Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 3/2023

12-06-2023 | Research Article

Concomitant field compensation of spiral turbo spin-echo at 0.55 T

Authors: Rajiv Ramasawmy, John P. Mugler III, Ahsan Javed, Zhixing Wang, Daniel A. Herzka, Craig H. Meyer, Adrienne E. Campbell-Washburn

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 3/2023

Login to get access

Abstract

Objective

Diagnostic-quality neuroimaging methods are vital for widespread clinical adoption of low field MRI. Spiral imaging is an efficient acquisition method that can mitigate the reduced signal-to-noise ratio at lower field strengths. As concomitant field artifacts are worse at lower field, we propose a generalizable quadratic gradient-field nulling as an echo-to-echo compensation and apply it to spiral TSE at 0.55 T.

Materials and methods

A spiral in–out TSE acquisition was developed with a compensation for concomitant field variation between spiral interleaves, by adding bipolar gradients around each readout to minimize phase differences at each refocusing pulse. Simulations were performed to characterize concomitant field compensation approaches. We demonstrate our proposed compensation method in phantoms and (n = 8) healthy volunteers at 0.55 T.

Results

Spiral read-outs with integrated spoiling demonstrated strong concomitant field artifacts but were mitigated using the echo-to-echo compensation. Simulations predicted a decrease of concomitant field phase RMSE between echoes of 42% using the proposed compensation. Spiral TSE improved SNR by 17.2 ± 2.3% compared to reference Cartesian acquisition.

