Skip to main content
Top
Published in: Clinical Autonomic Research 2/2019

01-04-2019 | Review Article

The renin–angiotensin system in cardiovascular autonomic control: recent developments and clinical implications

Authors: Amanda J. Miller, Amy C. Arnold

Published in: Clinical Autonomic Research | Issue 2/2019

Login to get access

Abstract

Complex and bidirectional interactions between the renin–angiotensin system (RAS) and autonomic nervous system have been well established for cardiovascular regulation under both physiological and pathophysiological conditions. Most research to date has focused on deleterious effects of components of the vasoconstrictor arm of the RAS on cardiovascular autonomic control, such as renin, angiotensin II, and aldosterone. The recent discovery of prorenin and the prorenin receptor have further increased our understanding of RAS interactions in autonomic brain regions. Therapies targeting these RAS components, such as angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers, are commonly used for treatment of hypertension and cardiovascular diseases, with blood pressure-lowering effects attributed in part to sympathetic inhibition and parasympathetic facilitation. In addition, a vasodilatory arm of the RAS has emerged that includes angiotensin-(1–7), ACE2, and alamandine, and promotes beneficial effects on blood pressure in part by reducing sympathetic activity and improving arterial baroreceptor reflex function in animal models. The role of the vasodilatory arm of the RAS in cardiovascular autonomic regulation in clinical populations, however, has yet to be determined. This review will summarize recent developments in autonomic mechanisms involved in the effects of the RAS on cardiovascular regulation, with a focus on newly discovered pathways and therapeutic targets for this hormone system.
Literature
1.
2.
go back to reference Lavoie JL, Sigmund CD (2003) Minireview: overview of the renin-angiotensin system–an endocrine and paracrine system. Endocrinology 144(6):2179–2183CrossRef Lavoie JL, Sigmund CD (2003) Minireview: overview of the renin-angiotensin system–an endocrine and paracrine system. Endocrinology 144(6):2179–2183CrossRef
3.
go back to reference Te Riet L, van Esch JH, Roks AJ, van den Meiracker AH, Danser AH (2015) Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res 116(6):960–975CrossRef Te Riet L, van Esch JH, Roks AJ, van den Meiracker AH, Danser AH (2015) Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res 116(6):960–975CrossRef
4.
go back to reference Lavoie JL, Liu X, Bianco RA, Beltz TG, Johnson AK, Sigmund CD (2006) Evidence supporting a functional role for intracellular renin in the brain. Hypertension 47(3):461–466CrossRefPubMed Lavoie JL, Liu X, Bianco RA, Beltz TG, Johnson AK, Sigmund CD (2006) Evidence supporting a functional role for intracellular renin in the brain. Hypertension 47(3):461–466CrossRefPubMed
5.
go back to reference Li XC, Zhu D, Zheng X, Zhang J, Zhuo JL (2018) Intratubular and intracellular renin-angiotensin system in the kidney: a unifying perspective in blood pressure control. Clin Sci (Lond) 132(13):1383–1401CrossRef Li XC, Zhu D, Zheng X, Zhang J, Zhuo JL (2018) Intratubular and intracellular renin-angiotensin system in the kidney: a unifying perspective in blood pressure control. Clin Sci (Lond) 132(13):1383–1401CrossRef
6.
go back to reference Uehara Y, Miura S, Yahiro E, Saku K (2013) Non-ACE pathway-induced angiotensin II production. Curr Pharm Des 19(17):3054–3059CrossRefPubMed Uehara Y, Miura S, Yahiro E, Saku K (2013) Non-ACE pathway-induced angiotensin II production. Curr Pharm Des 19(17):3054–3059CrossRefPubMed
7.
go back to reference Zhuo JL, Li XC (2011) New insights and perspectives on intrarenal renin-angiotensin system: focus on intracrine/intracellular angiotensin II. Peptides 32(7):1551–1565CrossRefPubMedPubMedCentral Zhuo JL, Li XC (2011) New insights and perspectives on intrarenal renin-angiotensin system: focus on intracrine/intracellular angiotensin II. Peptides 32(7):1551–1565CrossRefPubMedPubMedCentral
8.
go back to reference Lemarie CA, Schiffrin EL (2010) The angiotensin II type 2 receptor in cardiovascular disease. J Renin Angiotensin Aldosterone Syst 11(1):19–31CrossRefPubMed Lemarie CA, Schiffrin EL (2010) The angiotensin II type 2 receptor in cardiovascular disease. J Renin Angiotensin Aldosterone Syst 11(1):19–31CrossRefPubMed
9.
go back to reference Yugandhar VG, Clark MA (2013) Angiotensin III: a physiological relevant peptide of the renin angiotensin system. Peptides 46:26–32CrossRefPubMed Yugandhar VG, Clark MA (2013) Angiotensin III: a physiological relevant peptide of the renin angiotensin system. Peptides 46:26–32CrossRefPubMed
10.
go back to reference Dupont AG, Brouwers S (2010) Brain angiotensin peptides regulate sympathetic tone and blood pressure. J Hypertens 28(8):1599–1610CrossRefPubMed Dupont AG, Brouwers S (2010) Brain angiotensin peptides regulate sympathetic tone and blood pressure. J Hypertens 28(8):1599–1610CrossRefPubMed
11.
go back to reference Ferrario CM, Ahmad S, Nagata S, Simington SW, Varagic J, Kon N, Dell’italia LJ (2014) An evolving story of angiotensin-II-forming pathways in rodents and humans. Clin Sci (Lond) 126(7):461–469CrossRef Ferrario CM, Ahmad S, Nagata S, Simington SW, Varagic J, Kon N, Dell’italia LJ (2014) An evolving story of angiotensin-II-forming pathways in rodents and humans. Clin Sci (Lond) 126(7):461–469CrossRef
12.
go back to reference Campbell DJ (2008) Critical review of prorenin and (pro)renin receptor research. Hypertension 51(5):1259–1264CrossRefPubMed Campbell DJ (2008) Critical review of prorenin and (pro)renin receptor research. Hypertension 51(5):1259–1264CrossRefPubMed
14.
go back to reference Leonhardt J, Villela DC, Teichmann A, Munter LM, Mayer MC, Mardahl M, Kirsch S, Namsolleck P, Lucht K, Benz V, Alenina N, Daniell N, Horiuchi M, Iwai M, Multhaup G, Schulein R, Bader M, Santos RA, Unger T, Steckelings UM (2017) Evidence for heterodimerization and functional interaction of the angiotensin type 2 receptor and the receptor MAS. Hypertension 69(6):1128–1135CrossRefPubMed Leonhardt J, Villela DC, Teichmann A, Munter LM, Mayer MC, Mardahl M, Kirsch S, Namsolleck P, Lucht K, Benz V, Alenina N, Daniell N, Horiuchi M, Iwai M, Multhaup G, Schulein R, Bader M, Santos RA, Unger T, Steckelings UM (2017) Evidence for heterodimerization and functional interaction of the angiotensin type 2 receptor and the receptor MAS. Hypertension 69(6):1128–1135CrossRefPubMed
15.
