Skip to main content
Top
Published in: Journal of Digital Imaging 5/2023

Open Access 19-07-2023 | Artificial Intelligence

Artificial Intelligence Techniques for Automatic Detection of Peri-implant Marginal Bone Remodeling in Intraoral Radiographs

Authors: María Vera, María José Gómez-Silva, Vicente Vera, Clara I. López-González, Ignacio Aliaga, Esther Gascó, Vicente Vera-González, María Pedrera-Canal, Eva Besada-Portas, Gonzalo Pajares

Published in: Journal of Imaging Informatics in Medicine | Issue 5/2023

Login to get access

Abstract

Peri-implantitis can cause marginal bone remodeling around implants. The aim is to develop an automatic image processing approach based on two artificial intelligence (AI) techniques in intraoral (periapical and bitewing) radiographs to assist dentists in determining bone loss. The first is a deep learning (DL) object-detector (YOLOv3) to roughly identify (no exact localization is required) two objects: prosthesis (crown) and implant (screw). The second is an image understanding-based (IU) process to fine-tune lines on screw edges and to identify significant points (intensity bone changes, intersections between screw and crown). Distances between these points are used to compute bone loss. A total of 2920 radiographs were used for training (50%) and testing (50%) the DL process. The mAP@0.5 metric is used for performance evaluation of DL considering periapical/bitewing and screws/crowns in upper and lower jaws, with scores ranging from 0.537 to 0.898 (sufficient because DL only needs an approximation). The IU performance is assessed with 50% of the testing radiographs through the t test statistical method, obtaining p values of 0.0106 (line fitting) and 0.0213 (significant point detection). The IU performance is satisfactory, as these values are in accordance with the statistical average/standard deviation in pixels for line fitting (2.75/1.01) and for significant point detection (2.63/1.28) according to the expert criteria of dentists, who establish the ground-truth lines and significant points. In conclusion, AI methods have good prospects for automatic bone loss detection in intraoral radiographs to assist dental specialists in diagnosing peri-implantitis.
Literature
1.
go back to reference Hashim D, Cionca, NA: Comprehensive review of peri-implantitis risk factors. Curr Oral Health Rep 7:262–273, 2020CrossRef Hashim D, Cionca, NA: Comprehensive review of peri-implantitis risk factors. Curr Oral Health Rep 7:262–273, 2020CrossRef
2.
go back to reference Hashim D, Cionca N, Combescure C, Mombelli A: The diagnosis of periimplantitis: a systematic review on the predictive value of bleeding on probing. Clin Oral Implants Res. 29 (Suppl 16):276–93, 2018CrossRefPubMed Hashim D, Cionca N, Combescure C, Mombelli A: The diagnosis of periimplantitis: a systematic review on the predictive value of bleeding on probing. Clin Oral Implants Res. 29 (Suppl 16):276–93, 2018CrossRefPubMed
3.
go back to reference Berglundh,T, Armitage G, Araujo MG, Avila-Ortiz G, Blanco J, Camargo PM, Chen S, Cochran D, Derks J, Figuero E, Hämmerle CHF, Heitz-Mayfield LJA, Huynh-Ba G, Iacono V, Koo KT, Lambert F, McCauley L, Quirynen M, Renvert S, Salvi GE, Schwarz F, Tarnow D, Tomasi C, Wang HL, Zitzmann N: Peri-implant diseases and conditions: consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. Journal of Periodontology, 89(Suppl 1):S313– S318, 2018PubMed Berglundh,T, Armitage G, Araujo MG, Avila-Ortiz G, Blanco J, Camargo PM, Chen S, Cochran D, Derks J, Figuero E, Hämmerle CHF, Heitz-Mayfield LJA, Huynh-Ba G, Iacono V, Koo KT, Lambert F, McCauley L, Quirynen M, Renvert S, Salvi GE, Schwarz F, Tarnow D, Tomasi C, Wang HL, Zitzmann N: Peri-implant diseases and conditions: consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. Journal of Periodontology, 89(Suppl 1):S313– S318, 2018PubMed
4.
go back to reference Romandini M, Lima C, Pedrinaci I, Araoz A, Soldini MC, Sanz M: Prevalence and risk/protective indicators of peri-implant diseases: a university-representative cross-sectional study. Clin Oral Implants Res, 32(1),112-122, 2021.CrossRefPubMed Romandini M, Lima C, Pedrinaci I, Araoz A, Soldini MC, Sanz M: Prevalence and risk/protective indicators of peri-implant diseases: a university-representative cross-sectional study. Clin Oral Implants Res, 32(1),112-122, 2021.CrossRefPubMed
5.
