Skip to main content
Top
Published in: Brain Topography 3/2013

01-07-2013 | Original Paper

Extended Broca’s Area in the Functional Connectome of Language in Adults: Combined Cortical and Subcortical Single-Subject Analysis Using fMRI and DTI Tractography

Authors: Jean-Jacques Lemaire, Alexandra Golby, William M. Wells III, Sonia Pujol, Yanmei Tie, Laura Rigolo, Alexander Yarmarkovich, Steve Pieper, Carl-Fredrik Westin, Ferenc Jolesz, Ron Kikinis

Published in: Brain Topography | Issue 3/2013

Login to get access

Abstract

Traditional models of the human language circuitry encompass three cortical areas, Broca’s, Geschwind’s and Wernicke’s, and their connectivity through white matter fascicles. The neural connectivity deep to these cortical areas remains poorly understood, as does the macroscopic functional organization of the cortico-subcortical language circuitry. In an effort to expand current knowledge, we combined functional MRI (fMRI) and diffusion tensor imaging to explore subject-specific structural and functional macroscopic connectivity, focusing on Broca’s area. Fascicles were studied using diffusion tensor imaging fiber tracking seeded from volumes placed manually within the white matter. White matter fascicles and fMRI-derived clusters (antonym-generation task) of positive and negative blood-oxygen-level-dependent (BOLD) signal were co-registered with 3-D renderings of the brain in 12 healthy subjects. Fascicles connecting BOLD-derived clusters were analyzed within specific cortical areas: Broca’s, with the pars triangularis, the pars opercularis, and the pars orbitaris; Geschwind’s and Wernicke’s; the premotor cortex, the dorsal supplementary motor area, the middle temporal gyrus, the dorsal prefrontal cortex and the frontopolar region. We found a functional connectome divisible into three systems—anterior, superior and inferior—around the insula, more complex than previously thought, particularly with respect to a new extended Broca’s area. The extended Broca’s area involves two new fascicles: the operculo-premotor fascicle comprised of well-organized U-shaped fibers that connect the pars opercularis with the premotor region; and (2) the triangulo-orbitaris system comprised of intermingled U-shaped fibers that connect the pars triangularis with the pars orbitaris. The findings enhance our understanding of language function.
Appendix
Available only for authorised users
Literature
go back to reference Anwander A et al (2007) Connectivity-based parcellation of broca’s area. Cereb Cortex (New York, 1991) 17(4):816–825CrossRef Anwander A et al (2007) Connectivity-based parcellation of broca’s area. Cereb Cortex (New York, 1991) 17(4):816–825CrossRef
go back to reference Basser Peter J, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis-a technical review. NMR Biomed 15(7–8):456–467PubMedCrossRef Basser Peter J, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis-a technical review. NMR Biomed 15(7–8):456–467PubMedCrossRef
go back to reference Basser PJ, Roth BJ (2000) New currents in electrical stimulation of excitable tissues. Annu Rev Biomed Eng 2:377–397PubMedCrossRef Basser PJ, Roth BJ (2000) New currents in electrical stimulation of excitable tissues. Annu Rev Biomed Eng 2:377–397PubMedCrossRef
go back to reference Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66(1):259–267PubMedCrossRef Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66(1):259–267PubMedCrossRef
go back to reference Basser PJ et al (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44(4):625–632PubMedCrossRef Basser PJ et al (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44(4):625–632PubMedCrossRef
go back to reference Bechtereva NP, Abdullaev YG, Medvedev SV (1991) Neuronal activity in frontal speech area 44 of the human cerebral cortex during word recognition. Neurosci Lett 124(1):61–64PubMedCrossRef Bechtereva NP, Abdullaev YG, Medvedev SV (1991) Neuronal activity in frontal speech area 44 of the human cerebral cortex during word recognition. Neurosci Lett 124(1):61–64PubMedCrossRef
