Skip to main content
Top
Published in: Japanese Journal of Ophthalmology 2/2013

01-03-2013 | Clinical Investigation

Quadrantal macular retinal thickness changes in strabismus subjects with abnormal binocular vision development

Authors: Mayumi Oka, Tsutomu Yamashita, Shizuka Ono, Ikumi Kubo, Akio Tabuchi

Published in: Japanese Journal of Ophthalmology | Issue 2/2013

Login to get access

Abstract

Purpose

To investigate retinal morphological changes in strabismus patients with abnormal binocular vision development by comparing differences in quadrantal macular retinal thickness.

Methods

Six strabismus patients (6 dominant and 5 non-dominant eyes) with abnormal binocular vision (mean age 22 years), and 11 control subjects (11 dominant and 11 non-dominant eyes) (mean age 21 years) were enrolled. Macular retinal thickness measurements were performed by optical coherence tomography, with total macular retinal (TMR) and ganglion cell complex (GCC) thicknesses measured in 3- and 6-mm regions in each quadrant. Measurement values were then used to determine quadrant ratios.

Results

Compared to the dominant eyes of the controls, the superior/inferior (S/I) ratio of the TMR thickness and GCC thickness in the 3-mm region was significantly lower in the dominant eyes of the strabismus group (P < 0.05, each). The superior temporal/inferior temporal (ST/IT) ratio of the GCC thickness in the dominant eyes of the strabismus group was also significantly lower (P < 0.01).

