Skip to main content
Top
Published in: Journal of Inherited Metabolic Disease 6/2012

01-11-2012 | Original Article

An international survey of patients with tetrahydrobiopterin deficiencies presenting with hyperphenylalaninaemia

Authors: Thomas Opladen, Georg F. Hoffmann, Nenad Blau

Published in: Journal of Inherited Metabolic Disease | Issue 6/2012

Login to get access

Abstract

Objectives

The present study summarizes clinical and biochemical findings, current treatment strategies and follow-up in patients with tetrahydrobiopterin (BH4) deficiencies.

Methods

We analyzed the clinical, biochemical and treatment data of 626 patients with BH4 deficiencies [355 with 6-pyruvoyl-tetrahydropterin synthase (PTPS), 217 with dihydropteridine reductase (DHPR), 31 with autosomal recessive GTP cyclohydrolase I (GTPCH), and 23 with pterin-4a-carbinolamine dehydratase (PCD) deficiencies] from the BIODEF Database. Patients with autosomal dominant GTPCH and SR deficiencies will not be discussed in detail.

Results

Up to 57 % of neonates with BH4 deficiencies are already clinically symptomatic. During infancy and childhood, the predominant symptoms are muscular hypotonia, mental retardation and age-dependent movement disorders, including dystonia. The laboratory diagnosis of BH4 deficiency is based on a positive newborn screening (NBS) for phenylketonuria (PKU), characteristic profiles of urinary or dried blood spot pterins (biopterin, neopterin, and primapterin), and the measurement of DHPR activity in blood. Some patients with autosomal recessive GTPCH deficiency and all with sepiapterin reductase deficiency may be diagnosed late due to normal blood phenylalanine in NBS. L-dopa, 5-hydroxytryptophan, and BH4 are supplemented in PTPS and GTPCH-deficient patients, whereas L-dopa, 5-hydroxytryptophan, folinic acid and diet are used in DHPR-deficient patients. Medication doses vary widely among patients, and our understanding of the effects of dopamine agonists and monoamine catabolism inhibitors are limited.

