Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 6/2015

01-12-2015 | Research Article

Effect of \( T_{2}^{*} \) correction on contrast kinetic model analysis using a reference tissue arterial input function at 7 T

Authors: Jin Zhang, Melanie Freed, Kerryanne Winters, Sungheon G. Kim

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 6/2015

Login to get access

Abstract

Objectives

We aimed to investigate the effect of \( T_{2}^{*} \) correction on estimation of kinetic parameters from T 1-weighted dynamic contrast enhanced (DCE) MRI data when a reference-tissue arterial input function (AIF) is used.

Materials and methods

DCE-MRI data were acquired from seven mice with 4T1 mouse mammary tumors using a double gradient echo sequence at 7 T. The AIF was estimated from a region of interest in the muscle. The extended Tofts model was used to estimate pharmacokinetic parameters in the enhancing part of the tumor, with and without \( T_{2}^{*} \) correction of the lesion and AIF. The parameters estimated with \( T_{2}^{*} \) correction of both the AIF and lesion time-intensity curve were assumed to be the reference standard.

Results

For the whole population, there was significant difference (p < 0.05) in transfer constant (K trans) between \( T_{2}^{*} \) corrected and not corrected methods, but not in interstitial volume fraction (v e). Individually, no significant differences were found in K trans and v e of four and six tumors, respectively, between the \( T_{2}^{*} \) corrected and not corrected methods. In contrast, K trans was significantly underestimated, if the \( T_{2}^{*} \) correction was not used, in other tumors for which the median K trans was larger than 0.4 min−1.