Conclusions

Dominant eyes of the strabismus group with abnormal binocular vision development exhibited thinner superior temporal GCC thicknesses in the 3-mm region. Retinal ganglion cells in this region might be affected by efferent neural degeneration that originates in the visual pathway responsible for adaptations to the visual experience.
Literature
1.
go back to reference Wright KW. Clinical optokinetic nystagmus asymmetry in treated esotropes. J Pediatr Ophthalmol Strabismus. 1996;33:153–5.PubMed Wright KW. Clinical optokinetic nystagmus asymmetry in treated esotropes. J Pediatr Ophthalmol Strabismus. 1996;33:153–5.PubMed
2.
go back to reference van Hof-van Duin J, Mohn G. Monocular and binocular optokinetic nystagmus in humans with defective stereopsis. Invest Ophthalmol Vis Sci. 1986;27:574–83. van Hof-van Duin J, Mohn G. Monocular and binocular optokinetic nystagmus in humans with defective stereopsis. Invest Ophthalmol Vis Sci. 1986;27:574–83.
3.
go back to reference Tychsen L, Burkhalter A. Neuroanatomic abnormalities of primary visual cortex in macaque monkeys with infantile esotropia: preliminary results. J Pediatr Ophthalmol Strabismus. 1995;32:323–8.PubMed Tychsen L, Burkhalter A. Neuroanatomic abnormalities of primary visual cortex in macaque monkeys with infantile esotropia: preliminary results. J Pediatr Ophthalmol Strabismus. 1995;32:323–8.PubMed
4.
go back to reference Horton JC, Hocking DR, Adams DL. Metabolic mapping of suppression scotomas in striate cortex of macaques with experimental strabismus. J Neurosci. 1999;19:7111–29.PubMed Horton JC, Hocking DR, Adams DL. Metabolic mapping of suppression scotomas in striate cortex of macaques with experimental strabismus. J Neurosci. 1999;19:7111–29.PubMed
5.
go back to reference Wong AMF, Lueder GT, Brukhalter A, Tychsen L. Suppression of metabolic activity caused by infantile strabismus and strabismic amblyopia in striate visual cortex of macaque monkeys. J AAPOS. 2005;9:37–47.PubMedCrossRef Wong AMF, Lueder GT, Brukhalter A, Tychsen L. Suppression of metabolic activity caused by infantile strabismus and strabismic amblyopia in striate visual cortex of macaque monkeys. J AAPOS. 2005;9:37–47.PubMedCrossRef
6.
go back to reference Altintas O, Yüksel N, Ozkan B, Caglar Y. Thickness of the retinal nerve fiber layer, macular thickness, and macular volume in patients with strabismic amblyopia. J Pediatr Ophthalmol Strabismus. 2005;42:216–21.PubMed Altintas O, Yüksel N, Ozkan B, Caglar Y. Thickness of the retinal nerve fiber layer, macular thickness, and macular volume in patients with strabismic amblyopia. J Pediatr Ophthalmol Strabismus. 2005;42:216–21.PubMed
7.
go back to reference Kee SY, Lee SY, Lee YC. Thicknesses of the fovea and retinal nerve fiber layer in amblyopic and normal eyes in children. Korean J Ophthalmol. 2006;20:177–81.PubMedCrossRef Kee SY, Lee SY, Lee YC. Thicknesses of the fovea and retinal nerve fiber layer in amblyopic and normal eyes in children. Korean J Ophthalmol. 2006;20:177–81.PubMedCrossRef
8.
go back to reference Quoc EB, Delepine B, Tran TH. Thickness of retinal nerve fiber layer and macular volume in children and adults with strabismic and anisometropic amblyopia. J Fr Ophthalmol. 2009;32:488–95.(in French). Quoc EB, Delepine B, Tran TH. Thickness of retinal nerve fiber layer and macular volume in children and adults with strabismic and anisometropic amblyopia. J Fr Ophthalmol. 2009;32:488–95.(in French).
9.
go back to reference Al-Haddad CE, Mollayess GM, Cherfan CG, Jaafar DF, Bashshur ZF. Retinal nerve fibre layer and macular thickness in amblyopia as measured by spectral-domain optical coherence tomography. Br J Ophthalmol. 2011;95:1696–9.PubMedCrossRef Al-Haddad CE, Mollayess GM, Cherfan CG, Jaafar DF, Bashshur ZF. Retinal nerve fibre layer and macular thickness in amblyopia as measured by spectral-domain optical coherence tomography. Br J Ophthalmol. 2011;95:1696–9.PubMedCrossRef
10.
go back to reference Dickmann A, Petroni S, Perrotta V, Salerni A, Parrilla R, Aliberti S, et al. A morpho-functional study of amblyopic eyes with the use of optical coherence tomography and microperimetry. J AAPOS. 2011;15:338–41.PubMedCrossRef Dickmann A, Petroni S, Perrotta V, Salerni A, Parrilla R, Aliberti S, et al. A morpho-functional study of amblyopic eyes with the use of optical coherence tomography and microperimetry. J AAPOS. 2011;15:338–41.PubMedCrossRef
11.
go back to reference Lim MC, Hoh ST, Foster PJ, Lim TH, Chew SJ, Seah SK, et al. Use of optical coherence tomography to assess variations in macular retinal thickness in myopia. Invest Ophthalmol Vis Sci. 2005;46:974–8.PubMedCrossRef Lim MC, Hoh ST, Foster PJ, Lim TH, Chew SJ, Seah SK, et al. Use of optical coherence tomography to assess variations in macular retinal thickness in myopia. Invest Ophthalmol Vis Sci. 2005;46:974–8.PubMedCrossRef
12.
go back to reference Lam DS, Leung KS, Mohamed S, Chan WM, Palanivelu MS, Cheung CY, et al. Regional variations in the relationship between macular thickness measurements and myopia. Invest Ophthalmol Vis Sci. 2007;48:376–82.PubMedCrossRef Lam DS, Leung KS, Mohamed S, Chan WM, Palanivelu MS, Cheung CY, et al. Regional variations in the relationship between macular thickness measurements and myopia. Invest Ophthalmol Vis Sci. 2007;48:376–82.PubMedCrossRef