go back to reference Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc 57:289–300 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc 57:289–300
go back to reference Benson D, Ardilla A (1995) Conduction aphasia: a syndrome of language network disruption. In: Kirshner HS (ed) Handbook of neurological speech and language disorders. Dekker, New York, pp 149–164 Benson D, Ardilla A (1995) Conduction aphasia: a syndrome of language network disruption. In: Kirshner HS (ed) Handbook of neurological speech and language disorders. Dekker, New York, pp 149–164
go back to reference Boatman D et al (2000) Transcortical sensory aphasia: revisited and revised. Brain 123(8):1634–1642PubMedCrossRef Boatman D et al (2000) Transcortical sensory aphasia: revisited and revised. Brain 123(8):1634–1642PubMedCrossRef
go back to reference Broca P (1861) Perte de la parole, ramollissement chronique et destruction partielle du lobe antérieur gauche du cerveau. Bull de la Société d’Anthroplogie de Paris 2:235–238 Broca P (1861) Perte de la parole, ramollissement chronique et destruction partielle du lobe antérieur gauche du cerveau. Bull de la Société d’Anthroplogie de Paris 2:235–238
go back to reference Catani M, Jones DK, ffytche DH (2005) Perisylvian language networks of the human brain. Ann Neurol 57(1):8–16PubMedCrossRef Catani M, Jones DK, ffytche DH (2005) Perisylvian language networks of the human brain. Ann Neurol 57(1):8–16PubMedCrossRef
go back to reference Catani M et al (2007) Symmetries in human brain language pathways correlate with verbal recall. Proc Nat Acad Sci USA 104(43):17163–17168PubMedCrossRef Catani M et al (2007) Symmetries in human brain language pathways correlate with verbal recall. Proc Nat Acad Sci USA 104(43):17163–17168PubMedCrossRef
go back to reference Davis C et al (2008) Speech and language functions that require a functioning broca’s area. Brain Lang 105(1):50–58PubMedCrossRef Davis C et al (2008) Speech and language functions that require a functioning broca’s area. Brain Lang 105(1):50–58PubMedCrossRef
go back to reference De Carli D et al (2007) Identification of activated regions during a language task. Magn Reson Imaging 25(6):933–938PubMedCrossRef De Carli D et al (2007) Identification of activated regions during a language task. Magn Reson Imaging 25(6):933–938PubMedCrossRef
go back to reference Dejerine J (1901) Anatomie des centres nerveux (Tomes 1 and 2). Rueff Cie, Paris Dejerine J (1901) Anatomie des centres nerveux (Tomes 1 and 2). Rueff Cie, Paris
go back to reference Desmond JE et al (1995) Functional MRI measurement of language lateralization in Wada-tested patients. Brain 118(6):1411–1419PubMedCrossRef Desmond JE et al (1995) Functional MRI measurement of language lateralization in Wada-tested patients. Brain 118(6):1411–1419PubMedCrossRef
go back to reference Dronkers NF et al (2007) Paul Broca’s historic cases: high resolution MR imaging of the brains of Leborgne and Lelong. Brain 130(Pt 5):1432–1441PubMedCrossRef Dronkers NF et al (2007) Paul Broca’s historic cases: high resolution MR imaging of the brains of Leborgne and Lelong. Brain 130(Pt 5):1432–1441PubMedCrossRef
go back to reference Duffau H et al (2002) Intraoperative mapping of the subcortical language pathways using direct stimulations. an anatomo-functional study. Brain 125(Pt 1):199–214PubMedCrossRef Duffau H et al (2002) Intraoperative mapping of the subcortical language pathways using direct stimulations. an anatomo-functional study. Brain 125(Pt 1):199–214PubMedCrossRef
go back to reference Duffau H et al (2005) New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations. Brain 128(Pt 4):797–810PubMedCrossRef Duffau H et al (2005) New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations. Brain 128(Pt 4):797–810PubMedCrossRef
go back to reference Duvernoy H et al (1992) Le cerveau humain: Surfaces, coupes sériées tridimentionelles et IRM. Springer, Paris Duvernoy H et al (1992) Le cerveau humain: Surfaces, coupes sériées tridimentionelles et IRM. Springer, Paris