Discussion

We demonstrated a generalizable approach to mitigate concomitant field artifacts for spiral TSE acquisitions via the addition of quadratic-nulling gradients, which can potentially improve neuroimaging at low-field through increased acquisition efficiency.
Appendix
Available only for authorised users
Literature
1.
go back to reference Campbell-Washburn AE, Ramasawmy R, Restivo MC, Bhattacharya I, Basar B, Herzka DA, Hansen MS, Rogers T, Bandettini WP, McGuirt DR, Mancini C, Grodzki D, Schneider R, Majeed W, Bhat H, Xue H, Moss J, Malayeri AA, Jones EC, Koretsky AP, Kellman P, Chen MY, Lederman RJ, Balaban RS (2019) Opportunities in interventional and diagnostic imaging by using high-performance low-field-strength MRI. Radiology 293(2):384–393CrossRefPubMed Campbell-Washburn AE, Ramasawmy R, Restivo MC, Bhattacharya I, Basar B, Herzka DA, Hansen MS, Rogers T, Bandettini WP, McGuirt DR, Mancini C, Grodzki D, Schneider R, Majeed W, Bhat H, Xue H, Moss J, Malayeri AA, Jones EC, Koretsky AP, Kellman P, Chen MY, Lederman RJ, Balaban RS (2019) Opportunities in interventional and diagnostic imaging by using high-performance low-field-strength MRI. Radiology 293(2):384–393CrossRefPubMed
2.
go back to reference Wald LL, McDaniel PC, Witzel T, Stockmann JP, Cooley CZ (2020) Low-cost and portable MRI. J Magn Reson Imaging 52(3):686–696CrossRefPubMed Wald LL, McDaniel PC, Witzel T, Stockmann JP, Cooley CZ (2020) Low-cost and portable MRI. J Magn Reson Imaging 52(3):686–696CrossRefPubMed
4.
go back to reference Bhat SS, Fernandes TT, Poojar P, da Silva FM, Rao PC, Hanumantharaju MC, Ogbole G, Nunes RG, Geethanath S (2021) Low-Field MRI of stroke: challenges and opportunities. J Magn Reson Imaging 54(2):372–390CrossRefPubMed Bhat SS, Fernandes TT, Poojar P, da Silva FM, Rao PC, Hanumantharaju MC, Ogbole G, Nunes RG, Geethanath S (2021) Low-Field MRI of stroke: challenges and opportunities. J Magn Reson Imaging 54(2):372–390CrossRefPubMed
5.
go back to reference Bhattacharya I, Ramasawmy R, Javed A, Chen MY, Benkert T, Majeed W, Lederman RJ, Moss J, Balaban RS, Campbell-Washburn AE (2021) Oxygen-enhanced functional lung imaging using a contemporary 0.55 T MRI system. NMR Biomed 34 (8):e4562. Bhattacharya I, Ramasawmy R, Javed A, Chen MY, Benkert T, Majeed W, Lederman RJ, Moss J, Balaban RS, Campbell-Washburn AE (2021) Oxygen-enhanced functional lung imaging using a contemporary 0.55 T MRI system. NMR Biomed 34 (8):e4562.
6.
go back to reference Restivo MC, Ramasawmy R, Bandettini WP, Herzka DA, Campbell-Washburn AE (2020) Efficient spiral in-out and EPI balanced steady-state free precession cine imaging using a high-performance 0.55T MRI. Magn Reson Med 84 (5):2364–2375. Restivo MC, Ramasawmy R, Bandettini WP, Herzka DA, Campbell-Washburn AE (2020) Efficient spiral in-out and EPI balanced steady-state free precession cine imaging using a high-performance 0.55T MRI. Magn Reson Med 84 (5):2364–2375.
7.
go back to reference Lee NG, Ramasawmy R, Lim Y, Campbell-Washburn AE, Nayak KS (2022) MaxGIRF: Image reconstruction incorporating concomitant field and gradient impulse response function effects. Magn Reson Med 88(2):691–710CrossRefPubMedPubMedCentral Lee NG, Ramasawmy R, Lim Y, Campbell-Washburn AE, Nayak KS (2022) MaxGIRF: Image reconstruction incorporating concomitant field and gradient impulse response function effects. Magn Reson Med 88(2):691–710CrossRefPubMedPubMedCentral
8.
go back to reference King KF, Ganin A, Zhou XJ, Bernstein MA (1999) Concomitant gradient field effects in spiral scans. Magn Reson Med 41(1):103–112CrossRefPubMed King KF, Ganin A, Zhou XJ, Bernstein MA (1999) Concomitant gradient field effects in spiral scans. Magn Reson Med 41(1):103–112CrossRefPubMed
9.
go back to reference Weavers PT, Tao S, Trzasko JD, Frigo LM, Shu Y, Frick MA, Lee SK, Foo TK, Bernstein MA (2018) B0 concomitant field compensation for MRI systems employing asymmetric transverse gradient coils. Magn Reson Med 79(3):1538–1544CrossRefPubMed Weavers PT, Tao S, Trzasko JD, Frigo LM, Shu Y, Frick MA, Lee SK, Foo TK, Bernstein MA (2018) B0 concomitant field compensation for MRI systems employing asymmetric transverse gradient coils. Magn Reson Med 79(3):1538–1544CrossRefPubMed
10.
go back to reference Zhou XJ, Tan SG, Bernstein MA (1998) Artifacts induced by concomitant magnetic field in fast spin-echo imaging. Magn Reson Med 40(4):582–591CrossRefPubMed Zhou XJ, Tan SG, Bernstein MA (1998) Artifacts induced by concomitant magnetic field in fast spin-echo imaging. Magn Reson Med 40(4):582–591CrossRefPubMed
