Skip to main content
Top
Published in: Brain Topography 3/2012

01-07-2012 | Original Paper

Behavioural Treatment Increases Activity in the Cognitive Neuronal Networks in Children with Attention Deficit/Hyperactivity Disorder

Authors: Michael Siniatchkin, Nora Glatthaar, Gabriele Gerber von Müller, Alexander Prehn-Kristensen, Stephan Wolff, Silja Knöchel, Elisabeth Steinmann, Anna Sotnikova, Ulrich Stephani, Franz Petermann, Wolf-Dieter Gerber

Published in: Brain Topography | Issue 3/2012

Login to get access

Abstract

Response cost and token approach (RCT) within the scope of a summer camp training is an effective treatment program for attention deficit hyperactivity disorder (ADHD). It is likely that intensive RCT training influences networks responsible for ADHD symptoms. Functional magnetic resonance imaging (fMRI) was carried out in 12 children with ADHD before and after the RCT program and in 12 healthy control children twice. For fMRI, a Go/No-go paradigm was used to investigate the influence of RCT training on attention and impulsivity. The No-go condition revealed only weak activation in the dorsal part of the anterior cingulate cortex (ACC), parietal and dorsolateral prefrontal cortex (DLPFC) before the training in children with ADHD compared to healthy children. However, this activation in these brain regions was significantly more pronounced after the training. This increase in hemodynamic response cannot be attributed merely to repetition of the measurement since the effect was not observed in healthy children. The increase in hemodynamic response in the ACC and right DLPFC was significantly associated with a reduction in response time variability and clinical symptoms in ADHD patients. After the RCT training, the children with ADHD demonstrated more pronounced activation of cortical structures which are typically related to response monitoring and self-control. It seems likely that children with ADHD learned more cognitive control in a continuous performance task as was revealed by both neuropsychological outcome and fMRI.
Literature
go back to reference American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington
go back to reference Aron AR, Poldrack RA (2005) The cognitive neuroscience of response inhibition: relevance for genetic research in attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1285–1292PubMedCrossRef Aron AR, Poldrack RA (2005) The cognitive neuroscience of response inhibition: relevance for genetic research in attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1285–1292PubMedCrossRef
go back to reference Aron AR, Gluck MA, Poldrack RA (2006) Long-term test-retest reliability of functional MRI in a classification learning task. NeuroImage 29:1000–1006PubMedCrossRef Aron AR, Gluck MA, Poldrack RA (2006) Long-term test-retest reliability of functional MRI in a classification learning task. NeuroImage 29:1000–1006PubMedCrossRef
go back to reference Banaschewski T, Brandeis D (2007) Annotation: what electrical brain activity tells us about brain function that other techniques cannot tell us-a child psychiatric perspective. J Child Psychol Psychiatry 48:415–435PubMedCrossRef Banaschewski T, Brandeis D (2007) Annotation: what electrical brain activity tells us about brain function that other techniques cannot tell us-a child psychiatric perspective. J Child Psychol Psychiatry 48:415–435PubMedCrossRef
go back to reference Barkley RA (1997) Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 121:65–94PubMedCrossRef Barkley RA (1997) Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 121:65–94PubMedCrossRef
go back to reference Beauregard M, Levesque J (2006) Functional magnetic resonance imaging investigation of the effects of neurofeedback training on the neural bases of selective attention and response inhibition in children with attention-deficit/hyperactivity disorder. Appl Psychophysiol Biofeedback 31:3–20PubMedCrossRef Beauregard M, Levesque J (2006) Functional magnetic resonance imaging investigation of the effects of neurofeedback training on the neural bases of selective attention and response inhibition in children with attention-deficit/hyperactivity disorder. Appl Psychophysiol Biofeedback 31:3–20PubMedCrossRef