go back to reference Bagchi P, Josh N: Role of radiographic evaluation in treatment planning for dental implants: a review. Journal of Dental & Allied Sciences, 1(1):21-25, 2012CrossRef Bagchi P, Josh N: Role of radiographic evaluation in treatment planning for dental implants: a review. Journal of Dental & Allied Sciences, 1(1):21-25, 2012CrossRef
6.
go back to reference Pope J, Harrel S: Advanced therapeutics for peri‑implant problems. Clinical Dentistry Reviewed, 4–7, 2022. Pope J, Harrel S: Advanced therapeutics for peri‑implant problems. Clinical Dentistry Reviewed, 4–7, 2022.
7.
go back to reference Maghsoudi P, Slot DE, van der Weijden F: Bone remodeling around dental implants after 1–1.5 years of functional loading: a retrospective analysis of two-stage implants. Clinical and Experimental Dental Research, 8(3):680–689, 2022 Maghsoudi P, Slot DE, van der Weijden F: Bone remodeling around dental implants after 1–1.5 years of functional loading: a retrospective analysis of two-stage implants. Clinical and Experimental Dental Research, 8(3):680–689, 2022
8.
go back to reference Cha, JY, Yoon, HI, Yeo, IS, Huh, KH, Han, JS: Peri-implant bone loss measurement using a region-based convolutional neural network on dental periapical radiographs. J. Clin. Med. 10:1009, 2021CrossRefPubMedPubMedCentral Cha, JY, Yoon, HI, Yeo, IS, Huh, KH, Han, JS: Peri-implant bone loss measurement using a region-based convolutional neural network on dental periapical radiographs. J. Clin. Med. 10:1009, 2021CrossRefPubMedPubMedCentral
9.
go back to reference Maithri M, Ballal DG, Kumar S, Raghavendra U, Gudigar A, Chan WY, Macherla S, Vineetha R, Gopalkrishna P, Ciaccio EJ, Acharya UR: Development of a computational tool for the estimation of alveolar bone loss in oral radiographic images. Computation, 10(1):8, 2022CrossRef Maithri M, Ballal DG, Kumar S, Raghavendra U, Gudigar A, Chan WY, Macherla S, Vineetha R, Gopalkrishna P, Ciaccio EJ, Acharya UR: Development of a computational tool for the estimation of alveolar bone loss in oral radiographic images. Computation, 10(1):8, 2022CrossRef
10.
11.
go back to reference Hung KF, Ai QYH., Leung YY, Yeung AWK: Potential and impact of artificial intelligence algorithms in dento-maxillofacial radiology. Clin Oral Invest, 21 pages, 2022 Hung KF, Ai QYH., Leung YY, Yeung AWK: Potential and impact of artificial intelligence algorithms in dento-maxillofacial radiology. Clin Oral Invest, 21 pages, 2022
12.
go back to reference Thurzo A, Urbanová W, Novák B, Czako L, Siebert T, Stano P, Mareková S, Fountoulaki G, Kosnáčová H, Varga I: Where is the artificial intelligence applied in dentistry? Systematic review and literature analysis. Healthcare, 10: 1269, 2022PubMed Thurzo A, Urbanová W, Novák B, Czako L, Siebert T, Stano P, Mareková S, Fountoulaki G, Kosnáčová H, Varga I: Where is the artificial intelligence applied in dentistry? Systematic review and literature analysis. Healthcare, 10: 1269, 2022PubMed
13.
go back to reference Hung KF, Yeung AWK, Bornstein MM, Schwendicke F: Personalized dental medicine, artificial intelligence, and their relevance for dentomaxillofacial imaging. Dentomaxillofac Radiol, 52:20220335, 2023.CrossRefPubMed Hung KF, Yeung AWK, Bornstein MM, Schwendicke F: Personalized dental medicine, artificial intelligence, and their relevance for dentomaxillofacial imaging. Dentomaxillofac Radiol, 52:20220335, 2023.CrossRefPubMed
14.
go back to reference Wang CW, Huang CT, Lee JH, Li CH, Chang SW, Siao MJ, Lai TM, Ibragimov B, Vrtovec T, Ronneberger O, Fischer P, Cootes TF, Lindner C: A benchmark for comparison of dental radiography analysis algorithms. Medical Image Analysis, 31:63-76, 2016CrossRefPubMed Wang CW, Huang CT, Lee JH, Li CH, Chang SW, Siao MJ, Lai TM, Ibragimov B, Vrtovec T, Ronneberger O, Fischer P, Cootes TF, Lindner C: A benchmark for comparison of dental radiography analysis algorithms. Medical Image Analysis, 31:63-76, 2016CrossRefPubMed
19.
go back to reference Prados-Privado M, Villalón JG, Martínez-Martínez CH, Ivorra, C: Dental images recognition technology and applications: a literature review. Applied Sciences, 10(8):2856, 2020.CrossRef Prados-Privado M, Villalón JG, Martínez-Martínez CH, Ivorra, C: Dental images recognition technology and applications: a literature review. Applied Sciences, 10(8):2856, 2020.CrossRef
20.
go back to reference Liu M, Wang S, Chen H, Liu Y: A pilot study of a deep learning approach to detect marginal bone loss around implants. BMC Oral Health, 22(11), 8 pages, 2022. Liu M, Wang S, Chen H, Liu Y: A pilot study of a deep learning approach to detect marginal bone loss around implants. BMC Oral Health, 22(11), 8 pages, 2022.