Conclusion

\( T_{2}^{*} \) effect on tumors with high K trans may not be negligible in kinetic model analysis, even if AIF is estimated from reference tissue where the concentration of contrast agent is relatively low.
Literature
1.
go back to reference Cao Y, Shen Z, Chenevert TL, Ewing JR (2006) Estimate of vascular permeability and cerebral blood volume using Gd-DTPA contrast enhancement and dynamic T 2*-weighted MRI. J Magn Reson Imaging 24(2):288–296CrossRefPubMed Cao Y, Shen Z, Chenevert TL, Ewing JR (2006) Estimate of vascular permeability and cerebral blood volume using Gd-DTPA contrast enhancement and dynamic T 2*-weighted MRI. J Magn Reson Imaging 24(2):288–296CrossRefPubMed
2.
go back to reference Jain R (2013) Measurements of tumor vascular leakiness using DCE in brain tumors: clinical applications. NMR Biomed 26(8):1042–1049CrossRefPubMed Jain R (2013) Measurements of tumor vascular leakiness using DCE in brain tumors: clinical applications. NMR Biomed 26(8):1042–1049CrossRefPubMed
3.
go back to reference Li X, Arlinghaus LR, Ayers GD, Chakravarthy AB, Abramson RG, Abramson VG, Atuegwu N, Farley J, Mayer IA, Kelley MC, Meszoely IM, Means-Powell J, Grau AM, Sanders M, Bhave SR, Yankeelov TE (2014) DCE-MRI analysis methods for predicting the response of breast cancer to neoadjuvant chemotherapy: pilot study findings. Magn Reson Med 71(4):1592–1602PubMedCentralCrossRefPubMed Li X, Arlinghaus LR, Ayers GD, Chakravarthy AB, Abramson RG, Abramson VG, Atuegwu N, Farley J, Mayer IA, Kelley MC, Meszoely IM, Means-Powell J, Grau AM, Sanders M, Bhave SR, Yankeelov TE (2014) DCE-MRI analysis methods for predicting the response of breast cancer to neoadjuvant chemotherapy: pilot study findings. Magn Reson Med 71(4):1592–1602PubMedCentralCrossRefPubMed
4.
go back to reference Tudorica LA, Oh KY, Roy N, Kettler MD, Chen Y, Hemmingson SL, Afzal A, Grinstead JW, Laub G, Li X, Huang W (2012) A feasible high spatiotemporal resolution breast DCE-MRI protocol for clinical settings. Magn Reson Imaging 30(9):1257–1267PubMedCentralCrossRefPubMed Tudorica LA, Oh KY, Roy N, Kettler MD, Chen Y, Hemmingson SL, Afzal A, Grinstead JW, Laub G, Li X, Huang W (2012) A feasible high spatiotemporal resolution breast DCE-MRI protocol for clinical settings. Magn Reson Imaging 30(9):1257–1267PubMedCentralCrossRefPubMed
5.
go back to reference Vos EK, Litjens GJS, Kobus T, Hambrock T, Hulsbergen-van de Kaa CA, Barentsz JO, Huisman HJ, Scheenen TWJ (2013) Assessment of prostate cancer aggressiveness using dynamic contrast-enhanced magn reson imaging at 3T. Eur Urol 64(3):448–455CrossRefPubMed Vos EK, Litjens GJS, Kobus T, Hambrock T, Hulsbergen-van de Kaa CA, Barentsz JO, Huisman HJ, Scheenen TWJ (2013) Assessment of prostate cancer aggressiveness using dynamic contrast-enhanced magn reson imaging at 3T. Eur Urol 64(3):448–455CrossRefPubMed
6.
go back to reference Kleppesto M, Larsson C, Groote I, Salo R, Vardal J, Courivaud F, Bjornerud A (2014) T 2*-correction in dynamic contrast-enhanced MRI from double-echo acquisitions. J Magn Reson Imaging 39(5):1314–1319CrossRefPubMed Kleppesto M, Larsson C, Groote I, Salo R, Vardal J, Courivaud F, Bjornerud A (2014) T 2*-correction in dynamic contrast-enhanced MRI from double-echo acquisitions. J Magn Reson Imaging 39(5):1314–1319CrossRefPubMed
7.
go back to reference Kim EJ, Kim DH, Lee SH, Huh YM, Song HT, Suh JS (2004) Simultaneous acquisition of perfusion and permeability from corrected relaxation rates with dynamic susceptibility contrast dual gradient echo. Magn Reson Imaging 22(3):307–314CrossRefPubMed Kim EJ, Kim DH, Lee SH, Huh YM, Song HT, Suh JS (2004) Simultaneous acquisition of perfusion and permeability from corrected relaxation rates with dynamic susceptibility contrast dual gradient echo. Magn Reson Imaging 22(3):307–314CrossRefPubMed
8.
go back to reference Vonken EP, van Osch MJ, Bakker CJ, Viergever MA (2000) Simultaneous quantitative cerebral perfusion and Gd-DTPA extravasation measurement with dual-echo dynamic susceptibility contrast MRI. Magn Reson Med 43(6):820–827CrossRefPubMed Vonken EP, van Osch MJ, Bakker CJ, Viergever MA (2000) Simultaneous quantitative cerebral perfusion and Gd-DTPA extravasation measurement with dual-echo dynamic susceptibility contrast MRI. Magn Reson Med 43(6):820–827CrossRefPubMed
9.
go back to reference Roberts C, Buckley DL, Parker GJ (2006) Comparison of errors associated with single- and multi-bolus injection protocols in low-temporal-resolution dynamic contrast-enhanced tracer kinetic analysis. Magn Reson Med 56(3):611–619CrossRefPubMed Roberts C, Buckley DL, Parker GJ (2006) Comparison of errors associated with single- and multi-bolus injection protocols in low-temporal-resolution dynamic contrast-enhanced tracer kinetic analysis. Magn Reson Med 56(3):611–619CrossRefPubMed
