Skip to main content
Top
Published in: Japanese Journal of Ophthalmology 1/2017

01-01-2017 | Clinical Investigation

Effect of vitreomacular separation on macular thickness determined by spectral-domain optical coherence tomography

Authors: Kazuyuki Kumagai, Akinori Uemura, Masanori Hangai, Tetsuyuki Suetsugu, Nobuchika Ogino

Published in: Japanese Journal of Ophthalmology | Issue 1/2017

Login to get access

Abstract

Purpose

To determine the effects of vitreomacular separation on macular thickness.

Methods

This was a retrospective, observational, cross-sectional study. Average foveal and central minimum thicknesses were measured by spectral-domain optical coherence tomography (SD-OCT) in 308 eyes of 308 healthy subjects (healthy group) and 298 normal fellow eyes of 298 patients with a unilateral macular hole (MH group). Multiple regression analyses were performed to determine the effects of various factors on the macular thickness.

Results

The mean age of the healthy group was 67.3 ± 9.6 years (range 40–88 years) and that of the MH group was 67.8 ± 7.0 years (range 43–91). SD-OCT images showed that 149 eyes (48.4 %) in the healthy group and 174 eyes (58.4 %) in the MH group had a vitreomacular separation. In the healthy group, the central minimum thickness of eyes with a vitreomacular separation (196 µm) was significantly thinner than those without a vitreomacular separation (205 µm; P < 0.001). In the MH group, the average foveal thickness (234 µm) and the central minimum thickness (177 µm) in eyes with a vitreomacular separation were thinner than those without it (247 and 199 µm, respectively; both P < 0.001). Multiple regression analyses showed that a vitreomacular separation was significantly correlated with thinner central minimum thicknesses in both groups (P < 0.001) and also with the average foveal thickness in the MH group (P < 0.001).

