Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 3/2012

01-06-2012 | Short Communication

Lateralization of amygdala activation in fMRI may depend on phase-encoding polarity

Authors: Krystyna A. Mathiak, Mikhail Zvyagintsev, Hermann Ackermann, Klaus Mathiak

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 3/2012

Login to get access

Abstract

Object

Susceptibility artifacts along the phase-encoding (PE) direction impact the activation pattern in the amygdala and may lead to systematic asymmetries. We implemented a triple-echo echo-planar imaging (EPI) sequence, acquiring opposite PE polarities along left–right PE direction in a single shot, to investigate its effects on amygdala lateralization.

Materials and Methods

Twelve subjects viewed emotional faces to evoke amygdala activation.

Results and Conclusion

A region of interest analysis revealed that the lateralization of amygdala responses depended on the PE polarity thus representing a pure method artifact. Alternating PE with multi-echo EPI reduced the artifact. Lateralized fMRI activation in areas with magnetic field inhomogeneities need to be interpreted with caution.
Literature
1.
go back to reference Adolphs R (2010) What does the amygdala contribute to social cognition? Ann NY Acad Sci 1191:42–61PubMedCrossRef Adolphs R (2010) What does the amygdala contribute to social cognition? Ann NY Acad Sci 1191:42–61PubMedCrossRef
2.
go back to reference LaBar KS, Gitelman DR, Mesulam MM, Parrish T (2001) Impact of signal-to-noise on functional MRI of the human amygdala. Neuroreport 1616:3461–3464CrossRef LaBar KS, Gitelman DR, Mesulam MM, Parrish T (2001) Impact of signal-to-noise on functional MRI of the human amygdala. Neuroreport 1616:3461–3464CrossRef
3.
go back to reference Chen NK, Dickey CC, Guttmann CR, Panych LP (2003) Selection of voxel size and slice orientation for fMRI in the presence of susceptibility field gradients: application to imaging of the amygdala. Neuroimage 19:817–825PubMedCrossRef Chen NK, Dickey CC, Guttmann CR, Panych LP (2003) Selection of voxel size and slice orientation for fMRI in the presence of susceptibility field gradients: application to imaging of the amygdala. Neuroimage 19:817–825PubMedCrossRef
4.
go back to reference Baas D, Aleman A, Kahn R (2004) Lateralization of amygdala activation: a systematic review of functional neuroimaging studies. Brain Res Rev 45:96–103PubMedCrossRef Baas D, Aleman A, Kahn R (2004) Lateralization of amygdala activation: a systematic review of functional neuroimaging studies. Brain Res Rev 45:96–103PubMedCrossRef
5.
go back to reference Weiskopf N, Klose U, Birbaumer N, Mathiak K (2005) Single-shot compensation of image distortions and BOLD contrast optimization using multi-echo EPI for real-time fMRI. Neuroimage 24:1068–1079PubMedCrossRef Weiskopf N, Klose U, Birbaumer N, Mathiak K (2005) Single-shot compensation of image distortions and BOLD contrast optimization using multi-echo EPI for real-time fMRI. Neuroimage 24:1068–1079PubMedCrossRef
6.
go back to reference Morris JS, Smith KA, Cowen PJ, Friston KJ, Dolan RJ (1998) Conscious and unconscious emotional learning in the human amygdala. Nature 393:467–470PubMedCrossRef Morris JS, Smith KA, Cowen PJ, Friston KJ, Dolan RJ (1998) Conscious and unconscious emotional learning in the human amygdala. Nature 393:467–470PubMedCrossRef
7.
go back to reference Mathiak K, Hertrich I, Grodd W, Ackermann H (2004) Discrimination of temporal information at the cerebellum: functional magnetic resonance imaging of non-verbal auditory memory. Neuroimage 21:154–162PubMedCrossRef Mathiak K, Hertrich I, Grodd W, Ackermann H (2004) Discrimination of temporal information at the cerebellum: functional magnetic resonance imaging of non-verbal auditory memory. Neuroimage 21:154–162PubMedCrossRef
8.
go back to reference Ekman P, Friesen W (1976) Pictures of facial affect. Consulting Psychologist Press, Palo Alto Ekman P, Friesen W (1976) Pictures of facial affect. Consulting Psychologist Press, Palo Alto
9.
go back to reference Friston KJ, Holmes A, Poline JB, Price CJ, Frith CD (1996) Detecting activations in PET and fMRI: levels of inference and power. Neuroimage 4:223–235PubMedCrossRef Friston KJ, Holmes A, Poline JB, Price CJ, Frith CD (1996) Detecting activations in PET and fMRI: levels of inference and power. Neuroimage 4:223–235PubMedCrossRef
10.
go back to reference Stöcker T, Kellermann T, Schneider F, Habel U, Amunts K, Pieperhoff P, Zilles K, Shah NJ (2006) Dependence of amygdala activation on echo time: results from olfactory fMRI experiments. Neuroimage 30:151–159PubMedCrossRef Stöcker T, Kellermann T, Schneider F, Habel U, Amunts K, Pieperhoff P, Zilles K, Shah NJ (2006) Dependence of amygdala activation on echo time: results from olfactory fMRI experiments. Neuroimage 30:151–159PubMedCrossRef
11.
go back to reference Weiskopf N, Hutton C, Josephs O, Deichmann R (2006) Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: a whole-brain analysis at 3 T and 1.5 T. Neuroimage 33:493–504PubMedCrossRef Weiskopf N, Hutton C, Josephs O, Deichmann R (2006) Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: a whole-brain analysis at 3 T and 1.5 T. Neuroimage 33:493–504PubMedCrossRef
12.
go back to reference Morawetz C, Holz P, Lange C, Baudewig J, Weniger G, Irle E, Dechent P (2008) Improved functional mapping of the human amygdala using a standard functional magnetic resonance imaging sequence with simple modifications. Magn Reson Imaging 26:45–53PubMedCrossRef Morawetz C, Holz P, Lange C, Baudewig J, Weniger G, Irle E, Dechent P (2008) Improved functional mapping of the human amygdala using a standard functional magnetic resonance imaging sequence with simple modifications. Magn Reson Imaging 26:45–53PubMedCrossRef
13.
go back to reference Merboldt KD, Fransson P, Bruhn H, Frahm J (2001) Functional MRI of the human amygdala? Neuroimage 14:253–257PubMedCrossRef Merboldt KD, Fransson P, Bruhn H, Frahm J (2001) Functional MRI of the human amygdala? Neuroimage 14:253–257PubMedCrossRef
14.
go back to reference Phelps EA, O’Connor KJ, Gatenby JC, Gore JC, Grillon C, Davis M (2001) Activation of the left amygdala to a cognitive representation of fear. Nat Neurosci 4:437–441PubMedCrossRef Phelps EA, O’Connor KJ, Gatenby JC, Gore JC, Grillon C, Davis M (2001) Activation of the left amygdala to a cognitive representation of fear. Nat Neurosci 4:437–441PubMedCrossRef
15.
go back to reference Schacher M, Haemmerle B, Woermann FG, Okujava M, Huber D, Grunwald T, Krämer G, Jokeit H (2006) Amygdala fMRI lateralizes temporal lobe epilepsy. Neurology 66:81–87PubMedCrossRef Schacher M, Haemmerle B, Woermann FG, Okujava M, Huber D, Grunwald T, Krämer G, Jokeit H (2006) Amygdala fMRI lateralizes temporal lobe epilepsy. Neurology 66:81–87PubMedCrossRef
16.
go back to reference Robinson S, Windischberger C, Rauscher A, Moser E (2004) Optimized 3 T EPI of the amygdalae. Neuroimage 22:203–210PubMedCrossRef Robinson S, Windischberger C, Rauscher A, Moser E (2004) Optimized 3 T EPI of the amygdalae. Neuroimage 22:203–210PubMedCrossRef
Metadata
Title
Lateralization of amygdala activation in fMRI may depend on phase-encoding polarity
Authors
Krystyna A. Mathiak
Mikhail Zvyagintsev
Hermann Ackermann
Klaus Mathiak
Publication date
01-06-2012
Publisher
Springer-Verlag
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 3/2012
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-011-0285-4

Other articles of this Issue 3/2012

Magnetic Resonance Materials in Physics, Biology and Medicine 3/2012 Go to the issue