10.
go back to reference Kovar DA, Lewis M, Karczmar GS (1998) A new method for imaging perfusion and contrast extraction fraction: input functions derived from reference tissues. J Magn Reson Imaging 8(5):1126–1134CrossRefPubMed Kovar DA, Lewis M, Karczmar GS (1998) A new method for imaging perfusion and contrast extraction fraction: input functions derived from reference tissues. J Magn Reson Imaging 8(5):1126–1134CrossRefPubMed
11.
go back to reference Tofts PS, Berkowitz B, Schnall MD (1995) Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model. Magn Reson Med 33(4):564–568CrossRefPubMed Tofts PS, Berkowitz B, Schnall MD (1995) Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model. Magn Reson Med 33(4):564–568CrossRefPubMed
12.
go back to reference Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10(3):223–232CrossRefPubMed Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10(3):223–232CrossRefPubMed
13.
go back to reference Ferrari S, Stengel RF (2005) Smooth function approximation using neural networks. IEEE Trans Neural Netw 16(1):24–38CrossRefPubMed Ferrari S, Stengel RF (2005) Smooth function approximation using neural networks. IEEE Trans Neural Netw 16(1):24–38CrossRefPubMed
14.
go back to reference Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7(1):91–101CrossRefPubMed Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7(1):91–101CrossRefPubMed
15.
go back to reference Nelder JA, Mead R (1965) A simplex-method for function minimization. Comput J 7(4):308–313CrossRef Nelder JA, Mead R (1965) A simplex-method for function minimization. Comput J 7(4):308–313CrossRef
16.
go back to reference Uematsu H, Maeda M, Sadato N, Matsuda T, Ishimori Y, Koshimoto Y, Yamada H, Kimura H, Kawamura Y, Hayashi N, Yonekura Y, Ishii Y (2000) Vascular permeability: quantitative measurement with double-echo dynamic MR imaging—theory and clinical application. Radiology 214(3):912–917CrossRefPubMed Uematsu H, Maeda M, Sadato N, Matsuda T, Ishimori Y, Koshimoto Y, Yamada H, Kimura H, Kawamura Y, Hayashi N, Yonekura Y, Ishii Y (2000) Vascular permeability: quantitative measurement with double-echo dynamic MR imaging—theory and clinical application. Radiology 214(3):912–917CrossRefPubMed
17.
go back to reference Yu Y, Jiang Q, Wang H, Bao S, Haacke EM, Hu J (2011) Quantitative perfusion and permeability analysis of animal brain using dual echo DCE-MRI. In: Proceedings of the 19th scientific meeting, International Society for Magnetic Resonance in Medicine, Montreal, p 2060 Yu Y, Jiang Q, Wang H, Bao S, Haacke EM, Hu J (2011) Quantitative perfusion and permeability analysis of animal brain using dual echo DCE-MRI. In: Proceedings of the 19th scientific meeting, International Society for Magnetic Resonance in Medicine, Montreal, p 2060
18.
go back to reference de Bazelaire C, Rofsky NM, Duhamel G, Zhang J, Michaelson MD, George D, Alsop DC (2006) Combined T 2* and T 1 measurements for improved perfusion and permeability studies in high field using dynamic contrast enhancement. Eur Radiol 16(9):2083–2091CrossRefPubMed de Bazelaire C, Rofsky NM, Duhamel G, Zhang J, Michaelson MD, George D, Alsop DC (2006) Combined T 2* and T 1 measurements for improved perfusion and permeability studies in high field using dynamic contrast enhancement. Eur Radiol 16(9):2083–2091CrossRefPubMed
19.
go back to reference Prochnow D, Beyersdorff D, Warmuth C, Taupitz M, Gemeinhardt O, Ludemann L (2005) Implementation of a rapid inversion-prepared dual-contrast gradient echo sequence for quantitative dynamic contrast-enhanced magnetic resonance imaging of the human prostate. Magn Reson Imaging 23(10):983–990CrossRefPubMed Prochnow D, Beyersdorff D, Warmuth C, Taupitz M, Gemeinhardt O, Ludemann L (2005) Implementation of a rapid inversion-prepared dual-contrast gradient echo sequence for quantitative dynamic contrast-enhanced magnetic resonance imaging of the human prostate. Magn Reson Imaging 23(10):983–990CrossRefPubMed
20.
go back to reference Taillieu F, Salomon LJ, Siauve N, Clement O, Faye N, Balvay D, Vayssettes C, Frija G, Ville Y, Cuenod CA (2006) Placental perfusion and permeability: simultaneous assessment with dual-echo contrast-enhanced MR imaging in mice. Radiology 241(3):737–745CrossRefPubMed Taillieu F, Salomon LJ, Siauve N, Clement O, Faye N, Balvay D, Vayssettes C, Frija G, Ville Y, Cuenod CA (2006) Placental perfusion and permeability: simultaneous assessment with dual-echo contrast-enhanced MR imaging in mice. Radiology 241(3):737–745CrossRefPubMed
21.
