Skip to main content
Top
Published in: Angiogenesis 3/2012

01-09-2012 | Original Paper

BMP9 induces EphrinB2 expression in endothelial cells through an Alk1-BMPRII/ActRII-ID1/ID3-dependent pathway: implications for hereditary hemorrhagic telangiectasia type II

Authors: Jai-Hyun Kim, Matthew R. Peacock, Steven C. George, Christopher C. W. Hughes

Published in: Angiogenesis | Issue 3/2012

Login to get access

Abstract

ALK1 (ACVRL1) is a member of the TGFβ receptor family and is expressed predominantly by arterial endothelial cells (EC). Mutations in ACVRL1 are responsible for hereditary hemorrhagic telangiectasia type 2 (HHT2), a disease manifesting as fragile vessels, capillary overgrowth, and numerous arterio-venous malformations. Arterial EC also express EphrinB2, which has multiple roles in vascular development and angiogenesis and is known to be reduced in ACVRL1 knockout mice. Using an in vitro angiogenesis model we find that the Alk1 ligand BMP9 induces EphrinB2 in EC, and this is entirely dependent on expression of Alk1 and at least one of the co-receptors BMPRII or ActRII. BMP9 induces both ID1 and ID3, and both are necessary for full induction of EphrinB2. Loss of Alk1 or EphrinB2 results in increased arterial-venous anastomosis, while loss of Alk1 but not EphrinB2 results in increased VEGFR2 expression and enhanced capillary sprouting. Conversely, BMP9 blocks EC sprouting and this is dependent on Alk1, BMPRII/ActRII and ID1/ID3. Finally, notch signaling overcomes the loss of Alk1—restoring EphrinB2 expression in EC, and curbing excess sprouting. Thus, in an in vitro model of HHT2, loss of Alk1 blocks BMP9 signaling, resulting in reduced EphrinB2 expression, enhanced VEGFR2 expression, and misregulated EC sprouting and anastomosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference HHT Foundation International website (2011) HHT Foundation International website (2011)
2.
go back to reference Shovlin CL (2010) Hereditary haemorrhagic telangiectasia: pathophysiology, diagnosis and treatment. Blood Rev 24(6):203–219PubMedCrossRef Shovlin CL (2010) Hereditary haemorrhagic telangiectasia: pathophysiology, diagnosis and treatment. Blood Rev 24(6):203–219PubMedCrossRef
3.
go back to reference Govani FS, Shovlin CL (2009) Hereditary haemorrhagic telangiectasia: a clinical and scientific review. Eur J Hum Genet 17(7):860–871. PMCID: 2986493 Govani FS, Shovlin CL (2009) Hereditary haemorrhagic telangiectasia: a clinical and scientific review. Eur J Hum Genet 17(7):860–871. PMCID: 2986493
4.
go back to reference Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marondel I, Yoon SJ et al (1996) Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 13(2):189–195PubMedCrossRef Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marondel I, Yoon SJ et al (1996) Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 13(2):189–195PubMedCrossRef
5.
go back to reference McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, Jackson CE et al (1994) Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8(4):345–351PubMedCrossRef McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, Jackson CE et al (1994) Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8(4):345–351PubMedCrossRef
6.
go back to reference Barbara NP, Wrana JL, Letarte M (1999) Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem 274(2):584–594PubMedCrossRef Barbara NP, Wrana JL, Letarte M (1999) Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem 274(2):584–594PubMedCrossRef
7.
go back to reference Blanco FJ, Santibanez JF, Guerrero-Esteo M, Langa C, Vary CP, Bernabeu C (2005) Interaction and functional interplay between endoglin and ALK-1, two components of the endothelial transforming growth factor-beta receptor complex. J Cell Physiol 204(2):574–584PubMedCrossRef Blanco FJ, Santibanez JF, Guerrero-Esteo M, Langa C, Vary CP, Bernabeu C (2005) Interaction and functional interplay between endoglin and ALK-1, two components of the endothelial transforming growth factor-beta receptor complex. J Cell Physiol 204(2):574–584PubMedCrossRef
8.
go back to reference Park SO, Wankhede M, Lee YJ, Choi EJ, Fliess N, Choe SW et al (2009) Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J Clin Invest 119(11):3487–3496. PMCID: 2769195 Park SO, Wankhede M, Lee YJ, Choi EJ, Fliess N, Choe SW et al (2009) Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J Clin Invest 119(11):3487–3496. PMCID: 2769195
9.