Conclusions

A vitreomacular separation caused thinning of the central fovea in both the healthy eyes and the normal fellow eyes of unilateral MH patients; the extent of foveal thinning is greater in the MH group.
Literature
1.
go back to reference Gaudric A, Haouchine B, Massin P, Paques M, Blain P, Erginay A. Macular hole formation: new data provided by optical coherence tomography. Arch Ophthalmol. 1999;117:744–51.CrossRefPubMed Gaudric A, Haouchine B, Massin P, Paques M, Blain P, Erginay A. Macular hole formation: new data provided by optical coherence tomography. Arch Ophthalmol. 1999;117:744–51.CrossRefPubMed
2.
go back to reference Kishi S, Takahashi H. Three-dimensional observations of developing macular holes. Am J Ophthalmol. 2000;130:65–75.CrossRefPubMed Kishi S, Takahashi H. Three-dimensional observations of developing macular holes. Am J Ophthalmol. 2000;130:65–75.CrossRefPubMed
3.
go back to reference Haouchine B, Massin P, Gaudric A. Foveal pseudocyst as the first step in macular hole formation: a prospective study by optical coherence tomography. Ophthalmology. 2001;108:15–22.CrossRefPubMed Haouchine B, Massin P, Gaudric A. Foveal pseudocyst as the first step in macular hole formation: a prospective study by optical coherence tomography. Ophthalmology. 2001;108:15–22.CrossRefPubMed
4.
go back to reference Uchino E, Uemura A, Ohba N. Initial stages of posterior vitreous detachment in healthy eyes of older persons evaluated by optical coherence tomography. Arch Ophthalmol. 2001;119:1475–9.CrossRefPubMed Uchino E, Uemura A, Ohba N. Initial stages of posterior vitreous detachment in healthy eyes of older persons evaluated by optical coherence tomography. Arch Ophthalmol. 2001;119:1475–9.CrossRefPubMed
5.
go back to reference Johnson MW. Posterior vitreous detachment: evolution and complications of its early stages. Am J Ophthalmol. 2010;149:371–82.CrossRefPubMed Johnson MW. Posterior vitreous detachment: evolution and complications of its early stages. Am J Ophthalmol. 2010;149:371–82.CrossRefPubMed
6.
go back to reference Itakura H, Kishi S. Evolution of vitreomacular detachment in healthy subjects. JAMA Ophthalmol. 2013;131:1348–52.CrossRefPubMed Itakura H, Kishi S. Evolution of vitreomacular detachment in healthy subjects. JAMA Ophthalmol. 2013;131:1348–52.CrossRefPubMed
7.
go back to reference Duker JS, Kaiser PK, Binder S, de Smet MD, Gaudric A, Reichel E, et al. The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology. 2013;120:2611–9.CrossRefPubMed Duker JS, Kaiser PK, Binder S, de Smet MD, Gaudric A, Reichel E, et al. The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology. 2013;120:2611–9.CrossRefPubMed
8.
go back to reference Kumagai K, Hangai M, Larson E, Ogino N. Vitreoretinal interface and foveal deformation in asymptomatic fellow eyes of patients with unilateral macular holes. Ophthalmology. 2011;118:1638–44.CrossRefPubMed Kumagai K, Hangai M, Larson E, Ogino N. Vitreoretinal interface and foveal deformation in asymptomatic fellow eyes of patients with unilateral macular holes. Ophthalmology. 2011;118:1638–44.CrossRefPubMed
9.
go back to reference Witkin AJ, Wojtkowski M, Reichel E, Srinivasan VJ, Fujimoto JG, Schuman JS, et al. Photoreceptor disruption secondary to posterior vitreous detachment as visualized using high-speed ultrahigh-resolution optical coherence tomography. Arch Ophthalmol. 2007;125:1579–80.CrossRefPubMedPubMedCentral Witkin AJ, Wojtkowski M, Reichel E, Srinivasan VJ, Fujimoto JG, Schuman JS, et al. Photoreceptor disruption secondary to posterior vitreous detachment as visualized using high-speed ultrahigh-resolution optical coherence tomography. Arch Ophthalmol. 2007;125:1579–80.CrossRefPubMedPubMedCentral
10.
go back to reference Hangai M, Ojima Y, Gotoh N, Inoue R, Yasuno Y, Makita S, et al. Three-dimensional imaging of macular holes with high-speed optical coherence tomography. Ophthalmology. 2007;114:763–73.CrossRefPubMed Hangai M, Ojima Y, Gotoh N, Inoue R, Yasuno Y, Makita S, et al. Three-dimensional imaging of macular holes with high-speed optical coherence tomography. Ophthalmology. 2007;114:763–73.CrossRefPubMed
11.