11.
go back to reference Tao S, Weavers PT, Trzasko JD, Huston J 3rd, Shu Y, Gray EM, Foo TKF, Bernstein MA (2018) The effect of concomitant fields in fast spin echo acquisition on asymmetric MRI gradient systems. Magn Reson Med 79(3):1354–1364CrossRefPubMed Tao S, Weavers PT, Trzasko JD, Huston J 3rd, Shu Y, Gray EM, Foo TKF, Bernstein MA (2018) The effect of concomitant fields in fast spin echo acquisition on asymmetric MRI gradient systems. Magn Reson Med 79(3):1354–1364CrossRefPubMed
12.
go back to reference Javed A, Ramasawmy R, O'Brien K, Mancini C, Su P, Majeed W, Benkert T, Bhat H, Suffredini AF, Malayeri A, Campbell-Washburn AE (2022) Self-gated 3D stack-of-spirals UTE pulmonary imaging at 0.55T. Magn Reson Med 87 (4):1784–1798. Javed A, Ramasawmy R, O'Brien K, Mancini C, Su P, Majeed W, Benkert T, Bhat H, Suffredini AF, Malayeri A, Campbell-Washburn AE (2022) Self-gated 3D stack-of-spirals UTE pulmonary imaging at 0.55T. Magn Reson Med 87 (4):1784–1798.
13.
go back to reference Nunes RG, Malik SJ, Hajnal JV (2014) Single shot fast spin echo diffusion imaging with correction for non-linear phase errors using tailored RF pulses. Magn Reson Med 71(2):691–701CrossRefPubMed Nunes RG, Malik SJ, Hajnal JV (2014) Single shot fast spin echo diffusion imaging with correction for non-linear phase errors using tailored RF pulses. Magn Reson Med 71(2):691–701CrossRefPubMed
14.
go back to reference Li Z, Karis JP, Pipe JG (2018) A 2D spiral turbo-spin-echo technique. Magn Reson Med 80(5):1989–1996CrossRefPubMed Li Z, Karis JP, Pipe JG (2018) A 2D spiral turbo-spin-echo technique. Magn Reson Med 80(5):1989–1996CrossRefPubMed
15.
go back to reference Li Z, Srivastava SP, Karis JP (2021) Technical note: A spiral fluid-attenuated inversion recovery magnetic resonance imaging technique for stereotactic radiosurgery treatment planning for trigeminal neuralgia. Med Phys 48(11):6881–6888CrossRefPubMed Li Z, Srivastava SP, Karis JP (2021) Technical note: A spiral fluid-attenuated inversion recovery magnetic resonance imaging technique for stereotactic radiosurgery treatment planning for trigeminal neuralgia. Med Phys 48(11):6881–6888CrossRefPubMed
16.
go back to reference Hennig J, Barghoorn A, Zhang S, Zaitsev M (2022) Single shot spiral TSE with annulated segmentation. Magn Reson Med 88(2):651–662CrossRefPubMed Hennig J, Barghoorn A, Zhang S, Zaitsev M (2022) Single shot spiral TSE with annulated segmentation. Magn Reson Med 88(2):651–662CrossRefPubMed
17.
go back to reference Lee JH, Hargreaves BA, Hu BS, Nishimura DG (2003) Fast 3D imaging using variable-density spiral trajectories with applications to limb perfusion. Magn Reson Med 50(6):1276–1285CrossRefPubMed Lee JH, Hargreaves BA, Hu BS, Nishimura DG (2003) Fast 3D imaging using variable-density spiral trajectories with applications to limb perfusion. Magn Reson Med 50(6):1276–1285CrossRefPubMed
18.
go back to reference Inati SJ, Naegele JD, Zwart NR, Roopchansingh V, Lizak MJ, Hansen DC, Liu CY, Atkinson D, Kellman P, Kozerke S, Xue H, Campbell-Washburn AE, Sorensen TS, Hansen MS (2017) ISMRM Raw data format: A proposed standard for MRI raw datasets. Magn Reson Med 77(1):411–421CrossRefPubMed Inati SJ, Naegele JD, Zwart NR, Roopchansingh V, Lizak MJ, Hansen DC, Liu CY, Atkinson D, Kellman P, Kozerke S, Xue H, Campbell-Washburn AE, Sorensen TS, Hansen MS (2017) ISMRM Raw data format: A proposed standard for MRI raw datasets. Magn Reson Med 77(1):411–421CrossRefPubMed
19.
go back to reference Robson PM, Grant AK, Madhuranthakam AJ, Lattanzi R, Sodickson DK, McKenzie CA (2008) Comprehensive quantification of signal-to-noise ratio and g-factor for image-based and k-space-based parallel imaging reconstructions. Magn Reson Med 60(4):895–907CrossRefPubMedPubMedCentral Robson PM, Grant AK, Madhuranthakam AJ, Lattanzi R, Sodickson DK, McKenzie CA (2008) Comprehensive quantification of signal-to-noise ratio and g-factor for image-based and k-space-based parallel imaging reconstructions. Magn Reson Med 60(4):895–907CrossRefPubMedPubMedCentral
20.
go back to reference Marques JP, van Kemenade W, Gazzo S, Grodzki D, Knopp EA, Stainsby J (2021) ESMRMB annual meeting roundtable discussion: “when less is more: the view of MRI vendors on low-field MRI.” MAGMA 34(4):479–482CrossRefPubMedPubMedCentral Marques JP, van Kemenade W, Gazzo S, Grodzki D, Knopp EA, Stainsby J (2021) ESMRMB annual meeting roundtable discussion: “when less is more: the view of MRI vendors on low-field MRI.” MAGMA 34(4):479–482CrossRefPubMedPubMedCentral