Conclusions

BH4 deficiencies are a group of treatable pediatric neurotransmitter disorders that are characterized by motor dysfunction, mental retardation, impaired muscle tone, movement disorders and epileptic seizures. Although the outcomes of BH4 deficiencies are highly variable, early diagnosis and treatment result in improved outcomes.
Literature
go back to reference al Aqeel A, Ozand PT, Gascon G et al (1991) Biopterin-dependent hyperphenylalaninemia due to deficiency of 6-pyruvoyl tetrahydropterin synthase. Neurology 41:730–737PubMedCrossRef al Aqeel A, Ozand PT, Gascon G et al (1991) Biopterin-dependent hyperphenylalaninemia due to deficiency of 6-pyruvoyl tetrahydropterin synthase. Neurology 41:730–737PubMedCrossRef
go back to reference Blau N, Burgard P (2006) Disorders of Phenylalanine and Tetrahydrobiopterin Metabolism. In: Blau N, Hoffmann GF, Leonard J, Clarke JTR (eds) Physician’s Guide to the Treatment and Follow-up of Metabolic Diseases. Springer, Berlin, pp 25–34CrossRef Blau N, Burgard P (2006) Disorders of Phenylalanine and Tetrahydrobiopterin Metabolism. In: Blau N, Hoffmann GF, Leonard J, Clarke JTR (eds) Physician’s Guide to the Treatment and Follow-up of Metabolic Diseases. Springer, Berlin, pp 25–34CrossRef
go back to reference Blau N, Barnes I, Dhondt JL (1996) International database of tetrahydrobiopterin deficiencies. J Inherit Metab Dis 19:8–14PubMedCrossRef Blau N, Barnes I, Dhondt JL (1996) International database of tetrahydrobiopterin deficiencies. J Inherit Metab Dis 19:8–14PubMedCrossRef
go back to reference Blau N, Thöny B, Cotton RGH, Hyland K (2001) Disorders of tetrahydrobiopterin and related biogenic amines. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Vogelstein B (eds) The Metabolic and Molecular Bases of Inherited Disease. McGraw-Hill, New York, pp 1725–1776 Blau N, Thöny B, Cotton RGH, Hyland K (2001) Disorders of tetrahydrobiopterin and related biogenic amines. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Vogelstein B (eds) The Metabolic and Molecular Bases of Inherited Disease. McGraw-Hill, New York, pp 1725–1776
go back to reference Blau N, Duran M, Blaskovics M, Gibson KM (2003) Disorders of phenylalanine and tetrahydrobiopterin metabolism. In: Blau N, Bonafe L, Blaskovics M (eds) Physician's Guide to Laboratory Diagnosis of Metabolic Diseases. Springer, Berlin, pp 89–106CrossRef Blau N, Duran M, Blaskovics M, Gibson KM (2003) Disorders of phenylalanine and tetrahydrobiopterin metabolism. In: Blau N, Bonafe L, Blaskovics M (eds) Physician's Guide to Laboratory Diagnosis of Metabolic Diseases. Springer, Berlin, pp 89–106CrossRef
go back to reference Blau N, Duran M, Gibson KM (2008) Laboratory guide to the methods in biochemical genetics. Springer, BerlinCrossRef Blau N, Duran M, Gibson KM (2008) Laboratory guide to the methods in biochemical genetics. Springer, BerlinCrossRef
go back to reference Bonafe L, Thöny B, Leimbacher W, Kierat L, Blau N (2001) Diagnosis of dopa-responsive dystonia and other tetrahydrobiopterin disorders by the study of biopterin metabolism in fibroblasts. Clin Chem 47:477–485PubMed Bonafe L, Thöny B, Leimbacher W, Kierat L, Blau N (2001) Diagnosis of dopa-responsive dystonia and other tetrahydrobiopterin disorders by the study of biopterin metabolism in fibroblasts. Clin Chem 47:477–485PubMed
go back to reference Bonafé L, Thöny B, Penzien JM, Czarnecki B, Blau N (2001) Mutations in the sepiapterin reductase gene cause a novel tetrahydrobiopterin-dependent monoamine neurotransmitter deficiency without hyperphenylalaninemia. Am J Hum Genet 69:269–277PubMedCrossRef Bonafé L, Thöny B, Penzien JM, Czarnecki B, Blau N (2001) Mutations in the sepiapterin reductase gene cause a novel tetrahydrobiopterin-dependent monoamine neurotransmitter deficiency without hyperphenylalaninemia. Am J Hum Genet 69:269–277PubMedCrossRef
go back to reference Concolino D, Muzzi G, Rapsomaniki M, Moricca MT, Pascale MG, Strisciuglio P (2008) Serum prolactin as a tool for the follow-up of treated DHPR-deficient patients. J Inherit Metab Dis Dec 31:S193–S197CrossRef Concolino D, Muzzi G, Rapsomaniki M, Moricca MT, Pascale MG, Strisciuglio P (2008) Serum prolactin as a tool for the follow-up of treated DHPR-deficient patients. J Inherit Metab Dis Dec 31:S193–S197CrossRef
