous inference for fMRI data. Medical College of Wisconsin, Milwaukee, WI
go back to reference Whitfield-Gabrieli S, Nieto-Castanon A (2012) Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2(3):125–141CrossRefPubMed Whitfield-Gabrieli S, Nieto-Castanon A (2012) Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2(3):125–141CrossRefPubMed
go back to reference Witt ST, Stevens MC (2013) The role of top-down control in different phases of a sensorimotor timing task: a DCM study of adults and adolescents. Brain Imaging Behav 7(3):260–273CrossRefPubMed Witt ST, Stevens MC (2013) The role of top-down control in different phases of a sensorimotor timing task: a DCM study of adults and adolescents. Brain Imaging Behav 7(3):260–273CrossRefPubMed
go back to reference Witt ST, Laird AR, Meyerand ME (2008) Functional neuroimaging correlates of finger-tapping task variations: an ALE meta-analysis. Neuroimage 42(1):343–356CrossRefPubMedPubMedCentral Witt ST, Laird AR, Meyerand ME (2008) Functional neuroimaging correlates of finger-tapping task variations: an ALE meta-analysis. Neuroimage 42(1):343–356CrossRefPubMedPubMedCentral
go back to reference Zapparoli L, Seghezzi S, Paulesu E (2017) The what, the when, and the whether of intentional action in the brain: a meta-analytical review. Front Hum Neurosci 11:238CrossRefPubMedPubMedCentral Zapparoli L, Seghezzi S, Paulesu E (2017) The what, the when, and the whether of intentional action in the brain: a meta-analytical review. Front Hum Neurosci 11:238CrossRefPubMedPubMedCentral
Metadata
Title
Response Hand and Motor Set Differentially Modulate the Connectivity of Brain Pathways During Simple Uni-manual Motor Behavior
Authors
Alexandra Morris
Mathura Ravishankar
Lena Pivetta
Asadur Chowdury
Dimitri Falco
Jessica S. Damoiseaux
David R. Rosenberg
Steven L. Bressler
Vaibhav A. Diwadkar
Publication date
01-11-2018
Publisher
Springer US
Published in
Brain Topography / Issue 6/2018
Print ISSN: 0896-0267
Electronic ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-018-0664-5

Other articles of this Issue 6/2018

Brain Topography 6/2018 Go to the issue