go back to reference Gaidarov I, Adams J, Frazer J, Anthony T, Chen X, Gatlin J, Semple G, Unett DJ (2018) Angiotensin (1–7) does not interact directly with MAS1, but can potently antagonize signaling from the AT1 receptor. Cell Signal 50:9–24CrossRefPubMed Gaidarov I, Adams J, Frazer J, Anthony T, Chen X, Gatlin J, Semple G, Unett DJ (2018) Angiotensin (1–7) does not interact directly with MAS1, but can potently antagonize signaling from the AT1 receptor. Cell Signal 50:9–24CrossRefPubMed
16.
go back to reference Lautner RQ, Villela DC, Fraga-Silva RA, Silva N, Verano-Braga T, Costa-Fraga F, Jankowski J, Jankowski V, Sousa F, Alzamora A, Soares E, Barbosa C, Kjeldsen F, Oliveira A, Braga J, Savergnini S, Maia G, Peluso AB, Passos-Silva D, Ferreira A, Alves F, Martins A, Raizada M, Paula R, Motta-Santos D, Klempin F, Pimenta A, Alenina N, Sinisterra R, Bader M, Campagnole-Santos MJ, Santos RA (2013) Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circ Res 112(8):1104–1111CrossRef Lautner RQ, Villela DC, Fraga-Silva RA, Silva N, Verano-Braga T, Costa-Fraga F, Jankowski J, Jankowski V, Sousa F, Alzamora A, Soares E, Barbosa C, Kjeldsen F, Oliveira A, Braga J, Savergnini S, Maia G, Peluso AB, Passos-Silva D, Ferreira A, Alves F, Martins A, Raizada M, Paula R, Motta-Santos D, Klempin F, Pimenta A, Alenina N, Sinisterra R, Bader M, Campagnole-Santos MJ, Santos RA (2013) Discovery and characterization of alamandine: a novel component of the renin-angiotensin system. Circ Res 112(8):1104–1111CrossRef
17.
go back to reference Villela DC, Passos-Silva DG, Santos RA (2014) Alamandine: a new member of the angiotensin family. Curr Opin Nephrol Hypertens 23(2):130–134CrossRefPubMed Villela DC, Passos-Silva DG, Santos RA (2014) Alamandine: a new member of the angiotensin family. Curr Opin Nephrol Hypertens 23(2):130–134CrossRefPubMed
18.
go back to reference Iliescu R, Lohmeier TE, Tudorancea I, Laffin L, Bakris GL (2015) Renal denervation for the treatment of resistant hypertension: review and clinical perspective. Am J Physiol Renal Physiol 309(7):F583–F594CrossRefPubMedPubMedCentral Iliescu R, Lohmeier TE, Tudorancea I, Laffin L, Bakris GL (2015) Renal denervation for the treatment of resistant hypertension: review and clinical perspective. Am J Physiol Renal Physiol 309(7):F583–F594CrossRefPubMedPubMedCentral
19.
go back to reference Hong MN, Li XD, Chen DR, Ruan CC, Xu JZ, Chen J, Wu YJ, Ma Y, Zhu DL, Gao PJ (2016) Renal denervation attenuates aldosterone expression and associated cardiovascular pathophysiology in angiotensin II-induced hypertension. Oncotarget 7(42):67828–67840CrossRefPubMedPubMedCentral Hong MN, Li XD, Chen DR, Ruan CC, Xu JZ, Chen J, Wu YJ, Ma Y, Zhu DL, Gao PJ (2016) Renal denervation attenuates aldosterone expression and associated cardiovascular pathophysiology in angiotensin II-induced hypertension. Oncotarget 7(42):67828–67840CrossRefPubMedPubMedCentral
20.
go back to reference Averill DB, Diz DI (2000) Angiotensin peptides and baroreflex control of sympathetic outflow: pathways and mechanisms of the medulla oblongata. Brain Res Bull 51(2):119–128CrossRefPubMed Averill DB, Diz DI (2000) Angiotensin peptides and baroreflex control of sympathetic outflow: pathways and mechanisms of the medulla oblongata. Brain Res Bull 51(2):119–128CrossRefPubMed
21.
go back to reference Reid IA (1992) Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. Am J Physiol 262(6 Pt 1):E763–E778PubMed Reid IA (1992) Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. Am J Physiol 262(6 Pt 1):E763–E778PubMed
22.
go back to reference Lohmeier TE (2012) Angiotensin II infusion model of hypertension: is there an important sympathetic component? Hypertension 59(3):539–541CrossRefPubMed Lohmeier TE (2012) Angiotensin II infusion model of hypertension: is there an important sympathetic component? Hypertension 59(3):539–541CrossRefPubMed
23.
go back to reference Leenen FH (2014) Actions of circulating angiotensin II and aldosterone in the brain contributing to hypertension. Am J Hypertens 27(8):1024–1032CrossRefPubMed Leenen FH (2014) Actions of circulating angiotensin II and aldosterone in the brain contributing to hypertension. Am J Hypertens 27(8):1024–1032CrossRefPubMed
24.
go back to reference Allen AM, Zhuo J, Mendelsohn FA (2000) Localization and function of angiotensin AT1 receptors. Am J Hypertens 13(1 Pt 2):31S–38SCrossRefPubMed Allen AM, Zhuo J, Mendelsohn FA (2000) Localization and function of angiotensin AT1 receptors. Am J Hypertens 13(1 Pt 2):31S–38SCrossRefPubMed
25.
go back to reference Hirooka Y, Kishi T, Ito K, Sunagawa K (2013) Potential clinical application of recently discovered brain mechanisms involved in hypertension. Hypertension 62(6):995–1002CrossRefPubMed Hirooka Y, Kishi T, Ito K, Sunagawa K (2013) Potential clinical application of recently discovered brain mechanisms involved in hypertension. Hypertension 62(6):995–1002CrossRefPubMed
26.
go back to reference Huber G, Schuster F, Raasch W (2017) Brain renin-angiotensin system in the pathophysiology of cardiovascular diseases. Pharmacol Res 125(Pt A):72–90CrossRefPubMed Huber G, Schuster F, Raasch W (2017) Brain renin-angiotensin system in the pathophysiology of cardiovascular diseases. Pharmacol Res 125(Pt A):72–90CrossRefPubMed
27.
go back to reference de Queiroz TM, Monteiro MM, Braga VA (2013) Angiotensin-II-derived reactive oxygen species on baroreflex sensitivity during hypertension: new perspectives. Front Physiol 4:105CrossRefPubMedPubMedCentral de Queiroz TM, Monteiro MM, Braga VA (2013) Angiotensin-II-derived reactive oxygen species on baroreflex sensitivity during hypertension: new perspectives. Front Physiol 4:105CrossRefPubMedPubMedCentral
28.