13.
go back to reference Gaze RM, Keating MJ, Székely G, Beazley L. Binocular interaction in the formation of specific intertectal neuronal connexions. Proc R Soc Lond B Biol Sci. 1970;175:107–47.PubMedCrossRef Gaze RM, Keating MJ, Székely G, Beazley L. Binocular interaction in the formation of specific intertectal neuronal connexions. Proc R Soc Lond B Biol Sci. 1970;175:107–47.PubMedCrossRef
14.
go back to reference Distler C, Hoffmann KP. The pupillary light reflex in normal and innate microstrabismic cats, II: retinal and cortical input to the nucleus praetectalis olivaris. Vis Neurosci. 1989;3:139–53.PubMedCrossRef Distler C, Hoffmann KP. The pupillary light reflex in normal and innate microstrabismic cats, II: retinal and cortical input to the nucleus praetectalis olivaris. Vis Neurosci. 1989;3:139–53.PubMedCrossRef
15.
go back to reference Sireteanu R. Binocular luminance summation in humans with defective binocular vision. Invest Ophthalmol Vis Sci. 1987;28:349–55.PubMed Sireteanu R. Binocular luminance summation in humans with defective binocular vision. Invest Ophthalmol Vis Sci. 1987;28:349–55.PubMed
16.
go back to reference Rodieck RW. Visual angle and retinal eccentricity. In: Rodieck RW, editor. The first steps in seeing. Massachusetts: Sinauer Associates; 1998. p. 125. Rodieck RW. Visual angle and retinal eccentricity. In: Rodieck RW, editor. The first steps in seeing. Massachusetts: Sinauer Associates; 1998. p. 125.
17.
go back to reference Feldon P, Kruger L. Topography of the retinal projection upon the superior colliculus of the cat. Vision Res. 1970;10:135–43.PubMedCrossRef Feldon P, Kruger L. Topography of the retinal projection upon the superior colliculus of the cat. Vision Res. 1970;10:135–43.PubMedCrossRef
18.
19.
go back to reference Fukuda Y, Sawai H, Watanabe M, Wakakuwa K, Morigiwa K. Nasotemporal overlap of crossed and uncrossed retinal ganglion cell projections in the Japanese monkey (Macaca fuscata). J Neurosci. 1989;9:2353–73.PubMed Fukuda Y, Sawai H, Watanabe M, Wakakuwa K, Morigiwa K. Nasotemporal overlap of crossed and uncrossed retinal ganglion cell projections in the Japanese monkey (Macaca fuscata). J Neurosci. 1989;9:2353–73.PubMed
20.
go back to reference Wright KW, Edelman PM, McVey JH, Terry AP, Lin M. High-grade stereo acuity after early surgery for congenital esotropia. Arch Ophthalmol. 1994;112:913–9.PubMedCrossRef Wright KW, Edelman PM, McVey JH, Terry AP, Lin M. High-grade stereo acuity after early surgery for congenital esotropia. Arch Ophthalmol. 1994;112:913–9.PubMedCrossRef
21.
go back to reference van Rijn LJ, Simonsz HJ, Tusscher MP. Dissociated vertical deviation and eye torsion: relation to disparity-induced vertical vergence. Strabismus. 1997;5:13–20.PubMedCrossRef van Rijn LJ, Simonsz HJ, Tusscher MP. Dissociated vertical deviation and eye torsion: relation to disparity-induced vertical vergence. Strabismus. 1997;5:13–20.PubMedCrossRef
22.
go back to reference ten Tusscher MP, van Rijn RJ. A hypothetical mechanism for DVD: unbalanced cortical input to subcortical pathways. Strabismus. 2010;18:98–103.PubMedCrossRef ten Tusscher MP, van Rijn RJ. A hypothetical mechanism for DVD: unbalanced cortical input to subcortical pathways. Strabismus. 2010;18:98–103.PubMedCrossRef
23.
24.
go back to reference Brodsky MC. Dissociated vertical divergence. A right reflex gone wrong. Arch Ophthalmol. 1999;117:1216–22.PubMedCrossRef Brodsky MC. Dissociated vertical divergence. A right reflex gone wrong. Arch Ophthalmol. 1999;117:1216–22.PubMedCrossRef
25.
go back to reference Rodieck RW. Superior colliculus. In: Rodieck RW, editor. The first steps in seeing. Massachusetts: Sinauer Associates; 1998. p. 273–8. Rodieck RW. Superior colliculus. In: Rodieck RW, editor. The first steps in seeing. Massachusetts: Sinauer Associates; 1998. p. 273–8.
26.
go back to reference Takaura K, Yoshida M, Isa T. Neural substrate of spatial memory in the superior colliculus after damage to the primary visual cortex. J Neurosci. 2011;31:4233–41.PubMedCrossRef Takaura K, Yoshida M, Isa T. Neural substrate of spatial memory in the superior colliculus after damage to the primary visual cortex. J Neurosci. 2011;31:4233–41.PubMedCrossRef
27.
go back to reference Yagasaki T, Yokoyama YO, Maeda M. Influence of timing of initial surgery for infantile esotropia on the severity of dissociated vertical deviation. Jpn J Ophthalmol. 2011;55:383–8.PubMedCrossRef Yagasaki T, Yokoyama YO, Maeda M. Influence of timing of initial surgery for infantile esotropia on the severity of dissociated vertical deviation. Jpn J Ophthalmol. 2011;55:383–8.PubMedCrossRef
Metadata
Title
Quadrantal macular retinal thickness changes in strabismus subjects with abnormal binocular vision development
Authors
Mayumi Oka
Tsutomu Yamashita
Shizuka Ono
Ikumi Kubo
Akio Tabuchi
Publication date
01-03-2013
Publisher
Springer Japan
Published in
Japanese Journal of Ophthalmology / Issue 2/2013
Print ISSN: 0021-5155
Electronic ISSN: 1613-2246
DOI
https://doi.org/10.1007/s10384-012-0214-8

Other articles of this Issue 2/2013

Japanese Journal of Ophthalmology 2/2013 Go to the issue