Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 3/2012

01-06-2012 | Research Article

Blood longitudinal (T 1) and transverse (T 2) relaxation time constants at 11.7 Tesla

Authors: Ai-Ling Lin, Qin Qin, Xia Zhao, Timothy Q. Duong

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 3/2012

Login to get access

Abstract

Object

The goal of the study was to determine blood T 1 and T 2 values as functions of oxygen saturation (Y), temperature (Temp) and hematocrit (Hct) at an ultrahigh MR field (11.7 T) and explore their impacts on physiological measurements, including cerebral blood flow (CBF), blood volume (CBV) and oxygenation determination.

Materials and methods

T 1 and T 2 were simultaneously measured. Temperature was adjusted from 25 to 40°C to determine Temp dependence; Hct of 0.17–0.51 to evaluate Hct dependence at 25 and 37°C; and Y of 40–100% to evaluate Y dependence at 25 and 37°C. Comparisons were made with published data obtained at different magnetic field strengths (B 0).

Results

T 1 was positively correlated with Temp, independent of Y, and negatively correlated with Hct. T 2 was negatively correlated with Temp and Hct, but positively correlated with Y, in a non-linear fashion. T 1 increased linearly with B 0, whereas T 2 decreased exponentially with B0.

Conclusion

This study reported blood T 1 and T 2 measurements at 11.7 T for the first time. These blood relaxation data could have implications in numerous functional and physiological MRI studies at 11.7 T.
Literature
1.
go back to reference Silvennoinen MJ, Kettunen MI, Kauppinen RA (2003) Effects of hematocrit and oxygen saturation level on blood spin-lattice relaxation. Magn Reson Med 49:568–571PubMedCrossRef Silvennoinen MJ, Kettunen MI, Kauppinen RA (2003) Effects of hematocrit and oxygen saturation level on blood spin-lattice relaxation. Magn Reson Med 49:568–571PubMedCrossRef
2.
go back to reference Wang J, Aguirre GK, Kimberg DY et al (2003) Arterial spin labeling perfusion fMRI with very low task frequency. Magn Reson Med 49:796–802PubMedCrossRef Wang J, Aguirre GK, Kimberg DY et al (2003) Arterial spin labeling perfusion fMRI with very low task frequency. Magn Reson Med 49:796–802PubMedCrossRef
3.
go back to reference Lu H, Golay X, Pekar JJ et al (2003) Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn Reson Med 50:263–274PubMedCrossRef Lu H, Golay X, Pekar JJ et al (2003) Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn Reson Med 50:263–274PubMedCrossRef
4.
go back to reference Duong TQ, Yacoub E, Adriany G et al (2003) Microvascular BOLD contribution at 4 and 7 T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects. Magn Reson Med 49:1019–1027PubMedCrossRef Duong TQ, Yacoub E, Adriany G et al (2003) Microvascular BOLD contribution at 4 and 7 T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects. Magn Reson Med 49:1019–1027PubMedCrossRef
5.
go back to reference Golay X, Silvennoinen MJ, Zhou J et al (2001) Measurement of tissue oxygen extraction ratios from venous blood T(2): increased precision and validation of principle. Magn Reson Med 46:282–291PubMedCrossRef Golay X, Silvennoinen MJ, Zhou J et al (2001) Measurement of tissue oxygen extraction ratios from venous blood T(2): increased precision and validation of principle. Magn Reson Med 46:282–291PubMedCrossRef
6.
go back to reference Lu H, Ge Y (2008) Quantitative evaluation of oxygenation in venous vessels using T2-relaxation-under-spin-tagging MRI. Magn Reson Med 60:357–363PubMedCrossRef Lu H, Ge Y (2008) Quantitative evaluation of oxygenation in venous vessels using T2-relaxation-under-spin-tagging MRI. Magn Reson Med 60:357–363PubMedCrossRef
7.