go back to reference Bonyadi M, Rusholme SA, Cousins FM, Su HC, Biron CA, Farrall M et al (1997) Mapping of a major genetic modifier of embryonic lethality in TGF beta 1 knockout mice. Nat Genet 15(2):207–211PubMedCrossRef Bonyadi M, Rusholme SA, Cousins FM, Su HC, Biron CA, Farrall M et al (1997) Mapping of a major genetic modifier of embryonic lethality in TGF beta 1 knockout mice. Nat Genet 15(2):207–211PubMedCrossRef
10.
go back to reference Bourdeau A, Faughnan ME, McDonald ML, Paterson AD, Wanless IR, Letarte M (2001) Potential role of modifier genes influencing transforming growth factor-beta1 levels in the development of vascular defects in endoglin heterozygous mice with hereditary hemorrhagic telangiectasia. Am J Pathol 158(6):2011–2020. PMCID: 1891990 Bourdeau A, Faughnan ME, McDonald ML, Paterson AD, Wanless IR, Letarte M (2001) Potential role of modifier genes influencing transforming growth factor-beta1 levels in the development of vascular defects in endoglin heterozygous mice with hereditary hemorrhagic telangiectasia. Am J Pathol 158(6):2011–2020. PMCID: 1891990
11.
go back to reference Seki T, Yun J, Oh SP (2003) Arterial endothelium-specific activin receptor-like kinase 1 expression suggests its role in arterialization and vascular remodeling. Circ Res 93(7):682–689PubMedCrossRef Seki T, Yun J, Oh SP (2003) Arterial endothelium-specific activin receptor-like kinase 1 expression suggests its role in arterialization and vascular remodeling. Circ Res 93(7):682–689PubMedCrossRef
12.
go back to reference David L, Feige JJ, Bailly S (2009) Emerging role of bone morphogenetic proteins in angiogenesis. Cytokine Growth Factor Rev 20(3):203–212PubMedCrossRef David L, Feige JJ, Bailly S (2009) Emerging role of bone morphogenetic proteins in angiogenesis. Cytokine Growth Factor Rev 20(3):203–212PubMedCrossRef
13.
go back to reference David L, Mallet C, Keramidas M, Lamande N, Gasc JM, Dupuis-Girod S et al (2008) Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ Res 102(8):914–922PubMedCrossRef David L, Mallet C, Keramidas M, Lamande N, Gasc JM, Dupuis-Girod S et al (2008) Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ Res 102(8):914–922PubMedCrossRef
14.
go back to reference David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S (2007) Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 109(5):1953–1961PubMedCrossRef David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S (2007) Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 109(5):1953–1961PubMedCrossRef
15.
go back to reference Holderfield MT, Hughes CC (2008) Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circ Res 102(6):637–652PubMedCrossRef Holderfield MT, Hughes CC (2008) Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circ Res 102(6):637–652PubMedCrossRef
16.
go back to reference Brown MA, Zhao Q, Baker KA, Naik C, Chen C, Pukac L et al (2005) Crystal structure of BMP-9 and functional interactions with pro-region and receptors. J Biol Chem 280(26):25111–25118PubMedCrossRef Brown MA, Zhao Q, Baker KA, Naik C, Chen C, Pukac L et al (2005) Crystal structure of BMP-9 and functional interactions with pro-region and receptors. J Biol Chem 280(26):25111–25118PubMedCrossRef
17.
go back to reference Pardali E, Goumans MJ, ten Dijke P (2010) Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends Cell Biol 20(9):556–567PubMedCrossRef Pardali E, Goumans MJ, ten Dijke P (2010) Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends Cell Biol 20(9):556–567PubMedCrossRef
18.
go back to reference Park SO, Lee YJ, Seki T, Hong KH, Fliess N, Jiang Z et al (2008) ALK5- and TGFBR2-independent role of ALK1 in the pathogenesis of hereditary hemorrhagic telangiectasia type 2. Blood 111(2):633–642. PMCID: 2200847 Park SO, Lee YJ, Seki T, Hong KH, Fliess N, Jiang Z et al (2008) ALK5- and TGFBR2-independent role of ALK1 in the pathogenesis of hereditary hemorrhagic telangiectasia type 2. Blood 111(2):633–642. PMCID: 2200847
19.
