Skip to main content
Top
Published in: Brain Topography 3/2010

Open Access 01-09-2010 | Original Paper

Variable Anisotropic Brain Electrical Conductivities in Epileptogenic Foci

Authors: M. Akhtari, M. Mandelkern, D. Bui, N. Salamon, H. V. Vinters, G. W. Mathern

Published in: Brain Topography | Issue 3/2010

Login to get access

Abstract

Source localization models assume brain electrical conductivities are isotropic at about 0.33 S/m. These assumptions have not been confirmed ex vivo in humans. This study determined bidirectional electrical conductivities from pediatric epilepsy surgery patients. Electrical conductivities perpendicular and parallel to the pial surface of neocortex and subcortical white matter (n = 15) were measured using the 4-electrode technique and compared with clinical variables. Mean (±SD) electrical conductivities were 0.10 ± 0.01 S/m, and varied by 243% from patient to patient. Perpendicular and parallel conductivities differed by 45%, and the larger values were perpendicular to the pial surface in 47% and parallel in 40% of patients. A perpendicular principal axis was associated with normal, while isotropy and parallel principal axes were linked with epileptogenic lesions by MRI. Electrical conductivities were decreased in patients with cortical dysplasia compared with non-dysplasia etiologies. The electrical conductivity values of freshly excised human brain tissues were approximately 30% of assumed values, varied by over 200% from patient to patient, and had erratic anisotropic and isotropic shapes if the MRI showed a lesion. Understanding brain electrical conductivity and ways to non-invasively measure them are probably necessary to enhance the ability to localize EEG sources from epilepsy surgery patients.
Literature
go back to reference Akhtari M, Bryant H, Flynn E, Lopez N, Padilla R, Merrifield W, Mamelak A, Sutherling W (2002a) MEG, EEG source localization and conductivities of the live human skull. In: BIOMAG 2002, 13th international conference on biomagnetism, Jena, Germany, August 2002 Akhtari M, Bryant H, Flynn E, Lopez N, Padilla R, Merrifield W, Mamelak A, Sutherling W (2002a) MEG, EEG source localization and conductivities of the live human skull. In: BIOMAG 2002, 13th international conference on biomagnetism, Jena, Germany, August 2002
go back to reference Akhtari M, Bryant HC, Mamelak AN, Flynn ER, Heller L, Shih JJ, Mandelkern M, Matlachov A, Ranken DM, Best ED, DiMauro MA, Lee RR, Sutherling WW (2002b) Conductivities of three-layer live human skull. Brain Topogr 14(3):151–167CrossRefPubMed Akhtari M, Bryant HC, Mamelak AN, Flynn ER, Heller L, Shih JJ, Mandelkern M, Matlachov A, Ranken DM, Best ED, DiMauro MA, Lee RR, Sutherling WW (2002b) Conductivities of three-layer live human skull. Brain Topogr 14(3):151–167CrossRefPubMed
go back to reference Akhtari M, Bryant HC, Emin D et al (2003) A model for frequency dependence of conductivities of the live human skull. Brain Topogr 16(1):39–55CrossRefPubMed Akhtari M, Bryant HC, Emin D et al (2003) A model for frequency dependence of conductivities of the live human skull. Brain Topogr 16(1):39–55CrossRefPubMed
go back to reference Akhtari M, Salamon N, Duncan R, Fried I, Mathern GW (2006) Electrical conductivities of the freshly excised cerebral cortex in epilepsy surgery patients; correlation with pathology, seizure duration, and diffusion tensor imaging. Brain Topogr 18(4):281–290CrossRefPubMed Akhtari M, Salamon N, Duncan R, Fried I, Mathern GW (2006) Electrical conductivities of the freshly excised cerebral cortex in epilepsy surgery patients; correlation with pathology, seizure duration, and diffusion tensor imaging. Brain Topogr 18(4):281–290CrossRefPubMed