go back to reference Xu F, Ge Y, Lu H (2009) Noninvasive quantification of whole-brain cerebral metabolic rate of oxygen (CMRO2) by MRI. Magn Reson Med 62:141–148PubMedCrossRef Xu F, Ge Y, Lu H (2009) Noninvasive quantification of whole-brain cerebral metabolic rate of oxygen (CMRO2) by MRI. Magn Reson Med 62:141–148PubMedCrossRef
8.
go back to reference Oja JM, Gillen JS, Kauppinen RA et al (1999) Determination of oxygen extraction ratios by magnetic resonance imaging. J Cereb Blood Flow Metab 19:1289–1295PubMedCrossRef Oja JM, Gillen JS, Kauppinen RA et al (1999) Determination of oxygen extraction ratios by magnetic resonance imaging. J Cereb Blood Flow Metab 19:1289–1295PubMedCrossRef
9.
go back to reference Lu H, Clingman C, Golay X et al (2004) Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn Reson Med 52:679–682PubMedCrossRef Lu H, Clingman C, Golay X et al (2004) Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn Reson Med 52:679–682PubMedCrossRef
10.
go back to reference Silvennoinen MJ, Clingman CS, Golay X et al (2003) Comparison of the dependence of blood R2 and R2* on oxygen saturation at 1.5 and 4.7 Tesla. Magn Reson Med 49:47–60PubMedCrossRef Silvennoinen MJ, Clingman CS, Golay X et al (2003) Comparison of the dependence of blood R2 and R2* on oxygen saturation at 1.5 and 4.7 Tesla. Magn Reson Med 49:47–60PubMedCrossRef
11.
go back to reference Zhao JM, Clingman CS, Narvainen MJ et al (2007) Oxygenation and hematocrit dependence of transverse relaxation rates of blood at 3T. Magn Reson Med 58:592–597PubMedCrossRef Zhao JM, Clingman CS, Narvainen MJ et al (2007) Oxygenation and hematocrit dependence of transverse relaxation rates of blood at 3T. Magn Reson Med 58:592–597PubMedCrossRef
12.
go back to reference Dobre MC, Ugurbil K, Marjanska M (2007) Determination of blood longitudinal relaxation time (T1) at high magnetic field strengths. Magn Reson Imaging 25:733–735PubMedCrossRef Dobre MC, Ugurbil K, Marjanska M (2007) Determination of blood longitudinal relaxation time (T1) at high magnetic field strengths. Magn Reson Imaging 25:733–735PubMedCrossRef
13.
go back to reference Lee SP, Silva AC, Ugurbil K et al (1999) Diffusion-weighted spin-echo fMRI at 9.4 T: microvascular/tissue contribution to BOLD signal changes. Magn Reson Med 42:919–928PubMedCrossRef Lee SP, Silva AC, Ugurbil K et al (1999) Diffusion-weighted spin-echo fMRI at 9.4 T: microvascular/tissue contribution to BOLD signal changes. Magn Reson Med 42:919–928PubMedCrossRef
14.
go back to reference Qin Q, Grgac K, van Zijl PC (2011) Determination of whole-brain oxygen extraction fractions by fast measurement of blood T(2) in the jugular vein. Magn Reson Med 65:471–479PubMedCrossRef Qin Q, Grgac K, van Zijl PC (2011) Determination of whole-brain oxygen extraction fractions by fast measurement of blood T(2) in the jugular vein. Magn Reson Med 65:471–479PubMedCrossRef
15.
go back to reference Atalay MK, Reeder SB, Zerhouni EA et al (1995) Blood oxygenation dependence of T1 and T2 in the isolated, perfused rabbit heart at 4.7T. Magn Reson Med 34:623–627PubMedCrossRef Atalay MK, Reeder SB, Zerhouni EA et al (1995) Blood oxygenation dependence of T1 and T2 in the isolated, perfused rabbit heart at 4.7T. Magn Reson Med 34:623–627PubMedCrossRef
16.
go back to reference Brooks RA, Di Chiro G (1987) Magnetic resonance imaging of stationary blood: a review. Med Phys 14:903–913PubMedCrossRef Brooks RA, Di Chiro G (1987) Magnetic resonance imaging of stationary blood: a review. Med Phys 14:903–913PubMedCrossRef
17.
go back to reference Muir ER, Shen Q, Duong TQ (2008) Cerebral blood flow MRI in mice using the cardiac-spin-labeling technique. Magn Reson Med 60:744–748PubMedCrossRef Muir ER, Shen Q, Duong TQ (2008) Cerebral blood flow MRI in mice using the cardiac-spin-labeling technique. Magn Reson Med 60:744–748PubMedCrossRef
18.
go back to reference Davis TL, Kwong KK, Weisskoff RM et al (1998) Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 95:1834–1839PubMedCrossRef Davis TL, Kwong KK, Weisskoff RM et al (1998) Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 95:1834–1839PubMedCrossRef
19.
go back to reference Lu H, Golay X, Pekar JJ et al (2004) Sustained poststimulus elevation in cerebral oxygen utilization after vascular recovery. J Cereb Blood Flow Metab 24:764–770PubMedCrossRef Lu H, Golay X, Pekar JJ et al (2004) Sustained poststimulus elevation in cerebral oxygen utilization after vascular recovery. J Cereb Blood Flow Metab 24:764–770PubMedCrossRef
20.
go back to reference Lin AL, Fox PT, Yang Y et al (2008) Evaluation of MRI models in the measurement of CMRO2 and its relationship with CBF. Magn Reson Med 60:380–389PubMedCrossRef Lin AL, Fox PT, Yang Y et al (2008) Evaluation of MRI models in the measurement of CMRO2 and its relationship with CBF. Magn Reson Med 60:380–389PubMedCrossRef
21.
go back to reference Mintun MA, Raichle ME, Martin WR et al (1984) Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med 25:177–187PubMed Mintun MA, Raichle ME, Martin WR et al (1984) Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med 25:177–187PubMed
22.
go back to reference Yacoub E, Duong TQ, Van De Moortele PF et al (2003) Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magn Reson Med 49:655–664PubMedCrossRef Yacoub E, Duong TQ, Van De Moortele PF et al (2003) Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magn Reson Med 49:655–664PubMedCrossRef
23.
go back to reference Barth M, Moser E (1997) Proton NMR relaxation times of human blood samples at 1.5 T and implications for functional MRI. Cell Mol Biol (Noisy-le-grand) 43:783–791 Barth M, Moser E (1997) Proton NMR relaxation times of human blood samples at 1.5 T and implications for functional MRI. Cell Mol Biol (Noisy-le-grand) 43:783–791
24.
go back to reference Silva AC, Koretsky AP (2002) Laminar specificity of functional MRI onset times during somatosensory stimulation in rat. Proc Natl Acad Sci USA 99(23):15182–15187PubMedCrossRef Silva AC, Koretsky AP (2002) Laminar specificity of functional MRI onset times during somatosensory stimulation in rat. Proc Natl Acad Sci USA 99(23):15182–15187PubMedCrossRef
25.
go back to reference Kalthoff D, Seehafer JU, Po C, Wiedermann D, Hoehn M (2011) Functional connectivity in the rat at 11.7 T: impact of physiological noise in resting state fMRI. Neuroimage 54(4):2828–2839PubMedCrossRef Kalthoff D, Seehafer JU, Po C, Wiedermann D, Hoehn M (2011) Functional connectivity in the rat at 11.7 T: impact of physiological noise in resting state fMRI. Neuroimage 54(4):2828–2839PubMedCrossRef
26.
go back to reference De La Garza BH, Li G, Muir E, Shih YY, Duong TQ (2011) BOLD fMRI of visual stimulation in the rat retina at 11.7 tesla. NMR in Biomed 24:188–193CrossRef De La Garza BH, Li G, Muir E, Shih YY, Duong TQ (2011) BOLD fMRI of visual stimulation in the rat retina at 11.7 tesla. NMR in Biomed 24:188–193CrossRef
Metadata
Title
Blood longitudinal (T 1) and transverse (T 2) relaxation time constants at 11.7 Tesla
Authors
Ai-Ling Lin
Qin Qin
Xia Zhao
Timothy Q. Duong
Publication date
01-06-2012
Publisher
Springer-Verlag
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 3/2012
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-011-0287-2

Other articles of this Issue 3/2012

Magnetic Resonance Materials in Physics, Biology and Medicine 3/2012 Go to the issue