go back to reference Seki T, Hong KH, Oh SP (2006) Nonoverlapping expression patterns of ALK1 and ALK5 reveal distinct roles of each receptor in vascular development. Lab Invest A J Tech Methods Pathol 86(2):116–129CrossRef Seki T, Hong KH, Oh SP (2006) Nonoverlapping expression patterns of ALK1 and ALK5 reveal distinct roles of each receptor in vascular development. Lab Invest A J Tech Methods Pathol 86(2):116–129CrossRef
20.
go back to reference Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P (2002) Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 21(7):1743–1753PubMedCrossRef Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P (2002) Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J 21(7):1743–1753PubMedCrossRef
21.
go back to reference Lamouille S, Mallet C, Feige JJ, Bailly S (2002) Activin receptor-like kinase 1 is implicated in the maturation phase of angiogenesis. Blood 100(13):4495–4501PubMedCrossRef Lamouille S, Mallet C, Feige JJ, Bailly S (2002) Activin receptor-like kinase 1 is implicated in the maturation phase of angiogenesis. Blood 100(13):4495–4501PubMedCrossRef
22.
go back to reference Lux A, Salway F, Dressman HK, Kroner-Lux G, Hafner M, Day PJ et al (2006) ALK1 signalling analysis identifies angiogenesis related genes and reveals disparity between TGF-beta and constitutively active receptor induced gene expression. BMC Cardiovasc Disord 6:13PubMedCrossRef Lux A, Salway F, Dressman HK, Kroner-Lux G, Hafner M, Day PJ et al (2006) ALK1 signalling analysis identifies angiogenesis related genes and reveals disparity between TGF-beta and constitutively active receptor induced gene expression. BMC Cardiovasc Disord 6:13PubMedCrossRef
23.
go back to reference Mallet C, Vittet D, Feige JJ, Bailly S (2006) TGFbeta1 induces vasculogenesis and inhibits angiogenic sprouting in an embryonic stem cell differentiation model: respective contribution of ALK1 and ALK5. Stem Cells 24(11):2420–2427PubMedCrossRef Mallet C, Vittet D, Feige JJ, Bailly S (2006) TGFbeta1 induces vasculogenesis and inhibits angiogenic sprouting in an embryonic stem cell differentiation model: respective contribution of ALK1 and ALK5. Stem Cells 24(11):2420–2427PubMedCrossRef
24.
go back to reference Ota T, Fujii M, Sugizaki T, Ishii M, Miyazawa K, Aburatani H et al (2002) Targets of transcriptional regulation by two distinct type I receptors for transforming growth factor-beta in human umbilical vein endothelial cells. J Cell Physiol 193(3):299–318PubMedCrossRef Ota T, Fujii M, Sugizaki T, Ishii M, Miyazawa K, Aburatani H et al (2002) Targets of transcriptional regulation by two distinct type I receptors for transforming growth factor-beta in human umbilical vein endothelial cells. J Cell Physiol 193(3):299–318PubMedCrossRef
25.
go back to reference Goumans MJ, Lebrin F, Valdimarsdottir G (2003) Controlling the angiogenic switch: a balance between two distinct TGF-b receptor signaling pathways. Trends Cardiovasc Med 13(7):301–307PubMedCrossRef Goumans MJ, Lebrin F, Valdimarsdottir G (2003) Controlling the angiogenic switch: a balance between two distinct TGF-b receptor signaling pathways. Trends Cardiovasc Med 13(7):301–307PubMedCrossRef
26.
go back to reference Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK et al (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Nat Acad Sci USA 97(6):2626–2631PubMedCrossRef Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK et al (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Nat Acad Sci USA 97(6):2626–2631PubMedCrossRef
27.
go back to reference Roman BL, Pham VN, Lawson ND, Kulik M, Childs S, Lekven AC et al (2002) Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development 129(12):3009–3019PubMed Roman BL, Pham VN, Lawson ND, Kulik M, Childs S, Lekven AC et al (2002) Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development 129(12):3009–3019PubMed
28.
go back to reference Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q, Pukac L et al (2007) BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 120(Pt 6):964–972PubMedCrossRef Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q, Pukac L et al (2007) BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 120(Pt 6):964–972PubMedCrossRef
29.