go back to reference Fink M et al (2009) Lateralization of the serotonin-1A receptor distribution in language areas revealed by PET. NeuroImag 45(2):598–605CrossRef Fink M et al (2009) Lateralization of the serotonin-1A receptor distribution in language areas revealed by PET. NeuroImag 45(2):598–605CrossRef
go back to reference Frey S et al (2008) Dissociating the human language pathways with high angular resolution diffusion fiber tractography. J Neurosci 28(45):11435–11444PubMedCrossRef Frey S et al (2008) Dissociating the human language pathways with high angular resolution diffusion fiber tractography. J Neurosci 28(45):11435–11444PubMedCrossRef
go back to reference Friederici Angela D (2009) Pathways to language: fiber tracts in the human brain. Trends Cogn Sci 13(4):175–181PubMedCrossRef Friederici Angela D (2009) Pathways to language: fiber tracts in the human brain. Trends Cogn Sci 13(4):175–181PubMedCrossRef
go back to reference Friston K et al (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210CrossRef Friston K et al (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210CrossRef
go back to reference Geschwind N (1970) The organization of language and the brain. Science (New York, NY) 170(961):940–944CrossRef Geschwind N (1970) The organization of language and the brain. Science (New York, NY) 170(961):940–944CrossRef
go back to reference Glasser MF, Rilling JK (2008) DTI tractography of the human brain’s language pathways. Cereb Cortex (New York, 1991) 18(11):2471–2482CrossRef Glasser MF, Rilling JK (2008) DTI tractography of the human brain’s language pathways. Cereb Cortex (New York, 1991) 18(11):2471–2482CrossRef
go back to reference Green AE et al (2006) Frontopolar cortex mediates abstract integration in analogy. Brain Res 1096(1):125–137PubMedCrossRef Green AE et al (2006) Frontopolar cortex mediates abstract integration in analogy. Brain Res 1096(1):125–137PubMedCrossRef
go back to reference Hatsopoulos NG, Donoghue JP (2009) The science of neural interface systems. Annu Rev Neurosci 32:249–266PubMedCrossRef Hatsopoulos NG, Donoghue JP (2009) The science of neural interface systems. Annu Rev Neurosci 32:249–266PubMedCrossRef
go back to reference Indefrey P, Levelt WJM (2004) The spatial and temporal signatures of word production components. Cognition 92(1–2):101–144PubMedCrossRef Indefrey P, Levelt WJM (2004) The spatial and temporal signatures of word production components. Cognition 92(1–2):101–144PubMedCrossRef
go back to reference Jaermann T et al (2008) Preliminary experience with visualization of intracortical fibers by focused high-resolution diffusion tensor imaging. Am J Neuroradiol 29(1):146–150PubMedCrossRef Jaermann T et al (2008) Preliminary experience with visualization of intracortical fibers by focused high-resolution diffusion tensor imaging. Am J Neuroradiol 29(1):146–150PubMedCrossRef
go back to reference Keller SS et al (2009) Broca’s area: nomenclature, anatomy, typology and asymmetry. Brain Lang 109(1):29–48PubMedCrossRef Keller SS et al (2009) Broca’s area: nomenclature, anatomy, typology and asymmetry. Brain Lang 109(1):29–48PubMedCrossRef
go back to reference Kirshner H (1995) Classical aphasia syndromes. In: Kirshner HS (ed) Handbook of neurological speech and language disorders. Dekker, New York, pp 57–89 Kirshner H (1995) Classical aphasia syndromes. In: Kirshner HS (ed) Handbook of neurological speech and language disorders. Dekker, New York, pp 57–89
go back to reference Klingler J (1935) Erleichterung des makroskopischen praeparation des gehirns durch den gefrierprozess. Schweiz Arch Neurol Psychiatr 36:247–256 Klingler J (1935) Erleichterung des makroskopischen praeparation des gehirns durch den gefrierprozess. Schweiz Arch Neurol Psychiatr 36:247–256
go back to reference Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4(6):469–480PubMedCrossRef Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4(6):469–480PubMedCrossRef
go back to reference Lee HW et al (2009) Reorganisation of cortical motor and language distribution in human brain. J Neurol Neurosurg Psychiatry 80(3):285–290PubMedCrossRef Lee HW et al (2009) Reorganisation of cortical motor and language distribution in human brain. J Neurol Neurosurg Psychiatry 80(3):285–290PubMedCrossRef