go back to reference Awada KA, Jackson DR, Baumann SB et al (1998) Effect of conductivity uncertainties and modeling errors on EEG source localization using a 2-D model. IEEE Trans Biomed Eng 45(9):1135–1145CrossRefPubMed Awada KA, Jackson DR, Baumann SB et al (1998) Effect of conductivity uncertainties and modeling errors on EEG source localization using a 2-D model. IEEE Trans Biomed Eng 45(9):1135–1145CrossRefPubMed
go back to reference Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111(3):209–219CrossRefPubMed Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111(3):209–219CrossRefPubMed
go back to reference Baumann SB, Wozny DR, Kelly SK, Meno FM (1997) The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans Biomed Eng 44(3):220–223CrossRefPubMed Baumann SB, Wozny DR, Kelly SK, Meno FM (1997) The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans Biomed Eng 44(3):220–223CrossRefPubMed
go back to reference Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15(7–8):435–455CrossRefPubMed Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15(7–8):435–455CrossRefPubMed
go back to reference Bénar CG, Gotman J (2002) Modeling of post-surgical brain and skull defects in the EEG inverse problem with the boundary element method. Clin Neurophysiol 113(1):48–56CrossRefPubMed Bénar CG, Gotman J (2002) Modeling of post-surgical brain and skull defects in the EEG inverse problem with the boundary element method. Clin Neurophysiol 113(1):48–56CrossRefPubMed
go back to reference Bruno P, Vatta F, Inchingolo P (2002) Lesion type misidentification: EEG potential sampling and source reconstruction errors. Biomed Sci Instrum 38:435–440PubMed Bruno P, Vatta F, Inchingolo P (2002) Lesion type misidentification: EEG potential sampling and source reconstruction errors. Biomed Sci Instrum 38:435–440PubMed
go back to reference Ebersole JS (1999) Non-invasive pre-surgical evaluation with EEG/MEG source analysis. Electroencephalogr Clin Neurophysiol Suppl 50:167–174PubMed Ebersole JS (1999) Non-invasive pre-surgical evaluation with EEG/MEG source analysis. Electroencephalogr Clin Neurophysiol Suppl 50:167–174PubMed
go back to reference Fuchs M, Wagner M, Wischmann HA et al (1998a) Improving source reconstructions by combining bioelectric and biomagnetic data. Electroencephalogr Clin Neurophysiol 107(2):93–111CrossRefPubMed Fuchs M, Wagner M, Wischmann HA et al (1998a) Improving source reconstructions by combining bioelectric and biomagnetic data. Electroencephalogr Clin Neurophysiol 107(2):93–111CrossRefPubMed
go back to reference Fuchs M, Drenckhahn R, Wischmann HA, Wagner M (1998b) An improved boundary element method for realistic volume-conductor modeling. IEEE Trans Biomed Eng 45(8):980–997CrossRefPubMed Fuchs M, Drenckhahn R, Wischmann HA, Wagner M (1998b) An improved boundary element method for realistic volume-conductor modeling. IEEE Trans Biomed Eng 45(8):980–997CrossRefPubMed
go back to reference Gabriel C (2005) Dielectric properties of biological tissue: variation with age. Bioelectromagnetics Suppl 7:S12–S18CrossRefPubMed Gabriel C (2005) Dielectric properties of biological tissue: variation with age. Bioelectromagnetics Suppl 7:S12–S18CrossRefPubMed
go back to reference Gabriel C, Gabriel S, Corthout E (1996) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41(11):2231–2249CrossRefPubMed Gabriel C, Gabriel S, Corthout E (1996) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41(11):2231–2249CrossRefPubMed
go back to reference Geddes LA, Baker LE (1967) The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist. Med Biol Eng 5(3):271–293CrossRefPubMed Geddes LA, Baker LE (1967) The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist. Med Biol Eng 5(3):271–293CrossRefPubMed