go back to reference Urness LD, Sorensen LK, Li DY (2000) Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat Genet 26(3):328–331PubMedCrossRef Urness LD, Sorensen LK, Li DY (2000) Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat Genet 26(3):328–331PubMedCrossRef
30.
go back to reference Upton PD, Davies RJ, Trembath RC, Morrell NW (2009) Bone morphogenetic protein (BMP) and activin type II receptors balance BMP9 signals mediated by activin receptor-like kinase-1 in human pulmonary artery endothelial cells. J Biol Chem 284(23):15794–15804. PMCID: 2708876 Upton PD, Davies RJ, Trembath RC, Morrell NW (2009) Bone morphogenetic protein (BMP) and activin type II receptors balance BMP9 signals mediated by activin receptor-like kinase-1 in human pulmonary artery endothelial cells. J Biol Chem 284(23):15794–15804. PMCID: 2708876
31.
go back to reference Gale NW, Baluk P, Pan L, Kwan M, Holash J, DeChiara TM et al (2001) Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev Biol 230(2):151–160PubMedCrossRef Gale NW, Baluk P, Pan L, Kwan M, Holash J, DeChiara TM et al (2001) Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev Biol 230(2):151–160PubMedCrossRef
32.
go back to reference Shin D, Garcia-Cardena G, Hayashi S, Gerety S, Asahara T, Stavrakis G et al (2001) Expression of ephrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Dev Biol 230(2):139–150PubMedCrossRef Shin D, Garcia-Cardena G, Hayashi S, Gerety S, Asahara T, Stavrakis G et al (2001) Expression of ephrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Dev Biol 230(2):139–150PubMedCrossRef
33.
go back to reference Krebs LT, Starling C, Chervonsky AV, Gridley T (2010) Notch1 activation in mice causes arteriovenous malformations phenocopied by ephrinB2 and EphB4 mutants. Genesis 48(3):146–150. PMCID: 2849749 Krebs LT, Starling C, Chervonsky AV, Gridley T (2010) Notch1 activation in mice causes arteriovenous malformations phenocopied by ephrinB2 and EphB4 mutants. Genesis 48(3):146–150. PMCID: 2849749
34.
go back to reference Bochenek ML, Dickinson S, Astin JW, Adams RH, Nobes CD (2010) Ephrin-B2 regulates endothelial cell morphology and motility independently of Eph-receptor binding. J Cell Sci 123(Pt 8):1235–1246. PMCID: 2848112 Bochenek ML, Dickinson S, Astin JW, Adams RH, Nobes CD (2010) Ephrin-B2 regulates endothelial cell morphology and motility independently of Eph-receptor binding. J Cell Sci 123(Pt 8):1235–1246. PMCID: 2848112
35.
go back to reference Heroult M, Schaffner F, Pfaff D, Prahst C, Kirmse R, Kutschera S et al (2010) EphB4 promotes site-specific metastatic tumor cell dissemination by interacting with endothelial cell-expressed ephrinb2. Mol Cancer Res MCR 8(10):1297–1309CrossRef Heroult M, Schaffner F, Pfaff D, Prahst C, Kirmse R, Kutschera S et al (2010) EphB4 promotes site-specific metastatic tumor cell dissemination by interacting with endothelial cell-expressed ephrinb2. Mol Cancer Res MCR 8(10):1297–1309CrossRef
36.
go back to reference Sawamiphak S, Seidel S, Essmann CL, Wilkinson GA, Pitulescu ME, Acker T et al (2010) Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465(7297):487–491PubMedCrossRef Sawamiphak S, Seidel S, Essmann CL, Wilkinson GA, Pitulescu ME, Acker T et al (2010) Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465(7297):487–491PubMedCrossRef
37.
go back to reference Wang Y, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A et al (2010) Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465(7297):483–486PubMedCrossRef Wang Y, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A et al (2010) Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465(7297):483–486PubMedCrossRef
38.
go back to reference Nakatsu MN, Sainson RC, Aoto JN, Taylor KL, Aitkenhead M, Perez-del-Pulgar S et al (2003) Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1 small star, filled. Microvasc Res 66(2):102–112PubMedCrossRef Nakatsu MN, Sainson RC, Aoto JN, Taylor KL, Aitkenhead M, Perez-del-Pulgar S et al (2003) Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1 small star, filled. Microvasc Res 66(2):102–112PubMedCrossRef
39.