21.
go back to reference Liu Y, Leong ATL, Zhao Y, Xiao L, Mak HKF, Tsang ACO, Lau GKK, Leung GKK, Wu EX (2021) A low-cost and shielding-free ultra-low-field brain MRI scanner. Nat Commun 12(1):7238CrossRefPubMedPubMedCentral Liu Y, Leong ATL, Zhao Y, Xiao L, Mak HKF, Tsang ACO, Lau GKK, Leung GKK, Wu EX (2021) A low-cost and shielding-free ultra-low-field brain MRI scanner. Nat Commun 12(1):7238CrossRefPubMedPubMedCentral
22.
go back to reference Wu HH, Lee JH, Nishimura DG (2008) MRI using a concentric rings trajectory. Magn Reson Med 59(1):102–112CrossRefPubMed Wu HH, Lee JH, Nishimura DG (2008) MRI using a concentric rings trajectory. Magn Reson Med 59(1):102–112CrossRefPubMed
23.
go back to reference Li Z, Wang D, Robison RK, Zwart NR, Schar M, Karis JP, Pipe JG (2016) Sliding-slab three-dimensional TSE imaging with a spiral-In/Out readout. Magn Reson Med 75(2):729–738CrossRefPubMed Li Z, Wang D, Robison RK, Zwart NR, Schar M, Karis JP, Pipe JG (2016) Sliding-slab three-dimensional TSE imaging with a spiral-In/Out readout. Magn Reson Med 75(2):729–738CrossRefPubMed
24.
go back to reference Wang Z, Allen SP, Feng X, Mugler JP 3rd, Meyer CH (2022) SPRING-RIO TSE: 2D T(2) -Weighted Turbo Spin-Echo brain imaging using SPiral RINGs with retraced in/out trajectories. Magn Reson Med 88(2):601–616CrossRefPubMedPubMedCentral Wang Z, Allen SP, Feng X, Mugler JP 3rd, Meyer CH (2022) SPRING-RIO TSE: 2D T(2) -Weighted Turbo Spin-Echo brain imaging using SPiral RINGs with retraced in/out trajectories. Magn Reson Med 88(2):601–616CrossRefPubMedPubMedCentral
25.
go back to reference Tamir JI, Taviani V, Alley MT, Perkins BC, Hart L, O’Brien K, Wishah F, Sandberg JK, Anderson MJ, Turek JS, Willke TL, Lustig M, Vasanawala SS (2019) Targeted rapid knee MRI exam using T2 shuffling. J Magn Reson Imaging 49(7):e195–e204CrossRefPubMedPubMedCentral Tamir JI, Taviani V, Alley MT, Perkins BC, Hart L, O’Brien K, Wishah F, Sandberg JK, Anderson MJ, Turek JS, Willke TL, Lustig M, Vasanawala SS (2019) Targeted rapid knee MRI exam using T2 shuffling. J Magn Reson Imaging 49(7):e195–e204CrossRefPubMedPubMedCentral
26.
go back to reference Song HK, Dougherty L (2000) k-space weighted image contrast (KWIC) for contrast manipulation in projection reconstruction MRI. Magn Reson Med 44(6):825–832CrossRefPubMed Song HK, Dougherty L (2000) k-space weighted image contrast (KWIC) for contrast manipulation in projection reconstruction MRI. Magn Reson Med 44(6):825–832CrossRefPubMed
28.
go back to reference Middione MJ, Loecher M, Moulin K, Ennis DB (2020) Optimization methods for magnetic resonance imaging gradient waveform design. NMR Biomed 33(12):e4308CrossRefPubMedPubMedCentral Middione MJ, Loecher M, Moulin K, Ennis DB (2020) Optimization methods for magnetic resonance imaging gradient waveform design. NMR Biomed 33(12):e4308CrossRefPubMedPubMedCentral
29.
go back to reference Wilm BJ, Barmet C, Gross S, Kasper L, Vannesjo SJ, Haeberlin M, Dietrich BE, Brunner DO, Schmid T, Pruessmann KP (2017) Single-shot spiral imaging enabled by an expanded encoding model: Demonstration in diffusion MRI. Magn Reson Med 77(1):83–91CrossRefPubMed Wilm BJ, Barmet C, Gross S, Kasper L, Vannesjo SJ, Haeberlin M, Dietrich BE, Brunner DO, Schmid T, Pruessmann KP (2017) Single-shot spiral imaging enabled by an expanded encoding model: Demonstration in diffusion MRI. Magn Reson Med 77(1):83–91CrossRefPubMed
30.
go back to reference Chen W, Sica CT, Meyer CH (2008) Fast conjugate phase image reconstruction based on a Chebyshev approximation to correct for B0 field inhomogeneity and concomitant gradients. Magn Reson Med 60(5):1104–1111CrossRefPubMedPubMedCentral Chen W, Sica CT, Meyer CH (2008) Fast conjugate phase image reconstruction based on a Chebyshev approximation to correct for B0 field inhomogeneity and concomitant gradients. Magn Reson Med 60(5):1104–1111CrossRefPubMedPubMedCentral
Metadata
Title
Concomitant field compensation of spiral turbo spin-echo at 0.55 T
Authors
Rajiv Ramasawmy
John P. Mugler III
Ahsan Javed
Zhixing Wang
Daniel A. Herzka
Craig H. Meyer
Adrienne E. Campbell-Washburn
Publication date
12-06-2023
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 3/2023
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-023-01103-0

Other articles of this Issue 3/2023

Magnetic Resonance Materials in Physics, Biology and Medicine 3/2023 Go to the issue