go back to reference Schaich CL, Shaltout HA, Grabenauer M, Thomas BF, Gallagher PE, Howlett AC, Diz DI (2015) Alterations in the medullary endocannabinoid system contribute to age-related impairment of baroreflex sensitivity. J Cardiovasc Pharmacol 65(5):473–479CrossRefPubMedPubMedCentral Schaich CL, Shaltout HA, Grabenauer M, Thomas BF, Gallagher PE, Howlett AC, Diz DI (2015) Alterations in the medullary endocannabinoid system contribute to age-related impairment of baroreflex sensitivity. J Cardiovasc Pharmacol 65(5):473–479CrossRefPubMedPubMedCentral
29.
go back to reference Pellegrino PR, Schiller AM, Haack KK, Zucker IH (2016) Central angiotensin-II increases blood pressure and sympathetic outflow via rho kinase activation in conscious rabbits. Hypertension 68(5):1271–1280CrossRefPubMedPubMedCentral Pellegrino PR, Schiller AM, Haack KK, Zucker IH (2016) Central angiotensin-II increases blood pressure and sympathetic outflow via rho kinase activation in conscious rabbits. Hypertension 68(5):1271–1280CrossRefPubMedPubMedCentral
30.
go back to reference Arnold AC, Isa K, Shaltout HA, Nautiyal M, Ferrario CM, Chappell MC, Diz DI (2010) Angiotensin-(1–12) requires angiotensin converting enzyme and AT1 receptors for cardiovascular actions within the solitary tract nucleus. Am J Physiol Heart Circ Physiol 299(3):H763–H771CrossRefPubMedPubMedCentral Arnold AC, Isa K, Shaltout HA, Nautiyal M, Ferrario CM, Chappell MC, Diz DI (2010) Angiotensin-(1–12) requires angiotensin converting enzyme and AT1 receptors for cardiovascular actions within the solitary tract nucleus. Am J Physiol Heart Circ Physiol 299(3):H763–H771CrossRefPubMedPubMedCentral
31.
go back to reference Houghton BL, Huang C, Johns EJ (2010) Influence of dietary sodium on the blood pressure and renal sympathetic nerve activity responses to intracerebroventricular angiotensin II and angiotensin III in anaesthetized rats. Exp Physiol 95(2):282–295CrossRefPubMed Houghton BL, Huang C, Johns EJ (2010) Influence of dietary sodium on the blood pressure and renal sympathetic nerve activity responses to intracerebroventricular angiotensin II and angiotensin III in anaesthetized rats. Exp Physiol 95(2):282–295CrossRefPubMed
32.
go back to reference Marc Y, Llorens-Cortes C (2011) The role of the brain renin-angiotensin system in hypertension: implications for new treatment. Prog Neurobiol 95(2):89–103CrossRefPubMed Marc Y, Llorens-Cortes C (2011) The role of the brain renin-angiotensin system in hypertension: implications for new treatment. Prog Neurobiol 95(2):89–103CrossRefPubMed
33.
go back to reference Huang BS, Ahmad M, White RA, Marc Y, Llorens-Cortes C, Leenen FH (2013) Inhibition of brain angiotensin III attenuates sympathetic hyperactivity and cardiac dysfunction in rats post-myocardial infarction. Cardiovasc Res 97(3):424–431CrossRefPubMed Huang BS, Ahmad M, White RA, Marc Y, Llorens-Cortes C, Leenen FH (2013) Inhibition of brain angiotensin III attenuates sympathetic hyperactivity and cardiac dysfunction in rats post-myocardial infarction. Cardiovasc Res 97(3):424–431CrossRefPubMed
34.
go back to reference Kokje RJ, Wilson WL, Brown TE, Karamyan VT, Wright JW, Speth RC (2007) Central pressor actions of aminopeptidase-resistant angiotensin II analogs: challenging the angiotensin III hypothesis. Hypertension 49(6):1328–1335CrossRefPubMed Kokje RJ, Wilson WL, Brown TE, Karamyan VT, Wright JW, Speth RC (2007) Central pressor actions of aminopeptidase-resistant angiotensin II analogs: challenging the angiotensin III hypothesis. Hypertension 49(6):1328–1335CrossRefPubMed
35.
go back to reference Matsukawa T, Gotoh E, Minamisawa K, Kihara M, Ueda S, Shionoiri H, Ishii M (1991) Effects of intravenous infusions of angiotensin II on muscle sympathetic nerve activity in humans. Am J Physiol 261(3 Pt 2):R690–R696PubMed Matsukawa T, Gotoh E, Minamisawa K, Kihara M, Ueda S, Shionoiri H, Ishii M (1991) Effects of intravenous infusions of angiotensin II on muscle sympathetic nerve activity in humans. Am J Physiol 261(3 Pt 2):R690–R696PubMed
36.
go back to reference Sayk F, Wobbe I, Twesten C, Meusel M, Wellhoner P, Derad I, Dodt C (2015) Prolonged blood pressure elevation following continuous infusion of angiotensin II-a baroreflex study in healthy humans. Am J Physiol Regul Integr Comp Physiol 309(11):R1406–R1414CrossRefPubMed Sayk F, Wobbe I, Twesten C, Meusel M, Wellhoner P, Derad I, Dodt C (2015) Prolonged blood pressure elevation following continuous infusion of angiotensin II-a baroreflex study in healthy humans. Am J Physiol Regul Integr Comp Physiol 309(11):R1406–R1414CrossRefPubMed
37.
go back to reference Goldsmith SR, Hasking GJ, Miller E (1993) Angiotensin II and sympathetic activity in patients with congestive heart failure. J Am Coll Cardiol 21(5):1107–1113CrossRefPubMed Goldsmith SR, Hasking GJ, Miller E (1993) Angiotensin II and sympathetic activity in patients with congestive heart failure. J Am Coll Cardiol 21(5):1107–1113CrossRefPubMed
38.
go back to reference Goldsmith SR, Hasking GJ (1995) Angiotensin II inhibits the forearm vascular response to increased arterial pressure in humans. J Am Coll Cardiol 25(1):246–250CrossRefPubMed Goldsmith SR, Hasking GJ (1995) Angiotensin II inhibits the forearm vascular response to increased arterial pressure in humans. J Am Coll Cardiol 25(1):246–250CrossRefPubMed
39.
go back to reference Townend JN, Al-Ani M, West JN, Littler WA, Coote JH (1995) Modulation of cardiac autonomic control in humans by angiotensin II. Hypertension 25(6):1270–1275CrossRefPubMed Townend JN, Al-Ani M, West JN, Littler WA, Coote JH (1995) Modulation of cardiac autonomic control in humans by angiotensin II. Hypertension 25(6):1270–1275CrossRefPubMed
40.
go back to reference Ruhs S, Nolze A, Hubschmann R, Grossmann C (2017) 30 years of the mineralocorticoid receptor: nongenomic effects via the mineralocorticoid receptor. J Endocrinol 234(1):T107–T124CrossRefPubMed Ruhs S, Nolze A, Hubschmann R, Grossmann C (2017) 30 years of the mineralocorticoid receptor: nongenomic effects via the mineralocorticoid receptor. J Endocrinol 234(1):T107–T124CrossRefPubMed
41.
go back to reference Downey RM, Mizuno M, Mitchell JH, Vongpatanasin W, Smith SA (2017) Mineralocorticoid receptor antagonists attenuate exaggerated exercise pressor reflex responses in hypertensive rats. Am J Physiol Heart Circ Physiol 313(4):H788–H794CrossRefPubMedPubMedCentral Downey RM, Mizuno M, Mitchell JH, Vongpatanasin W, Smith SA (2017) Mineralocorticoid receptor antagonists attenuate exaggerated exercise pressor reflex responses in hypertensive rats. Am J Physiol Heart Circ Physiol 313(4):H788–H794CrossRefPubMedPubMedCentral
42.
go back to reference Yee KM, Struthers AD (1998) Aldosterone blunts the baroreflex response in man. Clin Sci (Lond) 95(6):687–692CrossRef Yee KM, Struthers AD (1998) Aldosterone blunts the baroreflex response in man. Clin Sci (Lond) 95(6):687–692CrossRef
43.
go back to reference Schmidt BM, Montealegre A, Janson CP, Martin N, Stein-Kemmesies C, Scherhag A, Feuring M, Christ M, Wehling M (1999) Short term cardiovascular effects of aldosterone in healthy male volunteers. J Clin Endocrinol Metab 84(10):3528–3533PubMed Schmidt BM, Montealegre A, Janson CP, Martin N, Stein-Kemmesies C, Scherhag A, Feuring M, Christ M, Wehling M (1999) Short term cardiovascular effects of aldosterone in healthy male volunteers. J Clin Endocrinol Metab 84(10):3528–3533PubMed
44.
go back to reference Heindl S, Holzschneider J, Hinz A, Sayk F, Fehm HL, Dodt C (2006) Acute effects of aldosterone on the autonomic nervous system and the baroreflex function in healthy humans. J Neuroendocrinol 18(2):115–121CrossRefPubMed Heindl S, Holzschneider J, Hinz A, Sayk F, Fehm HL, Dodt C (2006) Acute effects of aldosterone on the autonomic nervous system and the baroreflex function in healthy humans. J Neuroendocrinol 18(2):115–121CrossRefPubMed
45.
go back to reference Monahan KD, Leuenberger UA, Ray CA (2007) Aldosterone impairs baroreflex sensitivity in healthy adults. Am J Physiol Heart Circ Physiol 292(1):H190–H197CrossRefPubMed Monahan KD, Leuenberger UA, Ray CA (2007) Aldosterone impairs baroreflex sensitivity in healthy adults. Am J Physiol Heart Circ Physiol 292(1):H190–H197CrossRefPubMed
46.
go back to reference Cuadra AE, Shan Z, Sumners C, Raizada MK (2010) A current view of brain renin-angiotensin system: is the (pro)renin receptor the missing link? Pharmacol Ther 125(1):27–38CrossRefPubMed Cuadra AE, Shan Z, Sumners C, Raizada MK (2010) A current view of brain renin-angiotensin system: is the (pro)renin receptor the missing link? Pharmacol Ther 125(1):27–38CrossRefPubMed
47.
go back to reference Li W, Peng H, Cao T, Sato R, McDaniels SJ, Kobori H, Navar LG, Feng Y (2012) Brain-targeted (pro)renin receptor knockdown attenuates angiotensin II-dependent hypertension. Hypertension 59(6):1188–1194CrossRefPubMedPubMedCentral Li W, Peng H, Cao T, Sato R, McDaniels SJ, Kobori H, Navar LG, Feng Y (2012) Brain-targeted (pro)renin receptor knockdown attenuates angiotensin II-dependent hypertension. Hypertension 59(6):1188–1194CrossRefPubMedPubMedCentral
48.
go back to reference Shan Z, Shi P, Cuadra AE, Dong Y, Lamont GJ, Li Q, Seth DM, Navar LG, Katovich MJ, Sumners C, Raizada MK (2010) Involvement of the brain (pro)renin receptor in cardiovascular homeostasis. Circ Res 107(7):934–938CrossRefPubMedPubMedCentral Shan Z, Shi P, Cuadra AE, Dong Y, Lamont GJ, Li Q, Seth DM, Navar LG, Katovich MJ, Sumners C, Raizada MK (2010) Involvement of the brain (pro)renin receptor in cardiovascular homeostasis. Circ Res 107(7):934–938CrossRefPubMedPubMedCentral
49.
go back to reference Huber MJ, Basu R, Cecchettini C, Cuadra AE, Chen QH, Shan Z (2015) Activation of the (pro)renin receptor in the paraventricular nucleus increases sympathetic outflow in anesthetized rats. Am J Physiol Heart Circ Physiol 309(5):H880–H887PubMedPubMedCentral Huber MJ, Basu R, Cecchettini C, Cuadra AE, Chen QH, Shan Z (2015) Activation of the (pro)renin receptor in the paraventricular nucleus increases sympathetic outflow in anesthetized rats. Am J Physiol Heart Circ Physiol 309(5):H880–H887PubMedPubMedCentral
50.
go back to reference Li W, Peng H, Mehaffey EP, Kimball CD, Grobe JL, van Gool JM, Sullivan MN, Earley S, Danser AH, Ichihara A, Feng Y (2014) Neuron-specific (pro)renin receptor knockout prevents the development of salt-sensitive hypertension. Hypertension 63(2):316–323CrossRefPubMed Li W, Peng H, Mehaffey EP, Kimball CD, Grobe JL, van Gool JM, Sullivan MN, Earley S, Danser AH, Ichihara A, Feng Y (2014) Neuron-specific (pro)renin receptor knockout prevents the development of salt-sensitive hypertension. Hypertension 63(2):316–323CrossRefPubMed
51.
go back to reference Li W, Sullivan MN, Zhang S, Worker CJ, Xiong Z, Speth RC, Feng Y (2015) Intracerebroventricular infusion of the (Pro)renin receptor antagonist PRO20 attenuates deoxycorticosterone acetate-salt-induced hypertension. Hypertension 65(2):352–361CrossRefPubMed Li W, Sullivan MN, Zhang S, Worker CJ, Xiong Z, Speth RC, Feng Y (2015) Intracerebroventricular infusion of the (Pro)renin receptor antagonist PRO20 attenuates deoxycorticosterone acetate-salt-induced hypertension. Hypertension 65(2):352–361CrossRefPubMed
52.
go back to reference Shi P, Grobe JL, Desland FA, Zhou G, Shen XZ, Shan Z, Liu M, Raizada MK, Sumners C (2014) Direct pro-inflammatory effects of prorenin on microglia. PLoS One 9(10):e92937CrossRefPubMedPubMedCentral Shi P, Grobe JL, Desland FA, Zhou G, Shen XZ, Shan Z, Liu M, Raizada MK, Sumners C (2014) Direct pro-inflammatory effects of prorenin on microglia. PLoS One 9(10):e92937CrossRefPubMedPubMedCentral
53.
go back to reference Pitra S, Feng Y, Stern JE (2016) Mechanisms underlying prorenin actions on hypothalamic neurons implicated in cardiometabolic control. Mol Metab 5(10):858–868CrossRefPubMedPubMedCentral Pitra S, Feng Y, Stern JE (2016) Mechanisms underlying prorenin actions on hypothalamic neurons implicated in cardiometabolic control. Mol Metab 5(10):858–868CrossRefPubMedPubMedCentral
54.
go back to reference Gironacci MM, Cerniello FM, Longo Carbajosa NA, Goldstein J, Cerrato BD (2014) Protective axis of the renin-angiotensin system in the brain. Clin Sci (Lond) 127(5):295–306CrossRef Gironacci MM, Cerniello FM, Longo Carbajosa NA, Goldstein J, Cerrato BD (2014) Protective axis of the renin-angiotensin system in the brain. Clin Sci (Lond) 127(5):295–306CrossRef
55.
go back to reference de Souza-Neto FP, Carvalho Santuchi M, de Morais ESM, Campagnole-Santos MJ, da Silva RF (2018) Angiotensin-(1–7) and alamandine on experimental models of hypertension and atherosclerosis. Curr Hypertens Rep 20(2):17CrossRefPubMed de Souza-Neto FP, Carvalho Santuchi M, de Morais ESM, Campagnole-Santos MJ, da Silva RF (2018) Angiotensin-(1–7) and alamandine on experimental models of hypertension and atherosclerosis. Curr Hypertens Rep 20(2):17CrossRefPubMed
56.
go back to reference Shangguan W, Shi W, Li G, Wang Y, Li J, Wang X (2017) Angiotensin-(1–7) attenuates atrial tachycardia-induced sympathetic nerve remodeling. J Renin Angiotensin Aldosterone Syst 18(3):1470320317729281CrossRefPubMedPubMedCentral Shangguan W, Shi W, Li G, Wang Y, Li J, Wang X (2017) Angiotensin-(1–7) attenuates atrial tachycardia-induced sympathetic nerve remodeling. J Renin Angiotensin Aldosterone Syst 18(3):1470320317729281CrossRefPubMedPubMedCentral
57.
go back to reference Martins Lima A, Xavier CH, Ferreira AJ, Raizada MK, Wallukat G, Velloso EP, dos Santos RA, Fontes MA (2013) Activation of angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis attenuates the cardiac reactivity to acute emotional stress. Am J Physiol Heart Circ Physiol 305(7):H1057–H1067CrossRefPubMed Martins Lima A, Xavier CH, Ferreira AJ, Raizada MK, Wallukat G, Velloso EP, dos Santos RA, Fontes MA (2013) Activation of angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis attenuates the cardiac reactivity to acute emotional stress. Am J Physiol Heart Circ Physiol 305(7):H1057–H1067CrossRefPubMed
58.
go back to reference de Moura MM, dos Santos RA, Campagnole-Santos MJ, Todiras M, Bader M, Alenina N, Haibara AS (2010) Altered cardiovascular reflexes responses in conscious angiotensin-(1–7) receptor Mas-knockout mice. Peptides 31(10):1934–1939CrossRefPubMed de Moura MM, dos Santos RA, Campagnole-Santos MJ, Todiras M, Bader M, Alenina N, Haibara AS (2010) Altered cardiovascular reflexes responses in conscious angiotensin-(1–7) receptor Mas-knockout mice. Peptides 31(10):1934–1939CrossRefPubMed
59.
go back to reference Bilodeau MS, Leiter JC (2018) Angiotensin 1–7 in the rostro-ventrolateral medulla increases blood pressure and splanchnic sympathetic nerve activity in anesthetized rats. Respir Physiol Neurobiol 247:103–111CrossRefPubMed Bilodeau MS, Leiter JC (2018) Angiotensin 1–7 in the rostro-ventrolateral medulla increases blood pressure and splanchnic sympathetic nerve activity in anesthetized rats. Respir Physiol Neurobiol 247:103–111CrossRefPubMed
60.
go back to reference Ren X, Zhang F, Zhao M, Zhao Z, Sun S, Fraidenburg DR, Tang H, Han Y (2017) Angiotensin-(1–7) in paraventricular nucleus contributes to the enhanced cardiac sympathetic afferent reflex and sympathetic activity in chronic heart failure rats. Cell Physiol Biochem 42(6):2523–2539CrossRefPubMedPubMedCentral Ren X, Zhang F, Zhao M, Zhao Z, Sun S, Fraidenburg DR, Tang H, Han Y (2017) Angiotensin-(1–7) in paraventricular nucleus contributes to the enhanced cardiac sympathetic afferent reflex and sympathetic activity in chronic heart failure rats. Cell Physiol Biochem 42(6):2523–2539CrossRefPubMedPubMedCentral
61.
62.
go back to reference Shen YH, Chen XR, Yang CX, Liu BX, Li P (2018) Alamandine injected into the paraventricular nucleus increases blood pressure and sympathetic activation in spontaneously hypertensive rats. Peptides 103:98–102CrossRefPubMed Shen YH, Chen XR, Yang CX, Liu BX, Li P (2018) Alamandine injected into the paraventricular nucleus increases blood pressure and sympathetic activation in spontaneously hypertensive rats. Peptides 103:98–102CrossRefPubMed
63.
go back to reference Leenen FH, Ruzicka M, Floras JS (2012) Central sympathetic inhibition by mineralocorticoid receptor but not angiotensin II type 1 receptor blockade: are prescribed doses too low? Hypertension 60(2):278–280CrossRefPubMed Leenen FH, Ruzicka M, Floras JS (2012) Central sympathetic inhibition by mineralocorticoid receptor but not angiotensin II type 1 receptor blockade: are prescribed doses too low? Hypertension 60(2):278–280CrossRefPubMed
64.
65.
go back to reference Grassi G (2016) Sympathomodulatory effects of antihypertensive drug treatment. Am J Hypertens 29(6):665–675CrossRefPubMed Grassi G (2016) Sympathomodulatory effects of antihypertensive drug treatment. Am J Hypertens 29(6):665–675CrossRefPubMed
66.
go back to reference Abuissa H, Jones PG, Marso SP, O’Keefe JH Jr (2005) Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention of type 2 diabetes: a meta-analysis of randomized clinical trials. J Am Coll Cardiol 46(5):821–826CrossRefPubMed Abuissa H, Jones PG, Marso SP, O’Keefe JH Jr (2005) Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention of type 2 diabetes: a meta-analysis of randomized clinical trials. J Am Coll Cardiol 46(5):821–826CrossRefPubMed
67.
go back to reference Yang Y, Wei RB, Wang ZC, Wang N, Gao YW, Li MX, Qiu Q (2015) A meta-analysis of the effects of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers on insulin sensitivity in hypertensive patients without diabetes. Diabetes Res Clin Pract 107(3):415–423CrossRefPubMed Yang Y, Wei RB, Wang ZC, Wang N, Gao YW, Li MX, Qiu Q (2015) A meta-analysis of the effects of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers on insulin sensitivity in hypertensive patients without diabetes. Diabetes Res Clin Pract 107(3):415–423CrossRefPubMed
68.
go back to reference Robles NR, Cerezo I, Hernandez-Gallego R (2014) Renin-angiotensin system blocking drugs. J Cardiovasc Pharmacol Ther 19(1):14–33CrossRefPubMed Robles NR, Cerezo I, Hernandez-Gallego R (2014) Renin-angiotensin system blocking drugs. J Cardiovasc Pharmacol Ther 19(1):14–33CrossRefPubMed
69.
go back to reference Benter IF, Yousif MH, Al-Saleh FM, Raghupathy R, Chappell MC, Diz DI (2011) Angiotensin-(1–7) blockade attenuates captopril- or hydralazine-induced cardiovascular protection in spontaneously hypertensive rats treated with NG-nitro-l-arginine methyl ester. J Cardiovasc Pharmacol 57(5):559–567CrossRefPubMedPubMedCentral Benter IF, Yousif MH, Al-Saleh FM, Raghupathy R, Chappell MC, Diz DI (2011) Angiotensin-(1–7) blockade attenuates captopril- or hydralazine-induced cardiovascular protection in spontaneously hypertensive rats treated with NG-nitro-l-arginine methyl ester. J Cardiovasc Pharmacol 57(5):559–567CrossRefPubMedPubMedCentral
70.
go back to reference Kucharewicz I, Pawlak R, Matys T, Pawlak D, Buczko W (2002) Antithrombotic effect of captopril and losartan is mediated by angiotensin-(1–7). Hypertension 40(5):774–779CrossRefPubMed Kucharewicz I, Pawlak R, Matys T, Pawlak D, Buczko W (2002) Antithrombotic effect of captopril and losartan is mediated by angiotensin-(1–7). Hypertension 40(5):774–779CrossRefPubMed
71.
go back to reference Yousif MH, Dhaunsi GS, Makki BM, Qabazard BA, Akhtar S, Benter IF (2012) Characterization of angiotensin-(1–7) effects on the cardiovascular system in an experimental model of type-1 diabetes. Pharmacol Res 66(3):269–275CrossRefPubMed Yousif MH, Dhaunsi GS, Makki BM, Qabazard BA, Akhtar S, Benter IF (2012) Characterization of angiotensin-(1–7) effects on the cardiovascular system in an experimental model of type-1 diabetes. Pharmacol Res 66(3):269–275CrossRefPubMed
72.
go back to reference Lang CC, Stein CM, He HB, Wood AJ (1996) Angiotensin converting enzyme inhibition and sympathetic activity in healthy subjects. Clin Pharmacol Ther 59(6):668–674CrossRefPubMed Lang CC, Stein CM, He HB, Wood AJ (1996) Angiotensin converting enzyme inhibition and sympathetic activity in healthy subjects. Clin Pharmacol Ther 59(6):668–674CrossRefPubMed
73.
go back to reference Azevedo ER, Mak S, Floras JS, Parker JD (2017) Acute effects of angiotensin-converting enzyme inhibition versus angiotensin II receptor blockade on cardiac sympathetic activity in patients with heart failure. Am J Physiol Regul Integr Comp Physiol 313(4):R410–R417CrossRef Azevedo ER, Mak S, Floras JS, Parker JD (2017) Acute effects of angiotensin-converting enzyme inhibition versus angiotensin II receptor blockade on cardiac sympathetic activity in patients with heart failure. Am J Physiol Regul Integr Comp Physiol 313(4):R410–R417CrossRef
74.
go back to reference Krum H, Lambert E, Windebank E, Campbell DJ, Esler M (2006) Effect of angiotensin II receptor blockade on autonomic nervous system function in patients with essential hypertension. Am J Physiol Heart Circ Physiol 290(4):H1706–H1712CrossRefPubMed Krum H, Lambert E, Windebank E, Campbell DJ, Esler M (2006) Effect of angiotensin II receptor blockade on autonomic nervous system function in patients with essential hypertension. Am J Physiol Heart Circ Physiol 290(4):H1706–H1712CrossRefPubMed
75.
go back to reference de Champlain J, Karas M, Assouline L, Nadeau R, LeBlanc AR, Dube B, Larochelle P (2007) Effects of valsartan or amlodipine alone or in combination on plasma catecholamine levels at rest and during standing in hypertensive patients. J Clin Hypertens (Greenwich) 9(3):168–178CrossRef de Champlain J, Karas M, Assouline L, Nadeau R, LeBlanc AR, Dube B, Larochelle P (2007) Effects of valsartan or amlodipine alone or in combination on plasma catecholamine levels at rest and during standing in hypertensive patients. J Clin Hypertens (Greenwich) 9(3):168–178CrossRef
76.
go back to reference Ajayi AA, Reid JL (1988) Renin-angiotensin modulation of sympathetic reflex function in essential hypertension and in the elderly. Int J Clin Pharmacol Res 8(5):327–333PubMed Ajayi AA, Reid JL (1988) Renin-angiotensin modulation of sympathetic reflex function in essential hypertension and in the elderly. Int J Clin Pharmacol Res 8(5):327–333PubMed
77.
go back to reference Stupin A, Drenjancevic I, Rasic L, Cosic A, Stupin M (2017) A cross-talk between the renin-angiotensin and adrenergic systems in cardiovascular health and disease. SEEMEDJ 1(1):90–107 Stupin A, Drenjancevic I, Rasic L, Cosic A, Stupin M (2017) A cross-talk between the renin-angiotensin and adrenergic systems in cardiovascular health and disease. SEEMEDJ 1(1):90–107
78.
go back to reference Arnold AC, Okamoto LE, Gamboa A, Shibao C, Raj SR, Robertson D, Biaggioni I (2013) Angiotensin II, independent of plasma renin activity, contributes to the hypertension of autonomic failure. Hypertension 61(3):701–706CrossRefPubMed Arnold AC, Okamoto LE, Gamboa A, Shibao C, Raj SR, Robertson D, Biaggioni I (2013) Angiotensin II, independent of plasma renin activity, contributes to the hypertension of autonomic failure. Hypertension 61(3):701–706CrossRefPubMed
79.
go back to reference Cabandugama PK, Gardner MJ, Sowers JR (2017) The renin angiotensin aldosterone system in obesity and hypertension: roles in the cardiorenal metabolic syndrome. Med Clin N Am 101(1):129–137CrossRefPubMed Cabandugama PK, Gardner MJ, Sowers JR (2017) The renin angiotensin aldosterone system in obesity and hypertension: roles in the cardiorenal metabolic syndrome. Med Clin N Am 101(1):129–137CrossRefPubMed
80.
go back to reference Engeli S, Bohnke J, Gorzelniak K, Janke J, Schling P, Bader M, Luft FC, Sharma AM (2005) Weight loss and the renin-angiotensin-aldosterone system. Hypertension 45(3):356–362CrossRefPubMed Engeli S, Bohnke J, Gorzelniak K, Janke J, Schling P, Bader M, Luft FC, Sharma AM (2005) Weight loss and the renin-angiotensin-aldosterone system. Hypertension 45(3):356–362CrossRefPubMed
81.
go back to reference Masuo K, Mikami H, Ogihara T, Tuck ML (2001) Weight reduction and pharmacologic treatment in obese hypertensives. Am J Hypertens 14(6 Pt 1):530–538CrossRefPubMed Masuo K, Mikami H, Ogihara T, Tuck ML (2001) Weight reduction and pharmacologic treatment in obese hypertensives. Am J Hypertens 14(6 Pt 1):530–538CrossRefPubMed
82.
go back to reference Floras JS, Ponikowski P (2015) The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction. Eur Heart J 36(30):1974–1982bCrossRefPubMedPubMedCentral Floras JS, Ponikowski P (2015) The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction. Eur Heart J 36(30):1974–1982bCrossRefPubMedPubMedCentral
83.
go back to reference Neumann J, Ligtenberg G, Klein IH, Boer P, Oey PL, Koomans HA, Blankestijn PJ (2007) Sympathetic hyperactivity in hypertensive chronic kidney disease patients is reduced during standard treatment. Hypertension 49(3):506–510CrossRefPubMed Neumann J, Ligtenberg G, Klein IH, Boer P, Oey PL, Koomans HA, Blankestijn PJ (2007) Sympathetic hyperactivity in hypertensive chronic kidney disease patients is reduced during standard treatment. Hypertension 49(3):506–510CrossRefPubMed
84.
go back to reference Pantzaris ND, Karanikolas E, Tsiotsios K, Velissaris D (2017) Renin inhibition with aliskiren: a decade of clinical experience. J Clin Med 6(6):61CrossRefPubMedCentral Pantzaris ND, Karanikolas E, Tsiotsios K, Velissaris D (2017) Renin inhibition with aliskiren: a decade of clinical experience. J Clin Med 6(6):61CrossRefPubMedCentral
85.
go back to reference Huang BS, White RA, Bi L, Leenen FH (2012) Central infusion of aliskiren prevents sympathetic hyperactivity and hypertension in Dahl salt-sensitive rats on high salt intake. Am J Physiol Regul Integr Comp Physiol 302(7):R825–R832CrossRefPubMed Huang BS, White RA, Bi L, Leenen FH (2012) Central infusion of aliskiren prevents sympathetic hyperactivity and hypertension in Dahl salt-sensitive rats on high salt intake. Am J Physiol Regul Integr Comp Physiol 302(7):R825–R832CrossRefPubMed
86.
go back to reference Siddiqi L, Oey PL, Blankestijn PJ (2011) Aliskiren reduces sympathetic nerve activity and blood pressure in chronic kidney disease patients. Nephrol Dial Transplant 26(9):2930–2934CrossRefPubMed Siddiqi L, Oey PL, Blankestijn PJ (2011) Aliskiren reduces sympathetic nerve activity and blood pressure in chronic kidney disease patients. Nephrol Dial Transplant 26(9):2930–2934CrossRefPubMed
87.
go back to reference Okada Y, Jarvis SS, Best SA, Bivens TB, Adams-Huet B, Levine BD, Fu Q (2013) Chronic renin inhibition lowers blood pressure and reduces upright muscle sympathetic nerve activity in hypertensive seniors. J Physiol 591(23):5913–5922CrossRefPubMedPubMedCentral Okada Y, Jarvis SS, Best SA, Bivens TB, Adams-Huet B, Levine BD, Fu Q (2013) Chronic renin inhibition lowers blood pressure and reduces upright muscle sympathetic nerve activity in hypertensive seniors. J Physiol 591(23):5913–5922CrossRefPubMedPubMedCentral
88.
go back to reference Jarvis SS, Okada Y, Levine BD, Fu Q (2015) Central integration and neural control of blood pressure during the cold pressor test: a comparison between hydrochlorothiazide and aliskiren. Physiol Rep 3(9):e12502CrossRefPubMedPubMedCentral Jarvis SS, Okada Y, Levine BD, Fu Q (2015) Central integration and neural control of blood pressure during the cold pressor test: a comparison between hydrochlorothiazide and aliskiren. Physiol Rep 3(9):e12502CrossRefPubMedPubMedCentral
89.
go back to reference Fogari R, Zoppi A, Mugellini A, Maffioli P, Lazzari P, Monti C, Derosa G (2011) Effect of aliskiren addition to amlodipine on ankle edema in hypertensive patients: a three-way crossover study. Expert Opin Pharmacother 12(9):1351–1358CrossRefPubMed Fogari R, Zoppi A, Mugellini A, Maffioli P, Lazzari P, Monti C, Derosa G (2011) Effect of aliskiren addition to amlodipine on ankle edema in hypertensive patients: a three-way crossover study. Expert Opin Pharmacother 12(9):1351–1358CrossRefPubMed
90.
go back to reference Maser RE, Lenhard MJ, Kolm P, Edwards DG (2013) Direct renin inhibition improves parasympathetic function in diabetes. Diabetes Obes Metab 15(1):28–34CrossRefPubMed Maser RE, Lenhard MJ, Kolm P, Edwards DG (2013) Direct renin inhibition improves parasympathetic function in diabetes. Diabetes Obes Metab 15(1):28–34CrossRefPubMed
91.
go back to reference Mengal V, Silva PH, Tiradentes RV, Santuzzi CH, de Almeida SA, Sena GC, Bissoli NS, Abreu GR, Gouvea SA (2016) Aliskiren and l-arginine treatments restore depressed baroreflex sensitivity and decrease oxidative stress in renovascular hypertension rats. Hypertens Res 39(11):769–776CrossRefPubMed Mengal V, Silva PH, Tiradentes RV, Santuzzi CH, de Almeida SA, Sena GC, Bissoli NS, Abreu GR, Gouvea SA (2016) Aliskiren and l-arginine treatments restore depressed baroreflex sensitivity and decrease oxidative stress in renovascular hypertension rats. Hypertens Res 39(11):769–776CrossRefPubMed
92.
go back to reference DuPont JJ, Hill MA, Bender SB, Jaisser F, Jaffe IZ (2014) Aldosterone and vascular mineralocorticoid receptors: regulators of ion channels beyond the kidney. Hypertension 63(4):632–637CrossRefPubMed DuPont JJ, Hill MA, Bender SB, Jaisser F, Jaffe IZ (2014) Aldosterone and vascular mineralocorticoid receptors: regulators of ion channels beyond the kidney. Hypertension 63(4):632–637CrossRefPubMed
94.