go back to reference Gencer NG, Acar CE (2004) Sensitivity of EEG and MEG measurements to tissue conductivity. Phys Med Biol 49(5):701–717CrossRefPubMed Gencer NG, Acar CE (2004) Sensitivity of EEG and MEG measurements to tissue conductivity. Phys Med Biol 49(5):701–717CrossRefPubMed
go back to reference Gutierrez D, Nehorai A, Muravchik CH (2004) Estimating brain conductivities and dipole source signals with EEG arrays. IEEE Trans Biomed Eng 51(12):2113–2122CrossRefPubMed Gutierrez D, Nehorai A, Muravchik CH (2004) Estimating brain conductivities and dipole source signals with EEG arrays. IEEE Trans Biomed Eng 51(12):2113–2122CrossRefPubMed
go back to reference Hallez H, Vanrumste B, Van Hese P, Delputte S, Lemahieu I (2008) Dipole estimation errors due to differences in modeling anisotropic conductivities in realistic head models for EEG source analysis. Phys Med Biol 53(7):1877–1894CrossRefPubMed Hallez H, Vanrumste B, Van Hese P, Delputte S, Lemahieu I (2008) Dipole estimation errors due to differences in modeling anisotropic conductivities in realistic head models for EEG source analysis. Phys Med Biol 53(7):1877–1894CrossRefPubMed
go back to reference Hamalainen MS, Sarvas J (1989) Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans Biomed Eng 36(2):165–171CrossRefPubMed Hamalainen MS, Sarvas J (1989) Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans Biomed Eng 36(2):165–171CrossRefPubMed
go back to reference Haueisen J, Ramon C, Eiselt M, Brauer H, Nowak H (1997) Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head. IEEE Trans Biomed Eng 44(8):727–735CrossRefPubMed Haueisen J, Ramon C, Eiselt M, Brauer H, Nowak H (1997) Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head. IEEE Trans Biomed Eng 44(8):727–735CrossRefPubMed
go back to reference Haueisen J, Tuch DS, Ramon C et al (2002) The influence of brain tissue anisotropy on human EEG and MEG. Neuroimage 15(1):159–166CrossRefPubMed Haueisen J, Tuch DS, Ramon C et al (2002) The influence of brain tissue anisotropy on human EEG and MEG. Neuroimage 15(1):159–166CrossRefPubMed
go back to reference Jun SC, George JS, Kim W et al (2008) Bayesian brain source imaging based on combined MEG/EEG and fMRI using MCMC. Neuroimage 40(4):1581–1594CrossRefPubMed Jun SC, George JS, Kim W et al (2008) Bayesian brain source imaging based on combined MEG/EEG and fMRI using MCMC. Neuroimage 40(4):1581–1594CrossRefPubMed
go back to reference Lai Y, van Drongelen W, Ding L, Hecox KE, Towle VL, Frim DM, He B (2005) Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings. Clin Neurophysiol 116:456–465CrossRefPubMed Lai Y, van Drongelen W, Ding L, Hecox KE, Towle VL, Frim DM, He B (2005) Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings. Clin Neurophysiol 116:456–465CrossRefPubMed
go back to reference Law SK (1993) Thickness and resistivity variations over the upper surface of the human skull. Brain Topogr 6(2):99–109CrossRefPubMed Law SK (1993) Thickness and resistivity variations over the upper surface of the human skull. Brain Topogr 6(2):99–109CrossRefPubMed
go back to reference Lerner JT, Salamon N, Hauptman JS et al (2009) Assessment and surgical outcomes for mild type I and severe type II cortical dysplasia: a critical review and the UCLA experience. Epilepsia 50(6):1310–1335CrossRefPubMed Lerner JT, Salamon N, Hauptman JS et al (2009) Assessment and surgical outcomes for mild type I and severe type II cortical dysplasia: a critical review and the UCLA experience. Epilepsia 50(6):1310–1335CrossRefPubMed
go back to reference Marin G, Guerin C, Baillet S, Garnero L, Meunier G (1998) Influence of skull anisotropy for the forward and inverse problem in EEG: simulation studies using FEM on realistic head models. Hum Brain Mapp 6(4):250–269CrossRefPubMed Marin G, Guerin C, Baillet S, Garnero L, Meunier G (1998) Influence of skull anisotropy for the forward and inverse problem in EEG: simulation studies using FEM on realistic head models. Hum Brain Mapp 6(4):250–269CrossRefPubMed
go back to reference Okada YC, Lahteenmaki A, Xu C (1999) Experimental analysis of distortion of magnetoencephalography signals by the skull. Clin Neurophysiol 110(2):230–238CrossRefPubMed Okada YC, Lahteenmaki A, Xu C (1999) Experimental analysis of distortion of magnetoencephalography signals by the skull. Clin Neurophysiol 110(2):230–238CrossRefPubMed
go back to reference Ollikainen JO, Vauhkonen M, Karjalainen PA, Kaipio JP (1999) Effects of local skull inhomogeneities on EEG source estimation. Med Eng Phys 21(3):143–154CrossRefPubMed Ollikainen JO, Vauhkonen M, Karjalainen PA, Kaipio JP (1999) Effects of local skull inhomogeneities on EEG source estimation. Med Eng Phys 21(3):143–154CrossRefPubMed
go back to reference Palmini A, Najm I, Avanzini G et al (2004) Terminology and classification of the cortical dysplasias. Neurology 62(6 Suppl 3):S2–S8PubMed Palmini A, Najm I, Avanzini G et al (2004) Terminology and classification of the cortical dysplasias. Neurology 62(6 Suppl 3):S2–S8PubMed
go back to reference Pohlmeier R, Buchner H, Knoll G et al (1997) The influence of skull-conductivity misspecification on inverse source localization in realistically shaped finite element head models. Brain Topogr 9(3):157–162CrossRefPubMed Pohlmeier R, Buchner H, Knoll G et al (1997) The influence of skull-conductivity misspecification on inverse source localization in realistically shaped finite element head models. Brain Topogr 9(3):157–162CrossRefPubMed
go back to reference Rullmann M, Anwander A, Dannhauer M et al (2009) EEG source analysis of epileptiform activity using a 1 mm anisotropic hexahedra finite element head model. Neuroimage 44(2):399–410CrossRefPubMed Rullmann M, Anwander A, Dannhauer M et al (2009) EEG source analysis of epileptiform activity using a 1 mm anisotropic hexahedra finite element head model. Neuroimage 44(2):399–410CrossRefPubMed
go back to reference Salamon N, Kung J, Shaw SJ et al (2008) FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology 71(20):1594–1601CrossRefPubMed Salamon N, Kung J, Shaw SJ et al (2008) FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology 71(20):1594–1601CrossRefPubMed
go back to reference Schmid G, Neubauer G, Mazal PR (2003a) Dielectric properties of human brain tissue measured less than 10 h postmortem at frequencies from 800 to 2450 MHz. Bioelectromagnetics 24(6):423–430CrossRefPubMed Schmid G, Neubauer G, Mazal PR (2003a) Dielectric properties of human brain tissue measured less than 10 h postmortem at frequencies from 800 to 2450 MHz. Bioelectromagnetics 24(6):423–430CrossRefPubMed
go back to reference Schmid G, Neubauer G, Illievich UM, Alesch F (2003b) Dielectric properties of porcine brain tissue in the transition from life to death at frequencies from 800 to 1900 MHz. Bioelectromagnetics 24(6):413–422CrossRefPubMed Schmid G, Neubauer G, Illievich UM, Alesch F (2003b) Dielectric properties of porcine brain tissue in the transition from life to death at frequencies from 800 to 1900 MHz. Bioelectromagnetics 24(6):413–422CrossRefPubMed
go back to reference Schwan HP (1968) Electrode polarization impedance and measurements in biological materials. Ann NY Acad Sci 148(1):191–209CrossRefPubMed Schwan HP (1968) Electrode polarization impedance and measurements in biological materials. Ann NY Acad Sci 148(1):191–209CrossRefPubMed