go back to reference Crabtree MJ, Tatham AL, Al-Wakeel Y et al (2009) Quantitative regulation of intracellular endothelial nitric-oxide synthase (eNOS) coupling by both tetrahydrobiopterin-eNOS stoichiometry and biopterin redox status: insights from cells with tet-regulated GTP cyclohydrolase I expression. J Biol Chem 284:1136–1144PubMedCrossRef Crabtree MJ, Tatham AL, Al-Wakeel Y et al (2009) Quantitative regulation of intracellular endothelial nitric-oxide synthase (eNOS) coupling by both tetrahydrobiopterin-eNOS stoichiometry and biopterin redox status: insights from cells with tet-regulated GTP cyclohydrolase I expression. J Biol Chem 284:1136–1144PubMedCrossRef
go back to reference Friedman J, Roze E, Abdenur JE et al (2012) Sepiapterin reductase deficiency: a treatable mimic of cerebral palsy. Ann Neurol 71:520–530. Friedman J, Roze E, Abdenur JE et al (2012) Sepiapterin reductase deficiency: a treatable mimic of cerebral palsy. Ann Neurol 71:520–530.
go back to reference Fukushima T, Nixon JC (1980) Analysis of reduced forms of biopterin in biological tissues and fluids. Anal Biochem 102:176–188PubMedCrossRef Fukushima T, Nixon JC (1980) Analysis of reduced forms of biopterin in biological tissues and fluids. Anal Biochem 102:176–188PubMedCrossRef
go back to reference Herlenius E, Lagercrantz H (2001) Neurotransmitters and neuromodulators during early human development. Early Hum Dev 65:21–37PubMedCrossRef Herlenius E, Lagercrantz H (2001) Neurotransmitters and neuromodulators during early human development. Early Hum Dev 65:21–37PubMedCrossRef
go back to reference Irons M, Levy HL, O'Flynn ME et al (1987) Folinic acid therapy in treatment of dihydropteridine reductase deficiency. J Pediatr 110:61–67PubMedCrossRef Irons M, Levy HL, O'Flynn ME et al (1987) Folinic acid therapy in treatment of dihydropteridine reductase deficiency. J Pediatr 110:61–67PubMedCrossRef
go back to reference Jäggi L, Zurfluh MR, Schuler A et al (2008) Outcome and long-term follow-up of 36 patients with tetrahydrobiopterin deficiency. Mol Genet Metab 93:295–305PubMedCrossRef Jäggi L, Zurfluh MR, Schuler A et al (2008) Outcome and long-term follow-up of 36 patients with tetrahydrobiopterin deficiency. Mol Genet Metab 93:295–305PubMedCrossRef
go back to reference Niu DM (2011) Disorders of BH4 metabolism and the treatment of patients with 6-pyruvoyl-tetrahydropterin synthase deficiency in Taiwan. Brain Dev 33:847–855PubMedCrossRef Niu DM (2011) Disorders of BH4 metabolism and the treatment of patients with 6-pyruvoyl-tetrahydropterin synthase deficiency in Taiwan. Brain Dev 33:847–855PubMedCrossRef
go back to reference Opladen T, Abu Seda B, Rassi A, Thöny B, Hoffmann GF, Blau N (2011a) Diagnosis of tetrahydrobiopterin deficiency using filter paper blood spots: further development of the method and 5 years experience. J Inherit Metab Dis Jun 34:819–826CrossRef Opladen T, Abu Seda B, Rassi A, Thöny B, Hoffmann GF, Blau N (2011a) Diagnosis of tetrahydrobiopterin deficiency using filter paper blood spots: further development of the method and 5 years experience. J Inherit Metab Dis Jun 34:819–826CrossRef
go back to reference Opladen T, Hoffmann G, Hörster F et al (2011b) Clinical and biochemical characterization of patients with early infantile onset of autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia. Mov Disord 26:157–161PubMedCrossRef Opladen T, Hoffmann G, Hörster F et al (2011b) Clinical and biochemical characterization of patients with early infantile onset of autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia. Mov Disord 26:157–161PubMedCrossRef
go back to reference Ponzone A, Blau N, Guardamagna O, Ferrero GB, Dianzani I, Endres W (1990) Progression of 6-pyruvoyl-tetrahydropterin synthase deficiency from a peripheral into a central phenotype. J Inherit Metab Dis 13:298–300PubMedCrossRef Ponzone A, Blau N, Guardamagna O, Ferrero GB, Dianzani I, Endres W (1990) Progression of 6-pyruvoyl-tetrahydropterin synthase deficiency from a peripheral into a central phenotype. J Inherit Metab Dis 13:298–300PubMedCrossRef