go back to reference Booth JR, Burman DD, Meyer JR, Lei Z, Trommer BL, Davenport ND, Li W, Parrish TB, Gitelman DR, Mesulam MM (2005) Larger deficits in brain networks for response inhibition than for visual selective attention in attention deficit hyperactivity disorder (ADHD). J Child Psychol Psychiatry 46:94–111PubMedCrossRef Booth JR, Burman DD, Meyer JR, Lei Z, Trommer BL, Davenport ND, Li W, Parrish TB, Gitelman DR, Mesulam MM (2005) Larger deficits in brain networks for response inhibition than for visual selective attention in attention deficit hyperactivity disorder (ADHD). J Child Psychol Psychiatry 46:94–111PubMedCrossRef
go back to reference Broshek DK, Jeffrey TB (2000) The halstead-reitan neuropsychological test battery. In: Groth-Marnat G (ed) Neuropsychological assessment in clinical practice: a guide to test interpretation and integration. Wiley, New York Broshek DK, Jeffrey TB (2000) The halstead-reitan neuropsychological test battery. In: Groth-Marnat G (ed) Neuropsychological assessment in clinical practice: a guide to test interpretation and integration. Wiley, New York
go back to reference Bush G, Spencer TJ, Holmes J, Shin LM, Valera EM, Seidman LJ, Makris N, Surman C, Aleardi M, Mick E, Biederman J (2008) Functional magnetic resonance imaging of methylphenidate and placebo in attention-deficit/hyperactivity disorder during the multi-source interference task. Arch Gen Psychiatry 65:102–114PubMedCrossRef Bush G, Spencer TJ, Holmes J, Shin LM, Valera EM, Seidman LJ, Makris N, Surman C, Aleardi M, Mick E, Biederman J (2008) Functional magnetic resonance imaging of methylphenidate and placebo in attention-deficit/hyperactivity disorder during the multi-source interference task. Arch Gen Psychiatry 65:102–114PubMedCrossRef
go back to reference Castellanos FX, Sonuga-Barke EJ, Scheres A, Di Martino A, Hyde C, Walters JR (2005) Varieties of attention-deficit/hyperactivity disorder-related intra-individual variability. Biol Psychiatry 57:1416–1423PubMedCrossRef Castellanos FX, Sonuga-Barke EJ, Scheres A, Di Martino A, Hyde C, Walters JR (2005) Varieties of attention-deficit/hyperactivity disorder-related intra-individual variability. Biol Psychiatry 57:1416–1423PubMedCrossRef
go back to reference Chamberlain SR, Hampshire A, Muller U, Rubia K, Del Campo N, Craig K, Regenthal R, Suckling J, Roiser JP, Grant JE, Bullmore ET, Robbins TW, Sahakian BJ (2009) Atomoxetine modulates right inferior frontal activation during inhibitory control: a pharmacological functional magnetic resonance imaging study. Biol Psychiatry 65:550–555PubMedCrossRef Chamberlain SR, Hampshire A, Muller U, Rubia K, Del Campo N, Craig K, Regenthal R, Suckling J, Roiser JP, Grant JE, Bullmore ET, Robbins TW, Sahakian BJ (2009) Atomoxetine modulates right inferior frontal activation during inhibitory control: a pharmacological functional magnetic resonance imaging study. Biol Psychiatry 65:550–555PubMedCrossRef
go back to reference Chein JM, Schneider W (2005) Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning. Brain Res Cogn Brain Res 25:607–623PubMedCrossRef Chein JM, Schneider W (2005) Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning. Brain Res Cogn Brain Res 25:607–623PubMedCrossRef
go back to reference Crosbie J, Perusse D, Barr CL, Schachar RJ (2008) Validating psychiatric endophenotypes: inhibitory control and attention deficit hyperactivity disorder. Neurosci Biobehav Rev 32:40–55PubMedCrossRef Crosbie J, Perusse D, Barr CL, Schachar RJ (2008) Validating psychiatric endophenotypes: inhibitory control and attention deficit hyperactivity disorder. Neurosci Biobehav Rev 32:40–55PubMedCrossRef