go back to reference De Naeyer D, Debergh I, De Deene Y, Ceelen WP, Segers P, Verdonck P (2011) First order correction for T 2*-relaxation in determining contrast agent concentration from spoiled gradient echo pulse sequence signal intensity. J Magn Reson Imaging 34(3):710–715CrossRefPubMed De Naeyer D, Debergh I, De Deene Y, Ceelen WP, Segers P, Verdonck P (2011) First order correction for T 2*-relaxation in determining contrast agent concentration from spoiled gradient echo pulse sequence signal intensity. J Magn Reson Imaging 34(3):710–715CrossRefPubMed
22.
go back to reference Yang C, Karczmar GS, Medved M, Stadler WM (2004) Estimating the arterial input function using two reference tissues in dynamic contrast-enhanced MRI studies: fundamental concepts and simulations. Magn Reson Med 52(5):1110–1117CrossRefPubMed Yang C, Karczmar GS, Medved M, Stadler WM (2004) Estimating the arterial input function using two reference tissues in dynamic contrast-enhanced MRI studies: fundamental concepts and simulations. Magn Reson Med 52(5):1110–1117CrossRefPubMed
23.
go back to reference Yang C, Karczmar GS, Medved M, Stadler WM (2007) Multiple reference tissue method for contrast agent arterial input function estimation. Magn Reson Med 58(6):1266–1275CrossRefPubMed Yang C, Karczmar GS, Medved M, Stadler WM (2007) Multiple reference tissue method for contrast agent arterial input function estimation. Magn Reson Med 58(6):1266–1275CrossRefPubMed
24.
go back to reference Aryal MP, Nagaraja TN, Brown SL, Lu M, Bagher-Ebadian H, Ding G, Panda S, Keenan K, Cabral G, Mikkelsen T, Ewing JR (2014) Intratumor distribution and test-retest comparisons of physiological parameters quantified by dynamic contrast-enhanced MRI in rat U251 glioma. NMR Biomed 27(10):1230–1238PubMedCentralCrossRefPubMed Aryal MP, Nagaraja TN, Brown SL, Lu M, Bagher-Ebadian H, Ding G, Panda S, Keenan K, Cabral G, Mikkelsen T, Ewing JR (2014) Intratumor distribution and test-retest comparisons of physiological parameters quantified by dynamic contrast-enhanced MRI in rat U251 glioma. NMR Biomed 27(10):1230–1238PubMedCentralCrossRefPubMed
25.
go back to reference Ewing JR, Bagher-Ebadian H (2013) Model selection in measures of vascular parameters using dynamic contrast-enhanced MRI: experimental and clinical applications. NMR Biomed 26(8):1028–1041PubMedCentralCrossRefPubMed Ewing JR, Bagher-Ebadian H (2013) Model selection in measures of vascular parameters using dynamic contrast-enhanced MRI: experimental and clinical applications. NMR Biomed 26(8):1028–1041PubMedCentralCrossRefPubMed
26.
go back to reference Zhuo J, Li T, Poston R, Gullapalli RP (2005) Minimizing echo time dependence in the assessment of perfusion parameters from multi-echo T 1–T 2* sequences. In: Proceedings of the 14th scientific meeting, International Society for Magnetic Resonance in Medicine, Miami, p 1121 Zhuo J, Li T, Poston R, Gullapalli RP (2005) Minimizing echo time dependence in the assessment of perfusion parameters from multi-echo T 1T 2* sequences. In: Proceedings of the 14th scientific meeting, International Society for Magnetic Resonance in Medicine, Miami, p 1121
27.
go back to reference Foottit C, Cron GO, Hogan MJ, Nguyen TB, Cameron I (2010) Determination of the venous output function from MR signal phase: feasibility for quantitative DCE-MRI in human brain. Magn Reson Med 63(3):772–781CrossRefPubMed Foottit C, Cron GO, Hogan MJ, Nguyen TB, Cameron I (2010) Determination of the venous output function from MR signal phase: feasibility for quantitative DCE-MRI in human brain. Magn Reson Med 63(3):772–781CrossRefPubMed
28.
go back to reference Knutsson L, Borjesson S, Larsson EM, Risberg J, Gustafson L, Passant U, Stahlberg F, Wirestam R (2007) Absolute quantification of cerebral blood flow in normal volunteers: correlation between Xe-133 SPECT and dynamic susceptibility contrast MRI. J Magn Reson Imaging 26(4):913–920CrossRefPubMed Knutsson L, Borjesson S, Larsson EM, Risberg J, Gustafson L, Passant U, Stahlberg F, Wirestam R (2007) Absolute quantification of cerebral blood flow in normal volunteers: correlation between Xe-133 SPECT and dynamic susceptibility contrast MRI. J Magn Reson Imaging 26(4):913–920CrossRefPubMed
Metadata
Title
Effect of correction on contrast kinetic model analysis using a reference tissue arterial input function at 7 T
Authors
Jin Zhang
Melanie Freed
Kerryanne Winters
Sungheon G. Kim
Publication date
01-12-2015
Publisher
Springer Berlin Heidelberg
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 6/2015
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-015-0496-1

Other articles of this Issue 6/2015

Magnetic Resonance Materials in Physics, Biology and Medicine 6/2015 Go to the issue