go back to reference Logothetis NK (2002) The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci 357(1424):1003–1037PubMedCrossRef Logothetis NK (2002) The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci 357(1424):1003–1037PubMedCrossRef
go back to reference Makris N et al (2005) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo DT-MRI study. Cereb Cortex (New York, 1991) 15(6):854–869CrossRef Makris N et al (2005) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo DT-MRI study. Cereb Cortex (New York, 1991) 15(6):854–869CrossRef
go back to reference Mandonnet E et al (2007) Does the left inferior longitudinal fasciculus play a role in language? A brain stimulation study. Brain 130(Pt 3):623–629PubMedCrossRef Mandonnet E et al (2007) Does the left inferior longitudinal fasciculus play a role in language? A brain stimulation study. Brain 130(Pt 3):623–629PubMedCrossRef
go back to reference Manola L et al (2007) Anodal vs cathodal stimulation of motor cortex: a modeling study. Clin Neurophysiol 118(2):464–474PubMedCrossRef Manola L et al (2007) Anodal vs cathodal stimulation of motor cortex: a modeling study. Clin Neurophysiol 118(2):464–474PubMedCrossRef
go back to reference McKiernan KA et al (2003) A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci 15(3):394–408PubMedCrossRef McKiernan KA et al (2003) A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci 15(3):394–408PubMedCrossRef
go back to reference Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51(5):527–539PubMedCrossRef Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51(5):527–539PubMedCrossRef
go back to reference Mozolic JL et al (2008) Cross-modal deactivations during modality-specific selective attention. BMC Neurology 8:35PubMedCrossRef Mozolic JL et al (2008) Cross-modal deactivations during modality-specific selective attention. BMC Neurology 8:35PubMedCrossRef
go back to reference Nieuwenhuys R, Voogd J, Huijzen C (1979) The human central nervous system: a synopsis and atlas. Springer, Berlin Nieuwenhuys R, Voogd J, Huijzen C (1979) The human central nervous system: a synopsis and atlas. Springer, Berlin
go back to reference Nowak MA, Komarova NL, Niyogi P (2002) Computational and evolutionary aspects of language. Nature 417(6889):611–617PubMedCrossRef Nowak MA, Komarova NL, Niyogi P (2002) Computational and evolutionary aspects of language. Nature 417(6889):611–617PubMedCrossRef
go back to reference Ojemann GA (2003) The neurobiology of language and verbal memory: observations from awake neurosurgery. Intern J Psychophysiol 48(2):141–146CrossRef Ojemann GA (2003) The neurobiology of language and verbal memory: observations from awake neurosurgery. Intern J Psychophysiol 48(2):141–146CrossRef
go back to reference Ojemann G et al (1989) Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg 71(3):316–326PubMedCrossRef Ojemann G et al (1989) Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg 71(3):316–326PubMedCrossRef
go back to reference Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113PubMedCrossRef Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113PubMedCrossRef
go back to reference Parker GJM et al (2005) Lateralization of ventral and dorsal auditory-language pathways in the human brain. NeuroImag 24(3):656–666CrossRef Parker GJM et al (2005) Lateralization of ventral and dorsal auditory-language pathways in the human brain. NeuroImag 24(3):656–666CrossRef
go back to reference Petrides M, Pandya DN (2009) Distinct parietal and temporal pathways to the homologues of Broca’s area in the monkey. PLoS Biol 7(8):e1000170PubMedCrossRef Petrides M, Pandya DN (2009) Distinct parietal and temporal pathways to the homologues of Broca’s area in the monkey. PLoS Biol 7(8):e1000170PubMedCrossRef
go back to reference Pulvermüller F (2005) Brain mechanisms linking language and action. Nat Rev Neurosci 6(7):576–582PubMedCrossRef Pulvermüller F (2005) Brain mechanisms linking language and action. Nat Rev Neurosci 6(7):576–582PubMedCrossRef