go back to reference Takahashi A, Nagaoka T, Yoshida A. Stage 1-A macular hole: a prospective spectral-domain optical coherence tomography study. Retina. 2011;31:127–47.CrossRefPubMed Takahashi A, Nagaoka T, Yoshida A. Stage 1-A macular hole: a prospective spectral-domain optical coherence tomography study. Retina. 2011;31:127–47.CrossRefPubMed
12.
go back to reference Kumagai K, Hangai M, Furukawa M, Larson E, Ogino N. Three-dimensional foveal shape changes after asymptomatic macular posterior vitreous detachment. Clin Ophthalmol. 2013;7:751–6.CrossRefPubMedPubMedCentral Kumagai K, Hangai M, Furukawa M, Larson E, Ogino N. Three-dimensional foveal shape changes after asymptomatic macular posterior vitreous detachment. Clin Ophthalmol. 2013;7:751–6.CrossRefPubMedPubMedCentral
13.
go back to reference Itakura H, Kishi S, Li D, Akiyama H. Observation of posterior precortical vitreous pocket using swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54:3102–7.CrossRefPubMed Itakura H, Kishi S, Li D, Akiyama H. Observation of posterior precortical vitreous pocket using swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54:3102–7.CrossRefPubMed
14.
go back to reference Itakura H, Kishi S, Li D, Akiyama H. En face imaging of posterior precortical vitreous pockets using swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2015;56:2898–900.CrossRefPubMed Itakura H, Kishi S, Li D, Akiyama H. En face imaging of posterior precortical vitreous pockets using swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2015;56:2898–900.CrossRefPubMed
15.
16.
go back to reference Chan A, Duker JS, Ko TH, Fujimoto JG, Schuman JS. Normal macular thickness measurements in healthy eyes using Stratus optical coherence tomography. Arch Ophthalmol. 2006;124:193–8.CrossRefPubMedPubMedCentral Chan A, Duker JS, Ko TH, Fujimoto JG, Schuman JS. Normal macular thickness measurements in healthy eyes using Stratus optical coherence tomography. Arch Ophthalmol. 2006;124:193–8.CrossRefPubMedPubMedCentral
17.
go back to reference Eriksson U, Alm A. Macular thickness decreases with age in normal eyes: a study on the macular thickness map protocol in the Stratus OCT. Br J Ophthalmol. 2009;93:1448–52.CrossRefPubMed Eriksson U, Alm A. Macular thickness decreases with age in normal eyes: a study on the macular thickness map protocol in the Stratus OCT. Br J Ophthalmol. 2009;93:1448–52.CrossRefPubMed
18.
go back to reference Duan XR, Liang YB, Friedman DS, Sun LP, Wong TY, Tao QS, et al. Normal macular thickness measurements using optical coherence tomography in healthy eyes of adult Chinese persons: the Handan Eye Study. Ophthalmology. 2010;117:1585–94.CrossRefPubMed Duan XR, Liang YB, Friedman DS, Sun LP, Wong TY, Tao QS, et al. Normal macular thickness measurements using optical coherence tomography in healthy eyes of adult Chinese persons: the Handan Eye Study. Ophthalmology. 2010;117:1585–94.CrossRefPubMed
19.
go back to reference Grover S, Murthy RK, Brar VS, Chalam KV. Normative data for macular thickness by high-definition spectral-domain optical coherence tomography (spectralis). Am J Ophthalmol. 2009;148:266–71.CrossRefPubMed Grover S, Murthy RK, Brar VS, Chalam KV. Normative data for macular thickness by high-definition spectral-domain optical coherence tomography (spectralis). Am J Ophthalmol. 2009;148:266–71.CrossRefPubMed
20.
go back to reference Ooto S, Hangai M, Sakamoto A, Tomidokoro A, Araie M, Otani T, et al. Three-dimensional profile of macular retinal thickness in normal Japanese eyes. Invest Ophthalmol Vis Sci. 2010;51:465–73.CrossRefPubMed Ooto S, Hangai M, Sakamoto A, Tomidokoro A, Araie M, Otani T, et al. Three-dimensional profile of macular retinal thickness in normal Japanese eyes. Invest Ophthalmol Vis Sci. 2010;51:465–73.CrossRefPubMed
21.
go back to reference Song WK, Lee SC, Lee ES, Kim CY, Kim SS. Macular thickness variations with sex, age, and axial length in healthy subjects: a spectral domain-optical coherence tomography study. Invest Ophthalmol Vis Sci. 2010;51:3913–8.CrossRefPubMed Song WK, Lee SC, Lee ES, Kim CY, Kim SS. Macular thickness variations with sex, age, and axial length in healthy subjects: a spectral domain-optical coherence tomography study. Invest Ophthalmol Vis Sci. 2010;51:3913–8.CrossRefPubMed
22.