go back to reference Sekino M, Inoue Y, Ueno S (2004) Magnetic resonance imaging of mean values and anisotropy of electrical conductivity in the human brain. Neurol Clin Neurophysiol 2004:55PubMed Sekino M, Inoue Y, Ueno S (2004) Magnetic resonance imaging of mean values and anisotropy of electrical conductivity in the human brain. Neurol Clin Neurophysiol 2004:55PubMed
go back to reference Sun SW, Liang HF, Trinkaus K et al (2006) Noninvasive detection of cuprizone induced axonal damage and demyelination in the mouse corpus callosum. Magn Reson Med 55(2):302–308CrossRefPubMed Sun SW, Liang HF, Trinkaus K et al (2006) Noninvasive detection of cuprizone induced axonal damage and demyelination in the mouse corpus callosum. Magn Reson Med 55(2):302–308CrossRefPubMed
go back to reference Van Uitert R, Johnson C, Zhukov L (2004) Influence of head tissue conductivity in forward and inverse magnetoencephalographic simulations using realistic head models. IEEE Trans Biomed Eng 51(12):2129–2137CrossRefPubMed Van Uitert R, Johnson C, Zhukov L (2004) Influence of head tissue conductivity in forward and inverse magnetoencephalographic simulations using realistic head models. IEEE Trans Biomed Eng 51(12):2129–2137CrossRefPubMed
go back to reference Vatta F, Bruno P, Inchingolo P (2002) Improving lesion conductivity estimate by means of EEG source localization sensitivity to model parameter. J Clin Neurophysiol 19(1):1–15CrossRefPubMed Vatta F, Bruno P, Inchingolo P (2002) Improving lesion conductivity estimate by means of EEG source localization sensitivity to model parameter. J Clin Neurophysiol 19(1):1–15CrossRefPubMed
go back to reference Wen P, Li Y (2001) Comparison study of different head model structures with homogeneous/inhomogeneous conductivity. Australas Phys Eng Sci Med 24(1):31–36CrossRefPubMed Wen P, Li Y (2001) Comparison study of different head model structures with homogeneous/inhomogeneous conductivity. Australas Phys Eng Sci Med 24(1):31–36CrossRefPubMed
go back to reference Widjaja E, Raybaud C (2008) Advances in neuroimaging in patients with epilepsy. Neurosurg Focus 25(3):E3CrossRefPubMed Widjaja E, Raybaud C (2008) Advances in neuroimaging in patients with epilepsy. Neurosurg Focus 25(3):E3CrossRefPubMed
go back to reference Wolters CH, Anwander A, Maess B, Macleod RS, Friederici AD (2004) The influence of volume conduction effects on the EEG/MEG reconstruction of the sources of the Early Left Anterior Negativity. Conf Proc IEEE Eng Med Biol Soc 5:3569–3572PubMed Wolters CH, Anwander A, Maess B, Macleod RS, Friederici AD (2004) The influence of volume conduction effects on the EEG/MEG reconstruction of the sources of the Early Left Anterior Negativity. Conf Proc IEEE Eng Med Biol Soc 5:3569–3572PubMed
go back to reference Zhang Y, van Drongelen W, He B (2006) Estimation of in vivo human brain-to-skull conductivity ratio in humans. Appl Phys Lett 89(22):223903–2239033CrossRefPubMed Zhang Y, van Drongelen W, He B (2006) Estimation of in vivo human brain-to-skull conductivity ratio in humans. Appl Phys Lett 89(22):223903–2239033CrossRefPubMed
Metadata
Title
Variable Anisotropic Brain Electrical Conductivities in Epileptogenic Foci
Authors
M. Akhtari
M. Mandelkern
D. Bui
N. Salamon
H. V. Vinters
G. W. Mathern
Publication date
01-09-2010
Publisher
Springer US
Published in
Brain Topography / Issue 3/2010
Print ISSN: 0896-0267
Electronic ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-010-0144-z

Other articles of this Issue 3/2010

Brain Topography 3/2010 Go to the issue