go back to reference Desman C, Petermann F, Hampel P (2008) Deficit in response inhibition in children with attention deficit/hyperactivity disorder (ADHD): impact of motivation? Child Neuropsychol 14:483–503PubMedCrossRef Desman C, Petermann F, Hampel P (2008) Deficit in response inhibition in children with attention deficit/hyperactivity disorder (ADHD): impact of motivation? Child Neuropsychol 14:483–503PubMedCrossRef
go back to reference Dillo W, Goke A, Prox-Vagedes V, Szycik GR, Roy M, Donnerstag F, Emrich HM, Ohlmeier MD (2010) Neuronal correlates of ADHD in adults with evidence for compensation strategies—a functional MRI study with a Go/No-Go paradigm. Ger Med Sci 8:1–8 Dillo W, Goke A, Prox-Vagedes V, Szycik GR, Roy M, Donnerstag F, Emrich HM, Ohlmeier MD (2010) Neuronal correlates of ADHD in adults with evidence for compensation strategies—a functional MRI study with a Go/No-Go paradigm. Ger Med Sci 8:1–8
go back to reference Dodds CM, Muller U, Clark L, van Loon A, Cools R, Robbins TW (2008) Methylphenidate has differential effects on blood oxygenation level-dependent signal related to cognitive subprocesses of reversal learning. J Neurosci 28:5976–5982PubMedCrossRef Dodds CM, Muller U, Clark L, van Loon A, Cools R, Robbins TW (2008) Methylphenidate has differential effects on blood oxygenation level-dependent signal related to cognitive subprocesses of reversal learning. J Neurosci 28:5976–5982PubMedCrossRef
go back to reference Döpfner M, Breuer D, Schurmann S, Metternich TW, Rademacher C, Lehmkuhl G (2004) Effectiveness of an adaptive multimodal treatment in children with attention-deficit hyperactivity disorder—global outcome. Eur Child Adolesc Psychiatry 13(Suppl 1):I117–I129PubMed Döpfner M, Breuer D, Schurmann S, Metternich TW, Rademacher C, Lehmkuhl G (2004) Effectiveness of an adaptive multimodal treatment in children with attention-deficit hyperactivity disorder—global outcome. Eur Child Adolesc Psychiatry 13(Suppl 1):I117–I129PubMed
go back to reference Durston S, Mulder M, Casey BJ, Ziermans T, van Engeland H (2006) Activation in ventral prefrontal cortex is sensitive to genetic vulnerability for attention-deficit hyperactivity disorder. Biol Psychiatry 60:1062–1070PubMedCrossRef Durston S, Mulder M, Casey BJ, Ziermans T, van Engeland H (2006) Activation in ventral prefrontal cortex is sensitive to genetic vulnerability for attention-deficit hyperactivity disorder. Biol Psychiatry 60:1062–1070PubMedCrossRef
go back to reference Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 25:1325–1335PubMedCrossRef Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 25:1325–1335PubMedCrossRef
go back to reference Epstein JN (2009) A pathophysiology of attention deficit/hyperactivity disorder: clues from neuroimaging. In: Rumsey JM, Ernst M (eds) NeuroImaging in developmental clinical neuroscience. Cambridge University Press, Cambridge, pp 113–129CrossRef Epstein JN (2009) A pathophysiology of attention deficit/hyperactivity disorder: clues from neuroimaging. In: Rumsey JM, Ernst M (eds) NeuroImaging in developmental clinical neuroscience. Cambridge University Press, Cambridge, pp 113–129CrossRef
go back to reference Fliessback K, Rohe T, Linder NS, Trautner P, Elger CE, Weber B (2010) Retest reliability of reward-related BOLD signals. NeuroImage 50:1168–1176CrossRef Fliessback K, Rohe T, Linder NS, Trautner P, Elger CE, Weber B (2010) Retest reliability of reward-related BOLD signals. NeuroImage 50:1168–1176CrossRef
go back to reference Freyer T, Valerius G, Kuelz AK, Speck O, Glauche V, Hull M, Voderholzer U (2009) Test-retest reliability of event-related functional MRI in a probabilistic reversal learning task. Psychiatry Res 174:40–46PubMedCrossRef Freyer T, Valerius G, Kuelz AK, Speck O, Glauche V, Hull M, Voderholzer U (2009) Test-retest reliability of event-related functional MRI in a probabilistic reversal learning task. Psychiatry Res 174:40–46PubMedCrossRef