go back to reference Kim JH, Zhao Y, Pan X, He X, Gilbert HF (2009) The unfolded protein response is necessary but not sufficient to compensate for defects in disulfide isomerization. J Biol Chem 284(16):10400–10408. PMCID: 2667727 Kim JH, Zhao Y, Pan X, He X, Gilbert HF (2009) The unfolded protein response is necessary but not sufficient to compensate for defects in disulfide isomerization. J Biol Chem 284(16):10400–10408. PMCID: 2667727
40.
go back to reference Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O’Reilly R et al (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts [see comments]. Nature 401(6754):670–677PubMedCrossRef Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O’Reilly R et al (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts [see comments]. Nature 401(6754):670–677PubMedCrossRef
41.
go back to reference Sainson RC, Aoto J, Nakatsu MN, Holderfield M, Conn E, Koller E et al (2005) Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J 19(8):1027–1029PubMed Sainson RC, Aoto J, Nakatsu MN, Holderfield M, Conn E, Koller E et al (2005) Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J 19(8):1027–1029PubMed
42.
go back to reference Newman AC, Nakatsu MN, Chou W, Gershon PD, Hughes CC (2011) The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Mol Biol Cell 22(20):3791–3800. PMCID: 3192859 Newman AC, Nakatsu MN, Chou W, Gershon PD, Hughes CC (2011) The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Mol Biol Cell 22(20):3791–3800. PMCID: 3192859
43.
go back to reference David L, Mallet C, Vailhe B, Lamouille S, Feige JJ, Bailly S (2007) Activin receptor-like kinase 1 inhibits human microvascular endothelial cell migration: potential roles for JNK and ERK. J Cell Physiol 213(2):484–489PubMedCrossRef David L, Mallet C, Vailhe B, Lamouille S, Feige JJ, Bailly S (2007) Activin receptor-like kinase 1 inhibits human microvascular endothelial cell migration: potential roles for JNK and ERK. J Cell Physiol 213(2):484–489PubMedCrossRef
44.
go back to reference Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U et al (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13(3):295–306PubMedCrossRef Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U et al (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13(3):295–306PubMedCrossRef
45.
go back to reference Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177PubMedCrossRef Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177PubMedCrossRef
46.
go back to reference Henderson AM, Wang SJ, Taylor AC, Aitkenhead M, Hughes CC (2001) The basic helix-loop-helix transcription factor HESR1 regulates endothelial cell tube formation. J Biol Chem 276(9):6169–6176PubMedCrossRef Henderson AM, Wang SJ, Taylor AC, Aitkenhead M, Hughes CC (2001) The basic helix-loop-helix transcription factor HESR1 regulates endothelial cell tube formation. J Biol Chem 276(9):6169–6176PubMedCrossRef
47.
go back to reference Holderfield MT, Henderson Anderson AM, Kokubo H, Chin MT, Johnson RL, Hughes CC (2006) HESR1/CHF2 suppresses VEGFR2 transcription independent of binding to E-boxes. Biochem Biophys Res Commun 346(3):637–648PubMedCrossRef Holderfield MT, Henderson Anderson AM, Kokubo H, Chin MT, Johnson RL, Hughes CC (2006) HESR1/CHF2 suppresses VEGFR2 transcription independent of binding to E-boxes. Biochem Biophys Res Commun 346(3):637–648PubMedCrossRef
48.
go back to reference Taylor KL, Henderson AM, Hughes CC (2002) Notch Activation during Endothelial Cell Network Formation in Vitro Targets the Basic HLH Transcription Factor HESR-1 and Downregulates VEGFR-2/KDR Expression. Microvasc Res 64(3):372–383PubMedCrossRef Taylor KL, Henderson AM, Hughes CC (2002) Notch Activation during Endothelial Cell Network Formation in Vitro Targets the Basic HLH Transcription Factor HESR-1 and Downregulates VEGFR-2/KDR Expression. Microvasc Res 64(3):372–383PubMedCrossRef
49.
go back to reference Carlson TR, Yan Y, Wu X, Lam MT, Tang GL, Beverly LJ et al (2005) Endothelial expression of constitutively active Notch4 elicits reversible arteriovenous malformations in adult mice. Proc Natl Acad Sci 102(28):9884–9889. PMCID: 1175015 Carlson TR, Yan Y, Wu X, Lam MT, Tang GL, Beverly LJ et al (2005) Endothelial expression of constitutively active Notch4 elicits reversible arteriovenous malformations in adult mice. Proc Natl Acad Sci 102(28):9884–9889. PMCID: 1175015
50.
go back to reference Leblanc GG, Golanov E, Awad IA, Young WL (2009) Biology of vascular malformations of the brain. Stroke 40(12):e694–e702. PMCID: 2810509 Leblanc GG, Golanov E, Awad IA, Young WL (2009) Biology of vascular malformations of the brain. Stroke 40(12):e694–e702. PMCID: 2810509
51.
go back to reference Swift MR, Weinstein BM (2009) Arterial-venous specification during development. Circ Res 104(5):576–588PubMedCrossRef Swift MR, Weinstein BM (2009) Arterial-venous specification during development. Circ Res 104(5):576–588PubMedCrossRef
52.
go back to reference ZhuGe Q, Zhong M, Zheng W, Yang GY, Mao X, Xie L et al (2009) Notch-1 signalling is activated in brain arteriovenous malformations in humans. Brain 132(Pt 12):3231–3241. PMCID: 2792368 ZhuGe Q, Zhong M, Zheng W, Yang GY, Mao X, Xie L et al (2009) Notch-1 signalling is activated in brain arteriovenous malformations in humans. Brain 132(Pt 12):3231–3241. PMCID: 2792368
53.
go back to reference Dejana E, Tournier-Lasserve E, Weinstein BM (2009) The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 16(2):209–221PubMedCrossRef Dejana E, Tournier-Lasserve E, Weinstein BM (2009) The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 16(2):209–221PubMedCrossRef
54.
go back to reference Marchuk DA, Srinivasan S, Squire TL, Zawistowski JS (2003) Vascular morphogenesis: tales of two syndromes. Hum Mol Genet 12 Spec No 1:R97–R112 Marchuk DA, Srinivasan S, Squire TL, Zawistowski JS (2003) Vascular morphogenesis: tales of two syndromes. Hum Mol Genet 12 Spec No 1:R97–R112
55.
go back to reference Morikawa M, Koinuma D, Tsutsumi S, Vasilaki E, Kanki Y, Heldin CH et al (2011) ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads and a novel binding motif. Nucleic Acids Res 39(20):8712–8727. PMCID: 3203580 Morikawa M, Koinuma D, Tsutsumi S, Vasilaki E, Kanki Y, Heldin CH et al (2011) ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads and a novel binding motif. Nucleic Acids Res 39(20):8712–8727. PMCID: 3203580
56.
go back to reference Corti P, Young S, Chen CY, Patrick MJ, Rochon ER, Pekkan K et al (2011) Interaction between alk1 and blood flow in the development of arteriovenous malformations. Development 138(8):1573–1582. PMCID: 3062425 Corti P, Young S, Chen CY, Patrick MJ, Rochon ER, Pekkan K et al (2011) Interaction between alk1 and blood flow in the development of arteriovenous malformations. Development 138(8):1573–1582. PMCID: 3062425
57.
go back to reference Suzuki Y, Ohga N, Morishita Y, Hida K, Miyazono K, Watabe T (2010) BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. J Cell Sci 123(Pt 10):1684–1692PubMedCrossRef Suzuki Y, Ohga N, Morishita Y, Hida K, Miyazono K, Watabe T (2010) BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. J Cell Sci 123(Pt 10):1684–1692PubMedCrossRef
58.
go back to reference Davidson TM, Olitsky SE, Wei JL (2010) Hereditary hemorrhagic telangiectasia/avastin. The Laryngoscope 120(2):432–435PubMed Davidson TM, Olitsky SE, Wei JL (2010) Hereditary hemorrhagic telangiectasia/avastin. The Laryngoscope 120(2):432–435PubMed
Metadata
Title
BMP9 induces EphrinB2 expression in endothelial cells through an Alk1-BMPRII/ActRII-ID1/ID3-dependent pathway: implications for hereditary hemorrhagic telangiectasia type II
Authors
Jai-Hyun Kim
Matthew R. Peacock
Steven C. George
Christopher C. W. Hughes
Publication date
01-09-2012
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 3/2012
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-012-9277-x

Other articles of this Issue 3/2012

Angiogenesis 3/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine