Skip to main content
Top
Published in: Japanese Journal of Ophthalmology 2/2020

01-03-2020 | Glaucoma | Clinical Investigation

Comparisons of photopic negative responses elicited by different conditions from glaucomatous eyes

Authors: Yuji Hara, Shigeki Machida, Satoshi Ebihara, Masahiko Ishizuka, Atsushi Tada, Tomoharu Nishimura

Published in: Japanese Journal of Ophthalmology | Issue 2/2020

Login to get access

Abstract

Purpose

To compare the clinical significance of the photopic negative response (PhNRs) elicited by different stimuli from glaucomatous eyes.

Study design

Single-center observational study

Method

Eighty-four eyes of 84 patients with open angle glaucoma (OAG) and 40 eyes of 40 normal subjects were studied. Cone electroretinograms (ERGs) were elicited by white stimuli on a white background (W/W) or red stimuli on a blue background (R/B). The luminance of the stimuli was 0.5, 1.0, 2.0 or 3.0 cd-s/m2, and of the background light was 10 cd/m2. The first and second troughs of the ERGs that appeared following the b-wave were designated as PhNR1 and PhNR2, respectively. The thickness of the circumpapillary retinal nerve fiber layer (cpRNFL) was measured by spectral-domain optical coherence tomography. The mean deviation (MD) was determined by standard automated perimetry. The area under the receiver operating characteristic curves (AUCs) was created to determine the diagnostic ability of the PhNRs elicited by the different stimulus conditions.

Results

The correlation coefficients of the amplitudes of the PhNR1 elicited by W/W stimuli to the MDs and cpRNFL thickness were generally stronger, and the regression lines steeper than for the amplitudes of the PhNR1 elicited by R/B stimuli. In contrast, the correlation coefficients of the amplitudes of the PhNR2 elicited by R/B stimuli to the MDs and cpRNFL thickness were generally stronger, and the regression lines were steeper than the amplitudes of the PhNR2 elicited by W/W stimuli. With both types of stimuli, the slopes of the regression lines became steeper when the ERG recorded with higher stimulus intensities. The AUCs were significantly larger for the PhNR2 elicited by the R/B stimuli at 3.0 cd-s/m2 than for PhNR1 and PhNR2 elicited by W/W stimuli at the same intensity when the PhNRs were used for diagnosing advanced glaucoma.

Conclusion

The PhNR1 and PhNR2 elicited by the W/W and R/B stimuli are suitable measures to assess the function of the RGCs in eyes with OAG. The PhNR2 elicited by R/B stimuli at higher stimulus intensities is most effective in detecting functional and structural changes of the RGCs with the highest diagnostic capacity in discriminating advanced glaucoma.
Literature
1.
go back to reference Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith EL III. The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Investig Ophthalmol Vis Sci. 1999;40:1124–36. Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith EL III. The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Investig Ophthalmol Vis Sci. 1999;40:1124–36.
2.
go back to reference Viswanathan S, Frishman LJ, Robson JG. The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Investig Ophthalmol Vis Sci. 2000;41:2797–810. Viswanathan S, Frishman LJ, Robson JG. The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Investig Ophthalmol Vis Sci. 2000;41:2797–810.
3.
go back to reference Viswanathan S, Frishman LJ, Robson JG, Walters JW. The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Investig Ophthalmol Vis Sci. 2001;42:514–22. Viswanathan S, Frishman LJ, Robson JG, Walters JW. The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Investig Ophthalmol Vis Sci. 2001;42:514–22.
4.
go back to reference Machida S, Gotoh Y, Toba Y, Ohtaki A, Kaneko M, Kurosaka D. Correlation between photopic negative response and retinal nerve fiber layer thickness and optic disc topography in glaucomatous eyes. Investig Ophthalmol Vis Sci. 2008;49:2201–7.CrossRef Machida S, Gotoh Y, Toba Y, Ohtaki A, Kaneko M, Kurosaka D. Correlation between photopic negative response and retinal nerve fiber layer thickness and optic disc topography in glaucomatous eyes. Investig Ophthalmol Vis Sci. 2008;49:2201–7.CrossRef
5.
go back to reference Sustar M, Cvenkel B, Brecelj J. The effect of broadband and monochromatic stimuli on the photopic negative response of the electroretinogram in normal subjects and in open-angle glaucoma patients. Doc Ophthalmol. 2009;118:167–77.CrossRef Sustar M, Cvenkel B, Brecelj J. The effect of broadband and monochromatic stimuli on the photopic negative response of the electroretinogram in normal subjects and in open-angle glaucoma patients. Doc Ophthalmol. 2009;118:167–77.CrossRef
6.
go back to reference Machida S, Tamada K, Oikawa T, Gotoh Y, Nishimura T, Kaneko M, et al. Comparison of photopic negative response of full-field and focal electroretinograms in detecting glaucomatous eyes. J Ophthalmol. 2011;2011:564131.PubMed Machida S, Tamada K, Oikawa T, Gotoh Y, Nishimura T, Kaneko M, et al. Comparison of photopic negative response of full-field and focal electroretinograms in detecting glaucomatous eyes. J Ophthalmol. 2011;2011:564131.PubMed
7.
go back to reference Kremers J, Jertila M, Link B, Pangeni G, Horn FK. Spectral characteristics of the PhNR in the full-field flash electroretinogram of normals and glaucoma patients. Doc Ophthalmol. 2012;124:79–90.CrossRef Kremers J, Jertila M, Link B, Pangeni G, Horn FK. Spectral characteristics of the PhNR in the full-field flash electroretinogram of normals and glaucoma patients. Doc Ophthalmol. 2012;124:79–90.CrossRef
8.
go back to reference Banerjee A, Khurana M, Sachidanandam R, Sen P. Comparison between broadband and monochromatic photopic negative response in full-field electroretinogram in controls and subjects with primary open-angle glaucoma. Doc Ophthalmol. 2019;138:21–33.CrossRef Banerjee A, Khurana M, Sachidanandam R, Sen P. Comparison between broadband and monochromatic photopic negative response in full-field electroretinogram in controls and subjects with primary open-angle glaucoma. Doc Ophthalmol. 2019;138:21–33.CrossRef
9.
go back to reference Gotoh Y, Machida S, Tazawa Y. Selective loss of the photopic negative response in patients with optic nerve atrophy. Arch Ophthalmol. 2004;122:341–6.CrossRef Gotoh Y, Machida S, Tazawa Y. Selective loss of the photopic negative response in patients with optic nerve atrophy. Arch Ophthalmol. 2004;122:341–6.CrossRef
10.
go back to reference Rangaswamy NV, Frishman LJ, Dorotheo EU, Schiffman JS, Bahrani HM, Tang RA. Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs after pharmacologic blockade of inner retina. Investig Ophthalmol Vis Sci. 2004;45:3827–37.CrossRef Rangaswamy NV, Frishman LJ, Dorotheo EU, Schiffman JS, Bahrani HM, Tang RA. Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs after pharmacologic blockade of inner retina. Investig Ophthalmol Vis Sci. 2004;45:3827–37.CrossRef
11.
go back to reference Miyata K, Nakamura M, Kondo M, Lin J, Ueno S, Miyake Y, et al. Reduction of oscillatory potentials and photopic negative response in patients with autosomal dominant optic atrophy with OPA1 mutations. Investig Ophthalmol Vis Sci. 2007;48:820–4.CrossRef Miyata K, Nakamura M, Kondo M, Lin J, Ueno S, Miyake Y, et al. Reduction of oscillatory potentials and photopic negative response in patients with autosomal dominant optic atrophy with OPA1 mutations. Investig Ophthalmol Vis Sci. 2007;48:820–4.CrossRef
12.
go back to reference Tamada K, Machida S, Yokoyama D, Kurosaka D. Photopic negative response of full-field and focal macular electroretinograms in patients with optic nerve atrophy. Jpn J Ophthalmol. 2009;53:608–14.CrossRef Tamada K, Machida S, Yokoyama D, Kurosaka D. Photopic negative response of full-field and focal macular electroretinograms in patients with optic nerve atrophy. Jpn J Ophthalmol. 2009;53:608–14.CrossRef
13.
go back to reference Moon CH, Hwang SC, Ohn YH, Park TK. The time course of visual field recovery and changes of retinal ganglion cells after optic chiasmal decompression. Investig Ophthalmol Vis Sci. 2011;52:7966–73.CrossRef Moon CH, Hwang SC, Ohn YH, Park TK. The time course of visual field recovery and changes of retinal ganglion cells after optic chiasmal decompression. Investig Ophthalmol Vis Sci. 2011;52:7966–73.CrossRef
14.
go back to reference Moon CH, Hwang SC, Kim BT, Ohn YH, Park TK. Visual prognostic value of optical coherence tomography and photopic negative response in chiasmal compression. Investig Ophthalmol Vis Sci. 2011;52:8527–33.CrossRef Moon CH, Hwang SC, Kim BT, Ohn YH, Park TK. Visual prognostic value of optical coherence tomography and photopic negative response in chiasmal compression. Investig Ophthalmol Vis Sci. 2011;52:8527–33.CrossRef
15.
go back to reference Wang J, Cheng H, Hu YS, Tang RA, Frishman LJ. The photopic negative response of the flash electroretinogram in multiple sclerosis. Investig Ophthalmol Vis Sci. 2012;53:1315–23.CrossRef Wang J, Cheng H, Hu YS, Tang RA, Frishman LJ. The photopic negative response of the flash electroretinogram in multiple sclerosis. Investig Ophthalmol Vis Sci. 2012;53:1315–23.CrossRef
16.
go back to reference Machida S. Clinical applications of the photopic negative response to optic nerve and retinal diseases. J Ophthalmol. 2012;2012:397178.PubMedPubMedCentral Machida S. Clinical applications of the photopic negative response to optic nerve and retinal diseases. J Ophthalmol. 2012;2012:397178.PubMedPubMedCentral
17.
go back to reference Machida S, Gotoh Y, Tanaka M, Tazawa Y. Predominant loss of the photopic negative response in central retinal artery occlusion. Am J Ophthalmol. 2004;137:938–40.CrossRef Machida S, Gotoh Y, Tanaka M, Tazawa Y. Predominant loss of the photopic negative response in central retinal artery occlusion. Am J Ophthalmol. 2004;137:938–40.CrossRef
18.
go back to reference Kizawa J, Machida S, Kobayashi T, Gotoh Y, Kurosaka D. Changes of oscillatory potentials and photopic negative response in patients with early diabetic retinopathy. Jpn J Ophthalmol. 2006;50:367–73.CrossRef Kizawa J, Machida S, Kobayashi T, Gotoh Y, Kurosaka D. Changes of oscillatory potentials and photopic negative response in patients with early diabetic retinopathy. Jpn J Ophthalmol. 2006;50:367–73.CrossRef
19.
go back to reference Chen H, Wu D, Huang S, Yan H. The photopic negative response of the flash electroretinogram in retinal vein occlusion. Doc Ophthalmol. 2006;113:53–9.CrossRef Chen H, Wu D, Huang S, Yan H. The photopic negative response of the flash electroretinogram in retinal vein occlusion. Doc Ophthalmol. 2006;113:53–9.CrossRef
20.
go back to reference Ueno S, Kondo M, Piao CH, Ikenoya K, Miyake Y, Terasaki H. Selective amplitude reduction of the PhNR after macular hole surgery: ganglion cell damage related to ICG-assisted ILM peeling and gas tamponade. Investig Ophthalmol Vis Sci. 2006;47:3545–9.CrossRef Ueno S, Kondo M, Piao CH, Ikenoya K, Miyake Y, Terasaki H. Selective amplitude reduction of the PhNR after macular hole surgery: ganglion cell damage related to ICG-assisted ILM peeling and gas tamponade. Investig Ophthalmol Vis Sci. 2006;47:3545–9.CrossRef
21.
go back to reference Nishimura T, Machida S, Harada T, Kurosaka D. Retinal ganglion cell function after repeated intravitreal injections of ranibizumab in patients with age-related macular degeneration. Clin Ophthalmol. 2012;6:1073–82.PubMedPubMedCentral Nishimura T, Machida S, Harada T, Kurosaka D. Retinal ganglion cell function after repeated intravitreal injections of ranibizumab in patients with age-related macular degeneration. Clin Ophthalmol. 2012;6:1073–82.PubMedPubMedCentral
22.
go back to reference Machida S, Toba Y, Nishimura T, Ohzeki T, Murai K, Kurosaka D. Comparisons of cone electroretinograms after indocyanine green-, brilliant blue G-, or triamcinolone acetonide-assisted macular hole surgery. Graefes Arch Clin Exp Ophthalmol. 2014;252:1423–33.CrossRef Machida S, Toba Y, Nishimura T, Ohzeki T, Murai K, Kurosaka D. Comparisons of cone electroretinograms after indocyanine green-, brilliant blue G-, or triamcinolone acetonide-assisted macular hole surgery. Graefes Arch Clin Exp Ophthalmol. 2014;252:1423–33.CrossRef
23.
go back to reference Yagura K, Shinoda K, Matsumoto S, Terauchi G, Watanabe E, Matsumoto H, et al. Intraoperative electroretinograms before and after core vitrectomy. PLoS One. 2016;11:e0152052.CrossRef Yagura K, Shinoda K, Matsumoto S, Terauchi G, Watanabe E, Matsumoto H, et al. Intraoperative electroretinograms before and after core vitrectomy. PLoS One. 2016;11:e0152052.CrossRef
24.
go back to reference Rangaswamy NV, Shirato S, Kaneko M, Digby BI, Robson JG, Frishman LJ. Effects of spectral characteristics of ganzfeld stimuli on the photopic negative response (PhNR) of the ERG. Investig Ophthalmol Vis Sci. 2007;48:4818–28.CrossRef Rangaswamy NV, Shirato S, Kaneko M, Digby BI, Robson JG, Frishman LJ. Effects of spectral characteristics of ganzfeld stimuli on the photopic negative response (PhNR) of the ERG. Investig Ophthalmol Vis Sci. 2007;48:4818–28.CrossRef
25.
go back to reference Miyata K, Ueno S, Kondo M, Koyasu T, Terasaki H. Comparison of photopic negative responses elicited by red and white xenon flashes in monkeys. Jpn J Ophthalmol. 2008;52:327–30.CrossRef Miyata K, Ueno S, Kondo M, Koyasu T, Terasaki H. Comparison of photopic negative responses elicited by red and white xenon flashes in monkeys. Jpn J Ophthalmol. 2008;52:327–30.CrossRef
26.
go back to reference McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, et al. ISCEV standard for full-field clinical electoretinography (2015 update). Doc Ophthalmol. 2015;130:1–12.CrossRef McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, et al. ISCEV standard for full-field clinical electoretinography (2015 update). Doc Ophthalmol. 2015;130:1–12.CrossRef
27.
go back to reference Frishman L, Sustar M, Kremers J, McAnany JJ, Sarossy M, Tzekov R, et al. ISCEV extended protocol for the photopic negative response (PhNR) of the full-field electroretinogram. Doc Ophthalmol. 2018;136:207–11.CrossRef Frishman L, Sustar M, Kremers J, McAnany JJ, Sarossy M, Tzekov R, et al. ISCEV extended protocol for the photopic negative response (PhNR) of the full-field electroretinogram. Doc Ophthalmol. 2018;136:207–11.CrossRef
28.
go back to reference Nagata M. Studies on the photopic ERG of the human retina. Jpn J Ophthalmol. 1963;7:96–124. Nagata M. Studies on the photopic ERG of the human retina. Jpn J Ophthalmol. 1963;7:96–124.
29.
go back to reference Joshi NR, Ly E, Viswanathan S. Intensity response function of the photopic negative response (PhNR): effect of age and test-retest reliability. Doc Ophthalmol. 2017;135:1–16.CrossRef Joshi NR, Ly E, Viswanathan S. Intensity response function of the photopic negative response (PhNR): effect of age and test-retest reliability. Doc Ophthalmol. 2017;135:1–16.CrossRef
30.
go back to reference Anderson DR, Patella VM. Automated static perimetry. 2nd ed. St. Louis: Mosby; 1999. p. 121–90. Anderson DR, Patella VM. Automated static perimetry. 2nd ed. St. Louis: Mosby; 1999. p. 121–90.
31.
go back to reference Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, et al. Detection of macular ganglion cell loss in glaucoma by fourier-domain optical coherence tomography. Ophthalmology. 2009;116:2305–14.CrossRef Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, et al. Detection of macular ganglion cell loss in glaucoma by fourier-domain optical coherence tomography. Ophthalmology. 2009;116:2305–14.CrossRef
Metadata
Title
Comparisons of photopic negative responses elicited by different conditions from glaucomatous eyes
Authors
Yuji Hara
Shigeki Machida
Satoshi Ebihara
Masahiko Ishizuka
Atsushi Tada
Tomoharu Nishimura
Publication date
01-03-2020
Publisher
Springer Japan
Keyword
Glaucoma
Published in
Japanese Journal of Ophthalmology / Issue 2/2020
Print ISSN: 0021-5155
Electronic ISSN: 1613-2246
DOI
https://doi.org/10.1007/s10384-019-00711-5

Other articles of this Issue 2/2020

Japanese Journal of Ophthalmology 2/2020 Go to the issue