go back to reference Freyer T, Klöppel S, Tüscher O, Kordon A, Zurowski B, Kuelz AK, Speck O, Glauche V, Voderholzer U (2011) Frontostriatal activation in patients with obsessive-compulsive disorder before and after cognitive behavioral therapy. Psychol Med 41:207–216PubMedCrossRef Freyer T, Klöppel S, Tüscher O, Kordon A, Zurowski B, Kuelz AK, Speck O, Glauche V, Voderholzer U (2011) Frontostriatal activation in patients with obsessive-compulsive disorder before and after cognitive behavioral therapy. Psychol Med 41:207–216PubMedCrossRef
go back to reference Friston KJ, Holmes AP, Worsley KP (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Map 2:189–210CrossRef Friston KJ, Holmes AP, Worsley KP (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Map 2:189–210CrossRef
go back to reference Gerber WD, Gerber-von Müller G, Petermann U, Niederberger U, Siniatchkin M (2011) Effectiveness of a multimodal behavioral summer camp program for attention deficit/hyperactivity disorder. The impact on neuropsychological functioning. Child Neuropsychol [Epub ahead of print] Gerber WD, Gerber-von Müller G, Petermann U, Niederberger U, Siniatchkin M (2011) Effectiveness of a multimodal behavioral summer camp program for attention deficit/hyperactivity disorder. The impact on neuropsychological functioning. Child Neuropsychol [Epub ahead of print]
go back to reference Gerber-von Müller G, Petermann U, Petermann F, Niederberger U, Stephani U, Siniatchkin M, Gerber W-D (2009) Das ADHS-summer camp–Entwicklung und evaluation eines multimodalen programms. Kindheit und Entwicklung 18:162–172CrossRef Gerber-von Müller G, Petermann U, Petermann F, Niederberger U, Stephani U, Siniatchkin M, Gerber W-D (2009) Das ADHS-summer camp–Entwicklung und evaluation eines multimodalen programms. Kindheit und Entwicklung 18:162–172CrossRef
go back to reference Görtz A, Döpfner M, Nowak A, Bonus B, Lehmkuhl G (2002) Ist das Selbsturteil Jugendlicher bei der Diagnostik von Aufmerksamkeitsdefizit-/Hyperaktivitätsstörungen hilfreich? Eine Analyse mit dem Diagnostiksystem DISYPS. Kindheit und Entwicklung 11:82–89CrossRef Görtz A, Döpfner M, Nowak A, Bonus B, Lehmkuhl G (2002) Ist das Selbsturteil Jugendlicher bei der Diagnostik von Aufmerksamkeitsdefizit-/Hyperaktivitätsstörungen hilfreich? Eine Analyse mit dem Diagnostiksystem DISYPS. Kindheit und Entwicklung 11:82–89CrossRef
go back to reference Hoezema E, Carmona S, Tremols V, Gispert JD, Guilart M, Fauquet J et al (2010) Enhanced neural activity in frontal and cerebellar circuits after cognitive training in children with attention-deficit/hyperactivity disorder. Hum Brain Map 31:1945–1950 Hoezema E, Carmona S, Tremols V, Gispert JD, Guilart M, Fauquet J et al (2010) Enhanced neural activity in frontal and cerebellar circuits after cognitive training in children with attention-deficit/hyperactivity disorder. Hum Brain Map 31:1945–1950
go back to reference Huyser C, Veltman DJ, Wolters LH, de Haan E, Boer F (2001) Developmental aspects of error and high-conflict-related brain activity in pediatric obsessive-compulsive disorder: a fMRI study with a Flanker task before and after CBT. J Child Psychol Psychiatry 52:1251–1260CrossRef Huyser C, Veltman DJ, Wolters LH, de Haan E, Boer F (2001) Developmental aspects of error and high-conflict-related brain activity in pediatric obsessive-compulsive disorder: a fMRI study with a Flanker task before and after CBT. J Child Psychol Psychiatry 52:1251–1260CrossRef
go back to reference Jäncke L, Cheetham M, Baumgartner T (2009) Virtual reality and the role of the prefrontal cortex in adults and children. Front Neurosci 3:52–59PubMedCrossRef Jäncke L, Cheetham M, Baumgartner T (2009) Virtual reality and the role of the prefrontal cortex in adults and children. Front Neurosci 3:52–59PubMedCrossRef
go back to reference Kelly AM, Garavan H (2005) Human functional neuroimaging of brain changes associated with practice. Cereb Cortex 15:1089–1102PubMedCrossRef Kelly AM, Garavan H (2005) Human functional neuroimaging of brain changes associated with practice. Cereb Cortex 15:1089–1102PubMedCrossRef
go back to reference Klein C, Wendling K, Huettner P, Ruder H, Peper M (2006) Intra-subject variability in attention-deficit hyperactivity disorder. Biol Psychiatry 60:1088–1097PubMedCrossRef Klein C, Wendling K, Huettner P, Ruder H, Peper M (2006) Intra-subject variability in attention-deficit hyperactivity disorder. Biol Psychiatry 60:1088–1097PubMedCrossRef
go back to reference Kooistra L, van der Meere JJ, Edwards JD, Kaplan BJ, Crawford S, Goodyear BG (2010) Preliminary fMRI findings on the effects of event rate in adults with ADHD. J Neural Transm 117:655–662PubMedCrossRef Kooistra L, van der Meere JJ, Edwards JD, Kaplan BJ, Crawford S, Goodyear BG (2010) Preliminary fMRI findings on the effects of event rate in adults with ADHD. J Neural Transm 117:655–662PubMedCrossRef
go back to reference Kutcher S, Aman M, Brooks SJ, Buitelaar J, van Daalen E, Fegert J, Findling RL, Fisman S, Greenhill LL, Huss M, Kusumakar V, Pine D, Taylor E, Tyano S (2004) International consensus statement on attention-deficit/hyperactivity disorder (ADHD) and disruptive behaviour disorders (DBDs): clinical implications and treatment practice suggestions. Eur Neuropsychopharmacol 14:11–28PubMedCrossRef Kutcher S, Aman M, Brooks SJ, Buitelaar J, van Daalen E, Fegert J, Findling RL, Fisman S, Greenhill LL, Huss M, Kusumakar V, Pine D, Taylor E, Tyano S (2004) International consensus statement on attention-deficit/hyperactivity disorder (ADHD) and disruptive behaviour disorders (DBDs): clinical implications and treatment practice suggestions. Eur Neuropsychopharmacol 14:11–28PubMedCrossRef
go back to reference Langberg JM, Epstein JN, Graham AJ (2008) Organizational-skills interventions in the treatment of ADHD. Expert Rev Neurother 8:1549–1561PubMedCrossRef Langberg JM, Epstein JN, Graham AJ (2008) Organizational-skills interventions in the treatment of ADHD. Expert Rev Neurother 8:1549–1561PubMedCrossRef
go back to reference Levesque J, Beauregard M, Mensour B (2006) Effect of neurofeedback training on the neural substrates of selective attention in children with attention-deficit/hyperactivity disorder: a functional magnetic resonance imaging study. Neurosci Lett 394:216–221PubMedCrossRef Levesque J, Beauregard M, Mensour B (2006) Effect of neurofeedback training on the neural substrates of selective attention in children with attention-deficit/hyperactivity disorder: a functional magnetic resonance imaging study. Neurosci Lett 394:216–221PubMedCrossRef
go back to reference Loubinoux I, Carel C, Alary F, Boulanouar K, Viallard G, Manelfe C, Rascol O, Celsis P, Chollet F (2001) Within-session and between-session reproducibility of cerebral sensorimotor activation: a test–retest effect evidenced with functional magnetic resonance imaging. J Cereb Blood Flow Metab 21:592–607PubMedCrossRef Loubinoux I, Carel C, Alary F, Boulanouar K, Viallard G, Manelfe C, Rascol O, Celsis P, Chollet F (2001) Within-session and between-session reproducibility of cerebral sensorimotor activation: a test–retest effect evidenced with functional magnetic resonance imaging. J Cereb Blood Flow Metab 21:592–607PubMedCrossRef
go back to reference Melcher T, Falkai P, Gruber O (2008) Functional brain abnormalities in psychiatric disorders: neural mechanisms to detect and resolve cognitive conflict and interference. Brain Res Rev 59:96–124PubMedCrossRef Melcher T, Falkai P, Gruber O (2008) Functional brain abnormalities in psychiatric disorders: neural mechanisms to detect and resolve cognitive conflict and interference. Brain Res Rev 59:96–124PubMedCrossRef
go back to reference Nigg JT, Casey BJ (2005) An integrative theory of attention-deficit/hyperactivity disorder based on the cognitive and affective neurosciences. Dev Psychopathol 17:785–806PubMed Nigg JT, Casey BJ (2005) An integrative theory of attention-deficit/hyperactivity disorder based on the cognitive and affective neurosciences. Dev Psychopathol 17:785–806PubMed
go back to reference Northup J, Fusilier I, Swanson V, Huete J, Bruce T, Freeland J, Gulley V, Edwards S (1999) Further analysis of the separate and interactive effects of methylphenidate and common classroom contingencies. J Appl Behav Anal 32:35–50PubMedCrossRef Northup J, Fusilier I, Swanson V, Huete J, Bruce T, Freeland J, Gulley V, Edwards S (1999) Further analysis of the separate and interactive effects of methylphenidate and common classroom contingencies. J Appl Behav Anal 32:35–50PubMedCrossRef
go back to reference Passarotti AM, Sweeney JA, Pavuluri MN (2010) Neural correlates of response inhibition in pediatric bipolar disorder and attention deficit hyperactivity disorder. Psychiatry Res 181:36–43PubMedCrossRef Passarotti AM, Sweeney JA, Pavuluri MN (2010) Neural correlates of response inhibition in pediatric bipolar disorder and attention deficit hyperactivity disorder. Psychiatry Res 181:36–43PubMedCrossRef
go back to reference Pelham WE, Greiner AR, Gnagy EM (1997) Children’s summer treatment program manual. Comprehensive Treatment for Attention Deficit Disorder, Inc., Buffalo Pelham WE, Greiner AR, Gnagy EM (1997) Children’s summer treatment program manual. Comprehensive Treatment for Attention Deficit Disorder, Inc., Buffalo
go back to reference Posner MI, Rothbart MK, Sheese BE, Tang Y (2007) The anterior cingulate gyrus and the mechanism of self-regulation. Cogn Affect Behav Neurosci 7:391–395PubMedCrossRef Posner MI, Rothbart MK, Sheese BE, Tang Y (2007) The anterior cingulate gyrus and the mechanism of self-regulation. Cogn Affect Behav Neurosci 7:391–395PubMedCrossRef
go back to reference Reitman D, Hupp SD, O’Callaghan PM, Gulley V, Northup J (2001) The influence of a token economy and methylphenidate on attentive and disruptive behavior during sports with ADHD-diagnosed children. Behav Modif 25:305–323PubMedCrossRef Reitman D, Hupp SD, O’Callaghan PM, Gulley V, Northup J (2001) The influence of a token economy and methylphenidate on attentive and disruptive behavior during sports with ADHD-diagnosed children. Behav Modif 25:305–323PubMedCrossRef
go back to reference Rubia K, Overmeyer S, Taylor E, Brammer M, Williams SC, Simmons A, Bullmore ET (1999) Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI. Am J Psychiatry 156:891–896PubMed Rubia K, Overmeyer S, Taylor E, Brammer M, Williams SC, Simmons A, Bullmore ET (1999) Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI. Am J Psychiatry 156:891–896PubMed
go back to reference Rubia K, Smith AB, Brammer MJ, Toone B, Taylor E (2005) Abnormal brain activation during inhibition and error detection in medication-naive adolescents with ADHD. Am J Psychiatry 162:1067–1075PubMedCrossRef Rubia K, Smith AB, Brammer MJ, Toone B, Taylor E (2005) Abnormal brain activation during inhibition and error detection in medication-naive adolescents with ADHD. Am J Psychiatry 162:1067–1075PubMedCrossRef
go back to reference Rubia K, Smith AB, Brammer MJ, Taylor E (2007a) Temporal lobe dysfunction in medication-naïve boys with attention-deficit/hyperactivity disorder during attention allocation and its relation to response variability. Biol Psychiatry 62:999–1006PubMedCrossRef Rubia K, Smith AB, Brammer MJ, Taylor E (2007a) Temporal lobe dysfunction in medication-naïve boys with attention-deficit/hyperactivity disorder during attention allocation and its relation to response variability. Biol Psychiatry 62:999–1006PubMedCrossRef
go back to reference Rubia K, Smith A, Taylor E (2007b) Performance of children with attention deficit hyperactivity disorder (ADHD) on a test battery of impulsiveness. Child Neuropsychol 13:276–304PubMedCrossRef Rubia K, Smith A, Taylor E (2007b) Performance of children with attention deficit hyperactivity disorder (ADHD) on a test battery of impulsiveness. Child Neuropsychol 13:276–304PubMedCrossRef
go back to reference Rubia K, Halari R, Cubillo A, Mohammad AM, Brammer M, Taylor E (2009) Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naive children with ADHD during a rewarded continuous performance task. Neuropharmacology 57:640–652PubMedCrossRef Rubia K, Halari R, Cubillo A, Mohammad AM, Brammer M, Taylor E (2009) Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naive children with ADHD during a rewarded continuous performance task. Neuropharmacology 57:640–652PubMedCrossRef
go back to reference Sergeant JA, Geurts H, Oosterlaan J (2002) How specific is a deficit of executive functioning for attention-deficit/hyperactivity disorder? Behav Brain Res 130:3–28PubMedCrossRef Sergeant JA, Geurts H, Oosterlaan J (2002) How specific is a deficit of executive functioning for attention-deficit/hyperactivity disorder? Behav Brain Res 130:3–28PubMedCrossRef
go back to reference Smith AB, Taylor E, Brammer M, Toone B, Rubia K (2006) Task-specific hypoactivation in prefrontal and temporoparietal brain regions during motor inhibition and task switching in medication-naive children and adolescents with attention deficit hyperactivity disorder. Am J Psychiatry 163:1044–1051PubMedCrossRef Smith AB, Taylor E, Brammer M, Toone B, Rubia K (2006) Task-specific hypoactivation in prefrontal and temporoparietal brain regions during motor inhibition and task switching in medication-naive children and adolescents with attention deficit hyperactivity disorder. Am J Psychiatry 163:1044–1051PubMedCrossRef
go back to reference Solanto MV, Schulz KP, Fan J, Tang CY, Newcorn JH (2009) Event-related FMRI of inhibitory control in the predominantly inattentive and combined subtypes of ADHD. J Neuroimaging 19:205–212PubMedCrossRef Solanto MV, Schulz KP, Fan J, Tang CY, Newcorn JH (2009) Event-related FMRI of inhibitory control in the predominantly inattentive and combined subtypes of ADHD. J Neuroimaging 19:205–212PubMedCrossRef
go back to reference Suskauer SJ, Simmonds DJ, Caffo BS, Denckla MB, Pekar JJ, Mostofsky SH (2008) fMRI of intrasubject variability in ADHD: anomalous premotor activity with prefrontal compensation. J Am Acad Child Adolesc Psychiatry 47:1141–1150PubMedCrossRef Suskauer SJ, Simmonds DJ, Caffo BS, Denckla MB, Pekar JJ, Mostofsky SH (2008) fMRI of intrasubject variability in ADHD: anomalous premotor activity with prefrontal compensation. J Am Acad Child Adolesc Psychiatry 47:1141–1150PubMedCrossRef
go back to reference Tamm L, Carlson CL (2007) Task demands interact with the single and combined effects of medication and contingencies on children with ADHD. J Atten Disord 10:372–380PubMedCrossRef Tamm L, Carlson CL (2007) Task demands interact with the single and combined effects of medication and contingencies on children with ADHD. J Atten Disord 10:372–380PubMedCrossRef
go back to reference Tamm L, Menon V, Ringel J, Reiss AL (2004) Event-related FMRI evidence of frontotemporal involvement in aberrant response inhibition and task switching in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 43:1430–1440PubMedCrossRef Tamm L, Menon V, Ringel J, Reiss AL (2004) Event-related FMRI evidence of frontotemporal involvement in aberrant response inhibition and task switching in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 43:1430–1440PubMedCrossRef
go back to reference Toplak ME, Connors L, Shuster J, Knezevic B, Parks S (2008) Review of cognitive, cognitive-behavioral, and neural-based interventions for attention-deficit/hyperactivity disorder (ADHD). Clin Psychol Rev 28:801–823PubMedCrossRef Toplak ME, Connors L, Shuster J, Knezevic B, Parks S (2008) Review of cognitive, cognitive-behavioral, and neural-based interventions for attention-deficit/hyperactivity disorder (ADHD). Clin Psychol Rev 28:801–823PubMedCrossRef
go back to reference Toussaint A, Petermann F, Schmidt S, Petermann U, Gerber-von Müller G, et al. (2011) Effectiveness of behavioral therapy on attention regulation and executive functioning in children and adolescents with ADHD. Zeitschrift Psychiatrie Psychologie und Psychotherapie 59:25–36 Toussaint A, Petermann F, Schmidt S, Petermann U, Gerber-von Müller G, et al. (2011) Effectiveness of behavioral therapy on attention regulation and executive functioning in children and adolescents with ADHD. Zeitschrift Psychiatrie Psychologie und Psychotherapie 59:25–36
go back to reference Uebel H, Albrecht B, Asherson P, Borger NA, Butler L, Chen W, Christiansen H, Heise A, Kuntsi J, Schafer U, Andreou P, Manor I, Marco R, Miranda A, Mulligan A, Oades RD, van der Meere J, Faraone SV, Rothenberger A, Banaschewski T (2010) Performance variability, impulsivity errors and the impact of incentives as gender-independent endophenotypes for ADHD. J Child Psychol Psychiatry 51:210–218PubMedCrossRef Uebel H, Albrecht B, Asherson P, Borger NA, Butler L, Chen W, Christiansen H, Heise A, Kuntsi J, Schafer U, Andreou P, Manor I, Marco R, Miranda A, Mulligan A, Oades RD, van der Meere J, Faraone SV, Rothenberger A, Banaschewski T (2010) Performance variability, impulsivity errors and the impact of incentives as gender-independent endophenotypes for ADHD. J Child Psychol Psychiatry 51:210–218PubMedCrossRef
go back to reference Vaidya CJ, Austin G, Kirkorian G, Ridlehuber HW, Desmond JE, Glover GH, Gabrieli JD (1998) Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Proc Natl Acad Sci USA 95:14494–14499PubMedCrossRef Vaidya CJ, Austin G, Kirkorian G, Ridlehuber HW, Desmond JE, Glover GH, Gabrieli JD (1998) Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Proc Natl Acad Sci USA 95:14494–14499PubMedCrossRef
go back to reference Vaurio RG, Simmonds DJ, Mostofsky SH (2009) Increased intra-individual reaction time variability in attention-deficit/hyperactivity disorder across response inhibition tasks with different cognitive demands. Neuropsychologia 47:2389–2396PubMedCrossRef Vaurio RG, Simmonds DJ, Mostofsky SH (2009) Increased intra-individual reaction time variability in attention-deficit/hyperactivity disorder across response inhibition tasks with different cognitive demands. Neuropsychologia 47:2389–2396PubMedCrossRef
go back to reference Willcutt EG, Doyle AE, Nigg JT, Faraone SV, Pennington BF (2005) Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biol Psychiatry 57:1336–1346PubMedCrossRef Willcutt EG, Doyle AE, Nigg JT, Faraone SV, Pennington BF (2005) Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biol Psychiatry 57:1336–1346PubMedCrossRef
go back to reference Wodka EL, Mahone EM, Blankner JG, Larson JC, Fotedar S, Denckla MB, Mostofsky SH (2007) Evidence that response inhibition is a primary deficit in ADHD. J Clin Exp Neuropsychol 29:345–356PubMedCrossRef Wodka EL, Mahone EM, Blankner JG, Larson JC, Fotedar S, Denckla MB, Mostofsky SH (2007) Evidence that response inhibition is a primary deficit in ADHD. J Clin Exp Neuropsychol 29:345–356PubMedCrossRef
go back to reference Yoo SS, O’Leary HM, Lee JH, Chen NK, Panych LP, Jolesz FA (2007) Reproducibility of trial-based functional MRI on motor imagery. Int J Neurosci 117:215–227PubMedCrossRef Yoo SS, O’Leary HM, Lee JH, Chen NK, Panych LP, Jolesz FA (2007) Reproducibility of trial-based functional MRI on motor imagery. Int J Neurosci 117:215–227PubMedCrossRef
go back to reference Zandbelt BB, Gladwin TE, Raemaekers M, van Buuren M, Neggers SF, Kahn RS, Ramsey NF, Vink M (2008) Within-subject variation in BOLD-fMRI signal changes across repeated measurements: quantification and implications for sample size. NeuroImage 42:196–206PubMedCrossRef Zandbelt BB, Gladwin TE, Raemaekers M, van Buuren M, Neggers SF, Kahn RS, Ramsey NF, Vink M (2008) Within-subject variation in BOLD-fMRI signal changes across repeated measurements: quantification and implications for sample size. NeuroImage 42:196–206PubMedCrossRef
Metadata
Title
Behavioural Treatment Increases Activity in the Cognitive Neuronal Networks in Children with Attention Deficit/Hyperactivity Disorder
Authors
Michael Siniatchkin
Nora Glatthaar
Gabriele Gerber von Müller
Alexander Prehn-Kristensen
Stephan Wolff
Silja Knöchel
Elisabeth Steinmann
Anna Sotnikova
Ulrich Stephani
Franz Petermann
Wolf-Dieter Gerber
Publication date
01-07-2012
Publisher
Springer US
Published in
Brain Topography / Issue 3/2012
Print ISSN: 0896-0267
Electronic ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-012-0221-6

Other articles of this Issue 3/2012

Brain Topography 3/2012 Go to the issue