go back to reference Wagner-Schuman M, Dubis AM, Nordgren RN, Lei Y, Odell D, Chiao H, et al. Race- and sex-related differences in retinal thickness and foveal pit morphology. Invest Ophthalmol Vis Sci. 2011;52:625–34.CrossRefPubMedPubMedCentral Wagner-Schuman M, Dubis AM, Nordgren RN, Lei Y, Odell D, Chiao H, et al. Race- and sex-related differences in retinal thickness and foveal pit morphology. Invest Ophthalmol Vis Sci. 2011;52:625–34.CrossRefPubMedPubMedCentral
23.
go back to reference Ooto S, Hangai M, Tomidokoro A, Saito H, Araie M, Otani T, et al. Effects of age, sex, and axial length on the three-dimensional profile of normal macular layer structures. Invest Ophthalmol Vis Sci. 2011;52:8769–79.CrossRefPubMed Ooto S, Hangai M, Tomidokoro A, Saito H, Araie M, Otani T, et al. Effects of age, sex, and axial length on the three-dimensional profile of normal macular layer structures. Invest Ophthalmol Vis Sci. 2011;52:8769–79.CrossRefPubMed
24.
go back to reference Tick S, Rossant F, Ghorbel I, Gaudric A, Sahel JA, Chaumet-Riffaud P, et al. Foveal shape and structure in a normal population. Invest Ophthalmol Vis Sci. 2011;52:5105–10.CrossRefPubMed Tick S, Rossant F, Ghorbel I, Gaudric A, Sahel JA, Chaumet-Riffaud P, et al. Foveal shape and structure in a normal population. Invest Ophthalmol Vis Sci. 2011;52:5105–10.CrossRefPubMed
25.
go back to reference Dubis AM, Hansen BR, Cooper RF, Beringer J, Dubra A, Carroll J. Relationship between the foveal avascular zone and foveal pit morphology. Invest Ophthalmol Vis Sci. 2012;53:1628–36.CrossRefPubMedPubMedCentral Dubis AM, Hansen BR, Cooper RF, Beringer J, Dubra A, Carroll J. Relationship between the foveal avascular zone and foveal pit morphology. Invest Ophthalmol Vis Sci. 2012;53:1628–36.CrossRefPubMedPubMedCentral
26.
go back to reference Ezra E, Fariss RN, Possin DE, Aylward WG, Gregor ZJ, Luthert PJ, et al. Immunocytochemical characterization of macular hole opercula. Arch Ophthalmol. 2001;119:223–31.PubMed Ezra E, Fariss RN, Possin DE, Aylward WG, Gregor ZJ, Luthert PJ, et al. Immunocytochemical characterization of macular hole opercula. Arch Ophthalmol. 2001;119:223–31.PubMed
27.
go back to reference Gass JD. Müller cell cone, an overlooked part of the anatomy of the fovea centralis: hypotheses concerning its role in the pathogenesis of macular hole and foveomacular retinoschisis. Arch Ophthalmol. 1999;117:821–3.CrossRefPubMed Gass JD. Müller cell cone, an overlooked part of the anatomy of the fovea centralis: hypotheses concerning its role in the pathogenesis of macular hole and foveomacular retinoschisis. Arch Ophthalmol. 1999;117:821–3.CrossRefPubMed
28.
go back to reference Batta P, Engel HM, Shrivastava A, Freeman K, Mian U. Effect of partial posterior vitreous detachment on retinal nerve fiber layer thickness as measured by optical coherence tomography. Arch Ophthalmol. 2010;128:692–7.CrossRefPubMed Batta P, Engel HM, Shrivastava A, Freeman K, Mian U. Effect of partial posterior vitreous detachment on retinal nerve fiber layer thickness as measured by optical coherence tomography. Arch Ophthalmol. 2010;128:692–7.CrossRefPubMed
29.
go back to reference Gao H, Hollyfield JG. Aging of the human retina: differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1992;33:1–17.PubMed Gao H, Hollyfield JG. Aging of the human retina: differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1992;33:1–17.PubMed
30.
go back to reference Panda-Jonas S, Jonas JB, Jakobczyk-Zmija M. Retinal photoreceptor density decreases with age. Ophthalmology. 1995;102:1853–9.CrossRefPubMed Panda-Jonas S, Jonas JB, Jakobczyk-Zmija M. Retinal photoreceptor density decreases with age. Ophthalmology. 1995;102:1853–9.CrossRefPubMed
Metadata
Title
Effect of vitreomacular separation on macular thickness determined by spectral-domain optical coherence tomography
Authors
Kazuyuki Kumagai
Akinori Uemura
Masanori Hangai
Tetsuyuki Suetsugu
Nobuchika Ogino
Publication date
01-01-2017
Publisher
Springer Japan
Published in
Japanese Journal of Ophthalmology / Issue 1/2017
Print ISSN: 0021-5155
Electronic ISSN: 1613-2246
DOI
https://doi.org/10.1007/s10384-016-0486-5

Other articles of this Issue 1/2017

Japanese Journal of Ophthalmology 1/2017 Go to the issue