go back to reference Ponzone A, Guardamagna O, Ferraris S, Ferrero GB, Dianzani I, Cotton RGH (1991) Tetrahydrobiopterin loading test in hyperphenylalaninemia. Pediatr Res 30:435–438PubMedCrossRef Ponzone A, Guardamagna O, Ferraris S, Ferrero GB, Dianzani I, Cotton RGH (1991) Tetrahydrobiopterin loading test in hyperphenylalaninemia. Pediatr Res 30:435–438PubMedCrossRef
go back to reference Ponzone A, Spada M, Ferraris S, Dianzani I, De Sanctis L (2004) Dihydropteridine reductase deficiency in man: from biology to treatment. Med Res Rev 24:127–150PubMedCrossRef Ponzone A, Spada M, Ferraris S, Dianzani I, De Sanctis L (2004) Dihydropteridine reductase deficiency in man: from biology to treatment. Med Res Rev 24:127–150PubMedCrossRef
go back to reference Porta F, Mussa A, Concolino D, Spada M, Ponzone A (2009) Dopamine agonists in 6-pyruvoyl tetrahydropterin synthase deficiency. Neurology 73:633–637PubMedCrossRef Porta F, Mussa A, Concolino D, Spada M, Ponzone A (2009) Dopamine agonists in 6-pyruvoyl tetrahydropterin synthase deficiency. Neurology 73:633–637PubMedCrossRef
go back to reference Smith I, Clayton BE, Wolff OH (1975) New variant of phenylketonuria with progressive neurological illness unresponsive to phenylalanine restriction. Lancet 1:1108–1111PubMedCrossRef Smith I, Clayton BE, Wolff OH (1975) New variant of phenylketonuria with progressive neurological illness unresponsive to phenylalanine restriction. Lancet 1:1108–1111PubMedCrossRef
go back to reference Smith I, Hyland K, Kendall B (1985) Clinical role of pteridine therapy in tetrahydrobiopterin deficiency. J Inherit Metab Dis 8:39–45PubMedCrossRef Smith I, Hyland K, Kendall B (1985) Clinical role of pteridine therapy in tetrahydrobiopterin deficiency. J Inherit Metab Dis 8:39–45PubMedCrossRef
go back to reference Thöny B, Blau N (2006) Mutations in the BH4-metabolizing genes GTP cyclohydroalse I, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase, carbinolamine-4a-dehydratase, and dihydropteridine reductase genes. Hum Mutat 27:870–878PubMedCrossRef Thöny B, Blau N (2006) Mutations in the BH4-metabolizing genes GTP cyclohydroalse I, 6-pyruvoyl-tetrahydropterin synthase, sepiapterin reductase, carbinolamine-4a-dehydratase, and dihydropteridine reductase genes. Hum Mutat 27:870–878PubMedCrossRef
go back to reference Wang L, Yu WM, He C et al (2006) Long-term outcome and neuroradiological findings of 31 patients with 6-pyruvoyltetrahydropterin synthase deficiency. J Inherit Metab Dis 29:127–134PubMedCrossRef Wang L, Yu WM, He C et al (2006) Long-term outcome and neuroradiological findings of 31 patients with 6-pyruvoyltetrahydropterin synthase deficiency. J Inherit Metab Dis 29:127–134PubMedCrossRef
go back to reference Werner ER, Blau N, Thöny B (2011) Tetrahydrobiopterin: biochemistry and pathophysiology. Biochem J 438:397–414PubMed Werner ER, Blau N, Thöny B (2011) Tetrahydrobiopterin: biochemistry and pathophysiology. Biochem J 438:397–414PubMed
go back to reference Woody R, Brewster M, Glasier C (1989) Progressive intracranial calcification in dihydropteridine reductase deficiency prior to folinic acid therapy. Neurology 39:673–675PubMedCrossRef Woody R, Brewster M, Glasier C (1989) Progressive intracranial calcification in dihydropteridine reductase deficiency prior to folinic acid therapy. Neurology 39:673–675PubMedCrossRef
Metadata
Title
An international survey of patients with tetrahydrobiopterin deficiencies presenting with hyperphenylalaninaemia
Authors
Thomas Opladen
Georg F. Hoffmann
Nenad Blau
Publication date
01-11-2012
Publisher
Springer Netherlands
Published in
Journal of Inherited Metabolic Disease / Issue 6/2012
Print ISSN: 0141-8955
Electronic ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-012-9506-x

Other articles of this Issue 6/2012

Journal of Inherited Metabolic Disease 6/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine