Skip to main content
Top
Published in: Clinical Autonomic Research 4/2017

01-08-2017 | Review

Animal and cellular models of familial dysautonomia

Authors: Frances Lefcort, Marc Mergy, Sarah B. Ohlen, Yumi Ueki, Lynn George

Published in: Clinical Autonomic Research | Issue 4/2017

Login to get access

Abstract

Since Riley and Day first described the clinical phenotype of patients with familial dysautonomia (FD) over 60 years ago, the field has made considerable progress clinically, scientifically, and translationally in treating and understanding the etiology of FD. FD is classified as a hereditary sensory and autonomic neuropathy (HSAN type III) and is both a developmental and a progressive neurodegenerative condition that results from an autosomal recessive mutation in the gene IKBKAP, also known as ELP1. FD primarily impacts the peripheral nervous system but also manifests in central nervous system disruption, especially in the retina and optic nerve. While the disease is rare, the rapid progress being made in elucidating the molecular and cellular mechanisms mediating the demise of neurons in FD should provide insight into degenerative pathways common to many neurological disorders. Interestingly, the protein encoded by IKBKAP/ELP1, IKAP or ELP1, is a key scaffolding subunit of the six-subunit Elongator complex, and variants in other Elongator genes are associated with amyotrophic lateral sclerosis (ALS), intellectual disability, and Rolandic epilepsy. Here we review the recent model systems that are revealing the molecular and cellular pathophysiological mechanisms mediating FD. These powerful model systems can now be used to test targeted therapeutics for mitigating neuronal loss in FD and potentially other disorders.
Literature
2.
go back to reference Norcliffe-Kaufmann L, Slaugenhaupt SA, Kaufmann H (2017) Familial dysautonomia: history, genotype, phenotype and translational research. Prog Neurobiol 152:131–148CrossRefPubMed Norcliffe-Kaufmann L, Slaugenhaupt SA, Kaufmann H (2017) Familial dysautonomia: history, genotype, phenotype and translational research. Prog Neurobiol 152:131–148CrossRefPubMed
4.
go back to reference Norcliffe-Kaufmann L, Slaugenhaupt SA, Kaufmann H (2016) Familial dysautonomia: history, genotype, phenotype and translational research. Prog Neurobiol 152:131–148CrossRefPubMed Norcliffe-Kaufmann L, Slaugenhaupt SA, Kaufmann H (2016) Familial dysautonomia: history, genotype, phenotype and translational research. Prog Neurobiol 152:131–148CrossRefPubMed
5.
go back to reference Mendoza-Santiesteban CE et al (2014) Selective retinal ganglion cell loss in familial dysautonomia. J Neurol 261(4):702–709CrossRefPubMed Mendoza-Santiesteban CE et al (2014) Selective retinal ganglion cell loss in familial dysautonomia. J Neurol 261(4):702–709CrossRefPubMed
6.
go back to reference Mendoza-Santiesteban CE et al (2012) Clinical neuro-ophthalmic findings in familial dysautonomia. J Neuroophthalmol 32(1):23–26CrossRefPubMed Mendoza-Santiesteban CE et al (2012) Clinical neuro-ophthalmic findings in familial dysautonomia. J Neuroophthalmol 32(1):23–26CrossRefPubMed
7.
go back to reference Mendoza-Santiesteban CE et al. (2017) Pathologic confirmation of optic neuropathy in familial dysautonomia. J Neuropathol Exp Neurol 76(3):238–244CrossRefPubMed Mendoza-Santiesteban CE et al. (2017) Pathologic confirmation of optic neuropathy in familial dysautonomia. J Neuropathol Exp Neurol 76(3):238–244CrossRefPubMed
8.
go back to reference Slaugenhaupt SA et al (2001) Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet 68(3):598–605CrossRefPubMedPubMedCentral Slaugenhaupt SA et al (2001) Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet 68(3):598–605CrossRefPubMedPubMedCentral
10.
go back to reference Boone N et al (2010) Olfactory stem cells, a new cellular model for studying molecular mechanisms underlying familial dysautonomia. PLoS One 5(12):e15590CrossRefPubMedPubMedCentral Boone N et al (2010) Olfactory stem cells, a new cellular model for studying molecular mechanisms underlying familial dysautonomia. PLoS One 5(12):e15590CrossRefPubMedPubMedCentral
11.
12.
go back to reference Esberg A et al (2006) Elevated levels of two tRNA species bypass the requirement for elongator complex in transcription and exocytosis. Mol Cell 24(1):139–148CrossRefPubMed Esberg A et al (2006) Elevated levels of two tRNA species bypass the requirement for elongator complex in transcription and exocytosis. Mol Cell 24(1):139–148CrossRefPubMed
13.
go back to reference Laguesse S et al (2015) A dynamic unfolded protein response contributes to the control of cortical neurogenesis. Dev Cell 35(5):553–567CrossRefPubMed Laguesse S et al (2015) A dynamic unfolded protein response contributes to the control of cortical neurogenesis. Dev Cell 35(5):553–567CrossRefPubMed
14.
15.
go back to reference Karlsborn T et al (2014) Familial dysautonomia (FD) patients have reduced levels of the modified wobble nucleoside mcmsU in tRNA. Biochem Biophys Res Commun 454(3):441–445CrossRefPubMed Karlsborn T et al (2014) Familial dysautonomia (FD) patients have reduced levels of the modified wobble nucleoside mcmsU in tRNA. Biochem Biophys Res Commun 454(3):441–445CrossRefPubMed
17.
go back to reference Yoshida M et al (2015) Rectifier of aberrant mRNA splicing recovers tRNA modification in familial dysautonomia. Proc Natl Acad Sci USA 112(9):2764–2769CrossRefPubMedPubMedCentral Yoshida M et al (2015) Rectifier of aberrant mRNA splicing recovers tRNA modification in familial dysautonomia. Proc Natl Acad Sci USA 112(9):2764–2769CrossRefPubMedPubMedCentral
18.
go back to reference Otero G et al (1999) Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol Cell 3(1):109–118CrossRefPubMed Otero G et al (1999) Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol Cell 3(1):109–118CrossRefPubMed
19.
go back to reference Wittschieben BO et al (1999) A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol Cell 4(1):123–128CrossRefPubMed Wittschieben BO et al (1999) A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol Cell 4(1):123–128CrossRefPubMed
20.
go back to reference Rahl PB, Chen CZ, Collins RN (2005) Elp1p, the yeast homolog of the FD disease syndrome protein, negatively regulates exocytosis independently of transcriptional elongation. Mol Cell 17(6):841–853CrossRefPubMed Rahl PB, Chen CZ, Collins RN (2005) Elp1p, the yeast homolog of the FD disease syndrome protein, negatively regulates exocytosis independently of transcriptional elongation. Mol Cell 17(6):841–853CrossRefPubMed
21.
go back to reference Gardiner J et al (2007) Potential role of tubulin acetylation and microtubule-based protein trafficking in familial dysautonomia. Traffic 8(9):1145–1149CrossRefPubMed Gardiner J et al (2007) Potential role of tubulin acetylation and microtubule-based protein trafficking in familial dysautonomia. Traffic 8(9):1145–1149CrossRefPubMed
22.
23.
go back to reference Johansen LD et al (2008) IKAP localizes to membrane ruffles with filamin A and regulates actin cytoskeleton organization and cell migration. J Cell Sci 121(Pt 6):854–864CrossRefPubMed Johansen LD et al (2008) IKAP localizes to membrane ruffles with filamin A and regulates actin cytoskeleton organization and cell migration. J Cell Sci 121(Pt 6):854–864CrossRefPubMed
24.
go back to reference Lefler S et al (2015) Familial dysautonomia (FD) human embryonic stem cell derived PNS neurons reveal that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation. PLoS One 10(10):e0138807CrossRefPubMedPubMedCentral Lefler S et al (2015) Familial dysautonomia (FD) human embryonic stem cell derived PNS neurons reveal that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation. PLoS One 10(10):e0138807CrossRefPubMedPubMedCentral
25.
go back to reference Naftelberg S et al (2016) Phosphatidylserine ameliorates neurodegenerative symptoms and enhances axonal transport in a mouse model of familial dysautonomia. PLoS Genet 12(12):e1006486CrossRefPubMedPubMedCentral Naftelberg S et al (2016) Phosphatidylserine ameliorates neurodegenerative symptoms and enhances axonal transport in a mouse model of familial dysautonomia. PLoS Genet 12(12):e1006486CrossRefPubMedPubMedCentral
26.
go back to reference Tourtellotte WG (2016) Axon transport and neuropathy: relevant perspectives on the etiopathogenesis of familial dysautonomia. Am J Pathol 186(3):489–499CrossRefPubMedPubMedCentral Tourtellotte WG (2016) Axon transport and neuropathy: relevant perspectives on the etiopathogenesis of familial dysautonomia. Am J Pathol 186(3):489–499CrossRefPubMedPubMedCentral
27.
go back to reference George L et al (2013) Familial dysautonomia model reveals Ikbkap deletion causes apoptosis of Pax3+ progenitors and peripheral neurons. Proc Natl Acad Sci USA 110(46):18698–18703CrossRefPubMedPubMedCentral George L et al (2013) Familial dysautonomia model reveals Ikbkap deletion causes apoptosis of Pax3+ progenitors and peripheral neurons. Proc Natl Acad Sci USA 110(46):18698–18703CrossRefPubMedPubMedCentral
28.
go back to reference Hunnicutt BJ et al (2012) IKAP/Elp1 is required in vivo for neurogenesis and neuronal survival, but not for neural crest migration. PLoS One 7(2):e32050CrossRefPubMedPubMedCentral Hunnicutt BJ et al (2012) IKAP/Elp1 is required in vivo for neurogenesis and neuronal survival, but not for neural crest migration. PLoS One 7(2):e32050CrossRefPubMedPubMedCentral
29.
go back to reference Jackson MZ et al (2014) A neuron autonomous role for the familial dysautonomia gene ELP1 in sympathetic and sensory target tissue innervation. Development 141(12):2452–2461CrossRefPubMedPubMedCentral Jackson MZ et al (2014) A neuron autonomous role for the familial dysautonomia gene ELP1 in sympathetic and sensory target tissue innervation. Development 141(12):2452–2461CrossRefPubMedPubMedCentral
30.
go back to reference Addis L et al (2015) Microdeletions of ELP4 are associated with language impairment, autism spectrum disorder, and mental retardation. Hum Mutat 36(9):842–850CrossRefPubMed Addis L et al (2015) Microdeletions of ELP4 are associated with language impairment, autism spectrum disorder, and mental retardation. Hum Mutat 36(9):842–850CrossRefPubMed
31.
go back to reference Simpson CL et al (2009) Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Hum Mol Genet 18(3):472–481CrossRefPubMed Simpson CL et al (2009) Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Hum Mol Genet 18(3):472–481CrossRefPubMed
32.
go back to reference Strug LJ et al (2009) Centrotemporal sharp wave EEG trait in rolandic epilepsy maps to Elongator Protein Complex 4 (ELP4). Eur J Hum Genet 17(9):1171–1181CrossRefPubMedPubMedCentral Strug LJ et al (2009) Centrotemporal sharp wave EEG trait in rolandic epilepsy maps to Elongator Protein Complex 4 (ELP4). Eur J Hum Genet 17(9):1171–1181CrossRefPubMedPubMedCentral
34.
go back to reference Gkampeta A et al (2014) Association of brain-derived neurotrophic factor (BDNF) and elongator protein complex 4 (ELP4) polymorphisms with benign epilepsy with centrotemporal spikes in a Greek population. Epilepsy Res 108(10):1734–1739CrossRefPubMed Gkampeta A et al (2014) Association of brain-derived neurotrophic factor (BDNF) and elongator protein complex 4 (ELP4) polymorphisms with benign epilepsy with centrotemporal spikes in a Greek population. Epilepsy Res 108(10):1734–1739CrossRefPubMed
35.
go back to reference Reinthaler EM et al (2014) Analysis of ELP4, SRPX2, and interacting genes in typical and atypical rolandic epilepsy. Epilepsia 55(8):e89–e93CrossRefPubMed Reinthaler EM et al (2014) Analysis of ELP4, SRPX2, and interacting genes in typical and atypical rolandic epilepsy. Epilepsia 55(8):e89–e93CrossRefPubMed
36.
go back to reference Cohen JS et al (2015) ELP2 is a novel gene implicated in neurodevelopmental disabilities. Am J Med Genet A 167(6):1391–1395CrossRefPubMed Cohen JS et al (2015) ELP2 is a novel gene implicated in neurodevelopmental disabilities. Am J Med Genet A 167(6):1391–1395CrossRefPubMed
38.
go back to reference Abashidze A et al (2014) Involvement of IKAP in peripheral target innervation and in specific JNK and NGF signaling in developing PNS neurons. PLoS One 9(11):e113428CrossRefPubMedPubMedCentral Abashidze A et al (2014) Involvement of IKAP in peripheral target innervation and in specific JNK and NGF signaling in developing PNS neurons. PLoS One 9(11):e113428CrossRefPubMedPubMedCentral
39.
go back to reference Cheng WW et al (2015) Depletion of the IKBKAP ortholog in zebrafish leads to hirschsprung disease-like phenotype. World J Gastroenterol 21(7):2040–2046PubMedPubMedCentral Cheng WW et al (2015) Depletion of the IKBKAP ortholog in zebrafish leads to hirschsprung disease-like phenotype. World J Gastroenterol 21(7):2040–2046PubMedPubMedCentral
40.
go back to reference Singh N et al (2010) The histone acetyltransferase Elp3 plays in active role in the control of synaptic bouton expansion and sleep in Drosophila. J Neurochem 115(2):493–504CrossRefPubMed Singh N et al (2010) The histone acetyltransferase Elp3 plays in active role in the control of synaptic bouton expansion and sleep in Drosophila. J Neurochem 115(2):493–504CrossRefPubMed
41.
go back to reference Chen C, Tuck S, Bystrom AS (2009) Defects in tRNA modification associated with neurological and developmental dysfunctions in Caenorhabditis elegans elongator mutants. PLoS Genet 5(7):e1000561CrossRefPubMedPubMedCentral Chen C, Tuck S, Bystrom AS (2009) Defects in tRNA modification associated with neurological and developmental dysfunctions in Caenorhabditis elegans elongator mutants. PLoS Genet 5(7):e1000561CrossRefPubMedPubMedCentral
42.
43.
go back to reference Bar-Shai A et al (2004) Decreased density of ganglia and neurons in the myenteric plexus of familial dysautonomia patients. J Neurol Sci 220(1–2):89–94CrossRefPubMed Bar-Shai A et al (2004) Decreased density of ganglia and neurons in the myenteric plexus of familial dysautonomia patients. J Neurol Sci 220(1–2):89–94CrossRefPubMed
46.
go back to reference Bochner R et al (2013) Phosphatidylserine increases IKBKAP levels in a humanized knock-in IKBKAP mouse model. Hum Mol Genet 22(14):2785–2794CrossRefPubMed Bochner R et al (2013) Phosphatidylserine increases IKBKAP levels in a humanized knock-in IKBKAP mouse model. Hum Mol Genet 22(14):2785–2794CrossRefPubMed
47.
go back to reference Chen YT et al (2009) Loss of mouse Ikbkap, a subunit of elongator, leads to transcriptional deficits and embryonic lethality that can be rescued by human IKBKAP. Mol Cell Biol 29(3):736–744CrossRefPubMed Chen YT et al (2009) Loss of mouse Ikbkap, a subunit of elongator, leads to transcriptional deficits and embryonic lethality that can be rescued by human IKBKAP. Mol Cell Biol 29(3):736–744CrossRefPubMed
48.
go back to reference Dietrich P et al (2011) Deletion of exon 20 of the Familial Dysautonomia gene Ikbkap in mice causes developmental delay, cardiovascular defects, and early embryonic lethality. PLoS One 6(10):e27015CrossRefPubMedPubMedCentral Dietrich P et al (2011) Deletion of exon 20 of the Familial Dysautonomia gene Ikbkap in mice causes developmental delay, cardiovascular defects, and early embryonic lethality. PLoS One 6(10):e27015CrossRefPubMedPubMedCentral
49.
50.
51.
go back to reference Lyst MJ, Bird A (2015) Rett syndrome: a complex disorder with simple roots. Nat Rev Genet 16(5):261–275CrossRefPubMed Lyst MJ, Bird A (2015) Rett syndrome: a complex disorder with simple roots. Nat Rev Genet 16(5):261–275CrossRefPubMed
52.
go back to reference Close P et al (2006) Transcription impairment and cell migration defects in elongator-depleted cells: implication for familial dysautonomia. Mol Cell 22(4):521–531CrossRefPubMed Close P et al (2006) Transcription impairment and cell migration defects in elongator-depleted cells: implication for familial dysautonomia. Mol Cell 22(4):521–531CrossRefPubMed
53.
54.
go back to reference Chaverra M et al. (2017) The familial dysautonomia disease gene, Ikbkap/Elp1, is required in the developing and adult central nervous system. Dis Model Mech 10(5):605–618CrossRefPubMedPubMedCentral Chaverra M et al. (2017) The familial dysautonomia disease gene, Ikbkap/Elp1, is required in the developing and adult central nervous system. Dis Model Mech 10(5):605–618CrossRefPubMedPubMedCentral
55.
go back to reference Axelrod FB et al (2010) Neuroimaging supports central pathology in familial dysautonomia. J Neurol 257(2):198–206CrossRefPubMed Axelrod FB et al (2010) Neuroimaging supports central pathology in familial dysautonomia. J Neurol 257(2):198–206CrossRefPubMed
56.
go back to reference Ochoa JG (2003) Familial dysautonomia (Riley-Day syndrome) may be associated with epilepsy. Epilepsia 44(3):472CrossRefPubMed Ochoa JG (2003) Familial dysautonomia (Riley-Day syndrome) may be associated with epilepsy. Epilepsia 44(3):472CrossRefPubMed
57.
go back to reference Ueki Y et al (2016) Loss of Ikbkap causes slow, progressive retinal degeneration in a mouse model of familial dysautonomia. eNeuro 3(5) Ueki Y et al (2016) Loss of Ikbkap causes slow, progressive retinal degeneration in a mouse model of familial dysautonomia. eNeuro 3(5)
58.
go back to reference Carelli V, La Morgia C, Sadun AA (2013) Mitochondrial dysfunction in optic neuropathies: animal models and therapeutic options. Curr Opin Neurol 26(1):52–58CrossRefPubMed Carelli V, La Morgia C, Sadun AA (2013) Mitochondrial dysfunction in optic neuropathies: animal models and therapeutic options. Curr Opin Neurol 26(1):52–58CrossRefPubMed
60.
go back to reference Ohlen SB et al (2017) BGP-15 prevents the death of neurons in a mouse model of familial dysautonomia. Proc Natl Acad Sci USA 114(19):5035–5040CrossRefPubMed Ohlen SB et al (2017) BGP-15 prevents the death of neurons in a mouse model of familial dysautonomia. Proc Natl Acad Sci USA 114(19):5035–5040CrossRefPubMed
62.
go back to reference Lee G et al (2012) Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression. Nat Biotechnol 30(12):1244–1248CrossRefPubMedPubMedCentral Lee G et al (2012) Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression. Nat Biotechnol 30(12):1244–1248CrossRefPubMedPubMedCentral
63.
go back to reference Valensi-Kurtz M et al (2010) Enriched population of PNS neurons derived from human embryonic stem cells as a platform for studying peripheral neuropathies. PLoS One 5(2):e9290CrossRefPubMedPubMedCentral Valensi-Kurtz M et al (2010) Enriched population of PNS neurons derived from human embryonic stem cells as a platform for studying peripheral neuropathies. PLoS One 5(2):e9290CrossRefPubMedPubMedCentral
64.
go back to reference Zeltner N et al (2016) Capturing the biology of disease severity in a PSC-based model of familial dysautonomia. Nat Med 22(12):1421–1427CrossRefPubMed Zeltner N et al (2016) Capturing the biology of disease severity in a PSC-based model of familial dysautonomia. Nat Med 22(12):1421–1427CrossRefPubMed
65.
go back to reference Boone N et al (2012) Genome-wide analysis of familial dysautonomia and kinetin target genes with patient olfactory ecto-mesenchymal stem cells. Hum Mutat 33(3):530–540CrossRefPubMed Boone N et al (2012) Genome-wide analysis of familial dysautonomia and kinetin target genes with patient olfactory ecto-mesenchymal stem cells. Hum Mutat 33(3):530–540CrossRefPubMed
66.
go back to reference Herve M, Ibrahim EC (2016) MicroRNA screening identifies a link between NOVA1 expression and a low level of IKAP in familial dysautonomia. Dis Model Mech 9(8):899–909CrossRefPubMedPubMedCentral Herve M, Ibrahim EC (2016) MicroRNA screening identifies a link between NOVA1 expression and a low level of IKAP in familial dysautonomia. Dis Model Mech 9(8):899–909CrossRefPubMedPubMedCentral
67.
go back to reference Herve M, Ibrahim EC (2017) Proteasome inhibitors to alleviate aberrant IKBKAP mRNA splicing and low IKAP/hELP1 synthesis in familial dysautonomia. Neurobiol Dis 103:113–122CrossRefPubMed Herve M, Ibrahim EC (2017) Proteasome inhibitors to alleviate aberrant IKBKAP mRNA splicing and low IKAP/hELP1 synthesis in familial dysautonomia. Neurobiol Dis 103:113–122CrossRefPubMed
69.
go back to reference Wainger BJ et al (2015) Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts. Nat Neurosci 18(1):17–24CrossRefPubMed Wainger BJ et al (2015) Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts. Nat Neurosci 18(1):17–24CrossRefPubMed
70.
go back to reference Norcliffe-Kaufmann LJ, Axelrod FB, Kaufmann H (2013) Cyclic vomiting associated with excessive dopamine in Riley-Day syndrome. J Clin Gastroenterol 47(2):136–138CrossRefPubMed Norcliffe-Kaufmann LJ, Axelrod FB, Kaufmann H (2013) Cyclic vomiting associated with excessive dopamine in Riley-Day syndrome. J Clin Gastroenterol 47(2):136–138CrossRefPubMed
71.
go back to reference Macefield VG et al (2016) Increasing cutaneous afferent feedback improves proprioceptive accuracy at the knee in patients with sensory ataxia. J Neurophysiol 115(2):711–716CrossRefPubMed Macefield VG et al (2016) Increasing cutaneous afferent feedback improves proprioceptive accuracy at the knee in patients with sensory ataxia. J Neurophysiol 115(2):711–716CrossRefPubMed
Metadata
Title
Animal and cellular models of familial dysautonomia
Authors
Frances Lefcort
Marc Mergy
Sarah B. Ohlen
Yumi Ueki
Lynn George
Publication date
01-08-2017
Publisher
Springer Berlin Heidelberg
Published in
Clinical Autonomic Research / Issue 4/2017
Print ISSN: 0959-9851
Electronic ISSN: 1619-1560
DOI
https://doi.org/10.1007/s10286-017-0438-2

Other articles of this Issue 4/2017

Clinical Autonomic Research 4/2017 Go to the issue