go back to reference Quigg M, Fountain NB (1999) Conduction aphasia elicited by stimulation of the left posterior superior temporal gyrus. J Neurol Neurosurg Psychiatry 66(3):393–396PubMedCrossRef Quigg M, Fountain NB (1999) Conduction aphasia elicited by stimulation of the left posterior superior temporal gyrus. J Neurol Neurosurg Psychiatry 66(3):393–396PubMedCrossRef
go back to reference Riley H (1953) An atlas of the basal ganglia, brain stem and spinal cord. Williams and Wilkins, Baltimore Riley H (1953) An atlas of the basal ganglia, brain stem and spinal cord. Williams and Wilkins, Baltimore
go back to reference Saur D et al (2008) Ventral and dorsal pathways for language. Proc Nat Acad Sci USA 105(46):18035–18040PubMedCrossRef Saur D et al (2008) Ventral and dorsal pathways for language. Proc Nat Acad Sci USA 105(46):18035–18040PubMedCrossRef
go back to reference Schmahmann J, Pandya D (2006) Fiber pathways of the brain. Oxford University Press, New YorkCrossRef Schmahmann J, Pandya D (2006) Fiber pathways of the brain. Oxford University Press, New YorkCrossRef
go back to reference Schmahmann JD et al (2008) Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann N Y Acad Sci 1142:266–309PubMedCrossRef Schmahmann JD et al (2008) Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann N Y Acad Sci 1142:266–309PubMedCrossRef
go back to reference Simmons-Mackie N (1997) Conduction aphasia. In: LaPointe LL (ed) Aphasia and related neurogenic language disorders. Thiema, New York, pp 63–90 Simmons-Mackie N (1997) Conduction aphasia. In: LaPointe LL (ed) Aphasia and related neurogenic language disorders. Thiema, New York, pp 63–90
go back to reference Sotero RC, Trujillo-Barreto NJ (2007) Modelling the role of excitatory and inhibitory neuronal activity in the generation of the BOLD signal. NeuroImag 35(1):149–165CrossRef Sotero RC, Trujillo-Barreto NJ (2007) Modelling the role of excitatory and inhibitory neuronal activity in the generation of the BOLD signal. NeuroImag 35(1):149–165CrossRef
go back to reference Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1(4):e42PubMedCrossRef Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1(4):e42PubMedCrossRef
go back to reference Tie Y et al (2009) Comparison of blocked and event-related fMRI designs for pre-surgical language mapping. NeuroImag 47(Suppl 2):T107–T115CrossRef Tie Y et al (2009) Comparison of blocked and event-related fMRI designs for pre-surgical language mapping. NeuroImag 47(Suppl 2):T107–T115CrossRef
go back to reference Tsapkini K, Vivas AB, Triarhou LC (2008) « Does Broca » s area exist?’ Christofredo Jakob’s 1906 response to Pierre Marie’s holistic stance. Brain Lang 105(3):211–219PubMedCrossRef Tsapkini K, Vivas AB, Triarhou LC (2008) « Does Broca » s area exist?’ Christofredo Jakob’s 1906 response to Pierre Marie’s holistic stance. Brain Lang 105(3):211–219PubMedCrossRef
go back to reference Vernooij MW et al (2007) Fiber density asymmetry of the arcuate fasciculus in relation to functional hemispheric language lateralization in both right- and left-handed healthy subjects: a combined fMRI and DTI study. NeuroImag 35(3):1064–1076CrossRef Vernooij MW et al (2007) Fiber density asymmetry of the arcuate fasciculus in relation to functional hemispheric language lateralization in both right- and left-handed healthy subjects: a combined fMRI and DTI study. NeuroImag 35(3):1064–1076CrossRef
Metadata
Title
Extended Broca’s Area in the Functional Connectome of Language in Adults: Combined Cortical and Subcortical Single-Subject Analysis Using fMRI and DTI Tractography
Authors
Jean-Jacques Lemaire
Alexandra Golby
William M. Wells III
Sonia Pujol
Yanmei Tie
Laura Rigolo
Alexander Yarmarkovich
Steve Pieper
Carl-Fredrik Westin
Ferenc Jolesz
Ron Kikinis
Publication date
01-07-2013
Publisher
Springer US
Published in
Brain Topography / Issue 3/2013
Print ISSN: 0896-0267
Electronic ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-012-0257-7

Other articles of this Issue 3/2013

Brain Topography 3/2013 Go to the issue