go back to reference Dudenbostel T, Calhoun DA (2017) Use of aldosterone antagonists for treatment of uncontrolled resistant hypertension. Am J Hypertens 30(2):103–109CrossRefPubMed Dudenbostel T, Calhoun DA (2017) Use of aldosterone antagonists for treatment of uncontrolled resistant hypertension. Am J Hypertens 30(2):103–109CrossRefPubMed
95.
go back to reference Arnold AC, Okamoto LE, Gamboa A, Black BK, Raj SR, Elijovich F, Robertson D, Shibao CA, Biaggioni I (2016) Mineralocorticoid receptor activation contributes to the supine hypertension of autonomic failure. Hypertension 67(2):424–429CrossRefPubMed Arnold AC, Okamoto LE, Gamboa A, Black BK, Raj SR, Elijovich F, Robertson D, Shibao CA, Biaggioni I (2016) Mineralocorticoid receptor activation contributes to the supine hypertension of autonomic failure. Hypertension 67(2):424–429CrossRefPubMed
96.
go back to reference Lincevicius GS, Shimoura CG, Nishi EE, Perry JC, Casarini DE, Gomes GN, Bergamaschi CT, Campos RR (2015) Aldosterone contributes to sympathoexcitation in renovascular hypertension. Am J Hypertens 28(9):1083–1090CrossRefPubMed Lincevicius GS, Shimoura CG, Nishi EE, Perry JC, Casarini DE, Gomes GN, Bergamaschi CT, Campos RR (2015) Aldosterone contributes to sympathoexcitation in renovascular hypertension. Am J Hypertens 28(9):1083–1090CrossRefPubMed
97.
go back to reference Marques Neto SR, Silva AD, Santos MD, Ferraz EF, Nascimento JH (2013) The blockade of angiotensin AT1 and aldosterone receptors protects rats from synthetic androgen-induced cardiac autonomic dysfunction. Acta Physiol (Oxf) 208(2):166–171CrossRef Marques Neto SR, Silva AD, Santos MD, Ferraz EF, Nascimento JH (2013) The blockade of angiotensin AT1 and aldosterone receptors protects rats from synthetic androgen-induced cardiac autonomic dysfunction. Acta Physiol (Oxf) 208(2):166–171CrossRef
98.
go back to reference Davies JI, Witham MD, Struthers AD (2005) Autonomic effects of spironolactone and MR blockers in heart failure. Heart Fail Rev 10(1):63–69CrossRefPubMed Davies JI, Witham MD, Struthers AD (2005) Autonomic effects of spironolactone and MR blockers in heart failure. Heart Fail Rev 10(1):63–69CrossRefPubMed
99.
101.
go back to reference Ye L, Wang J, Chen Q, Yang X (2017) LCZ696, a promising novel agent in treating hypertension (a meta-analysis of randomized controlled trials). Oncotarget 8(64):107991–108005CrossRefPubMedPubMedCentral Ye L, Wang J, Chen Q, Yang X (2017) LCZ696, a promising novel agent in treating hypertension (a meta-analysis of randomized controlled trials). Oncotarget 8(64):107991–108005CrossRefPubMedPubMedCentral
102.
go back to reference Engeli S, Stinkens R, Heise T, May M, Goossens GH, Blaak EE, Havekes B, Jax T, Albrecht D, Pal P, Tegtbur U, Haufe S, Langenickel TH, Jordan J (2018) Effect of sacubitril/valsartan on exercise-induced lipid metabolism in patients with obesity and hypertension. Hypertension 71(1):70–77CrossRefPubMed Engeli S, Stinkens R, Heise T, May M, Goossens GH, Blaak EE, Havekes B, Jax T, Albrecht D, Pal P, Tegtbur U, Haufe S, Langenickel TH, Jordan J (2018) Effect of sacubitril/valsartan on exercise-induced lipid metabolism in patients with obesity and hypertension. Hypertension 71(1):70–77CrossRefPubMed
104.
go back to reference Kusaka H, Sueta D, Koibuchi N, Hasegawa Y, Nakagawa T, Lin B, Ogawa H, Kim-Mitsuyama S (2015) LCZ696, angiotensin II receptor-neprilysin inhibitor, ameliorates high-salt-induced hypertension and cardiovascular injury more than valsartan alone. Am J Hypertens 28(12):1409–1417CrossRefPubMed Kusaka H, Sueta D, Koibuchi N, Hasegawa Y, Nakagawa T, Lin B, Ogawa H, Kim-Mitsuyama S (2015) LCZ696, angiotensin II receptor-neprilysin inhibitor, ameliorates high-salt-induced hypertension and cardiovascular injury more than valsartan alone. Am J Hypertens 28(12):1409–1417CrossRefPubMed
105.
go back to reference Ferrario CM, Martell N, Yunis C, Flack JM, Chappell MC, Brosnihan KB, Dean RH, Fernandez A, Novikov SV, Pinillas C, Luque M (1998) Characterization of angiotensin-(1–7) in the urine of normal and essential hypertensive subjects. Am J Hypertens 11(2):137–146CrossRefPubMed Ferrario CM, Martell N, Yunis C, Flack JM, Chappell MC, Brosnihan KB, Dean RH, Fernandez A, Novikov SV, Pinillas C, Luque M (1998) Characterization of angiotensin-(1–7) in the urine of normal and essential hypertensive subjects. Am J Hypertens 11(2):137–146CrossRefPubMed
106.
go back to reference Touyz RM, Montezano AC (2018) Angiotensin-(1–7) and vascular function: the clinical context. Hypertension 71(1):68–69CrossRefPubMed Touyz RM, Montezano AC (2018) Angiotensin-(1–7) and vascular function: the clinical context. Hypertension 71(1):68–69CrossRefPubMed
107.
go back to reference Machado-Silva A, Passos-Silva D, Santos RA, Sinisterra RD (2016) Therapeutic uses for angiotensin-(1–7). Expert Opin Ther Pat 26(6):669–678CrossRefPubMed Machado-Silva A, Passos-Silva D, Santos RA, Sinisterra RD (2016) Therapeutic uses for angiotensin-(1–7). Expert Opin Ther Pat 26(6):669–678CrossRefPubMed
108.
go back to reference Ho JK, Nation DA (2018) Cognitive benefits of angiotensin IV and angiotensin-(1–7): a systematic review of experimental studies. Neurosci Biobehav Rev 92:209–225CrossRefPubMed Ho JK, Nation DA (2018) Cognitive benefits of angiotensin IV and angiotensin-(1–7): a systematic review of experimental studies. Neurosci Biobehav Rev 92:209–225CrossRefPubMed
Metadata
Title
The renin–angiotensin system in cardiovascular autonomic control: recent developments and clinical implications
Authors
Amanda J. Miller
Amy C. Arnold
Publication date
01-04-2019
Publisher
Springer Berlin Heidelberg
Published in
Clinical Autonomic Research / Issue 2/2019
Print ISSN: 0959-9851
Electronic ISSN: 1619-1560
DOI
https://doi.org/10.1007/s10286-018-0572-5

Other articles of this Issue 2/2019

Clinical Autonomic Research 2/2019 Go to the issue