21.
go back to reference Ren S, He K, Gershick R, Sun J: Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Analysis and Machine Intelligence, 39(6):1137–1149, 2017. Ren S, He K, Gershick R, Sun J: Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Analysis and Machine Intelligence, 39(6):1137–1149, 2017.
22.
go back to reference Sunnetci KM, Ulukaya S, Alkan A: Periodontal bone loss detection based on hybrid deep learning and machine learning models with a user-friendly application. Biomedical Signal Processing and Control, 77: 103844, 2022.CrossRef Sunnetci KM, Ulukaya S, Alkan A: Periodontal bone loss detection based on hybrid deep learning and machine learning models with a user-friendly application. Biomedical Signal Processing and Control, 77: 103844, 2022.CrossRef
23.
go back to reference Kim J, Lee HS, Song IS, Jung KH: DeNTNet: Deep Neural Transfer Network for the detection of periodontal bone loss using panoramic dental radiographs, Sci. Rep. 9:1–9, 2019. Kim J, Lee HS, Song IS, Jung KH: DeNTNet: Deep Neural Transfer Network for the detection of periodontal bone loss using panoramic dental radiographs, Sci. Rep. 9:1–9, 2019.
25.
go back to reference Takahashi, T, Nozaki, K, Gonda, T, Mameno, T, Wada, M, Ikebe, K: Identification of dental implants using deep learning-pilot study. International Journal of Implant Dentistry, 6:53, 2020CrossRefPubMedPubMedCentral Takahashi, T, Nozaki, K, Gonda, T, Mameno, T, Wada, M, Ikebe, K: Identification of dental implants using deep learning-pilot study. International Journal of Implant Dentistry, 6:53, 2020CrossRefPubMedPubMedCentral
27.
go back to reference Shorten C, Khoshgoftaar TM: A survey on image data augmentation for deep learning. Journal of Big Data, 6(1):1-48, 2019CrossRef Shorten C, Khoshgoftaar TM: A survey on image data augmentation for deep learning. Journal of Big Data, 6(1):1-48, 2019CrossRef
29.
go back to reference Lee JH, Jeong SN: Efficacy of deep convolutional neural network algorithm for the identification and classification of dental implant systems, using panoramic and periapical radiographs-a pilot study. Medicine, 99(26):p e20787, 2020CrossRefPubMedPubMedCentral Lee JH, Jeong SN: Efficacy of deep convolutional neural network algorithm for the identification and classification of dental implant systems, using panoramic and periapical radiographs-a pilot study. Medicine, 99(26):p e20787, 2020CrossRefPubMedPubMedCentral
30.
go back to reference Sukegawa S, Yoshii K, Hara T, Yamashita K, Nakano K, Yamamoto N, Nagatsuka H, Furuki Y: Deep Neural Networks for dental implant system classification. Biomolecules 10:984, 2020.CrossRefPubMedPubMedCentral Sukegawa S, Yoshii K, Hara T, Yamashita K, Nakano K, Yamamoto N, Nagatsuka H, Furuki Y: Deep Neural Networks for dental implant system classification. Biomolecules 10:984, 2020.CrossRefPubMedPubMedCentral
31.
go back to reference Gonzalez R, Woods, R: Digital Image Processing, (3 ed., Upper Saddle River, NJ, Pearson/Prentice Hall, 2010 Gonzalez R, Woods, R: Digital Image Processing, (3 ed., Upper Saddle River, NJ, Pearson/Prentice Hall, 2010
32.
go back to reference Canny, J: A computational approach to edge detection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986 Canny, J: A computational approach to edge detection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986
33.
go back to reference Hough, PVC: Method and means for recognizing complex patterns. US Patent Office No. 3069654, 1962. Hough, PVC: Method and means for recognizing complex patterns. US Patent Office No. 3069654, 1962.
34.
go back to reference Davies, ER: Computer Vision: Principles, Algorithms, Applications, Learning. London UK, Academic Press, 2018 Davies, ER: Computer Vision: Principles, Algorithms, Applications, Learning. London UK, Academic Press, 2018
35.
go back to reference Haralick, RM, Shapiro, LG: Computer and Robot Vision, Vol. 1, Reading, MA, Addison-Wesley, 1992 Haralick, RM, Shapiro, LG: Computer and Robot Vision, Vol. 1, Reading, MA, Addison-Wesley, 1992
36.
go back to reference Killick R, Fearnhead P, Eckley, IA: Optimal detection of changepoints with a linear computational cost. Journal of the American Statistical Association. 107(500):1590–1598, 2012.CrossRef Killick R, Fearnhead P, Eckley, IA: Optimal detection of changepoints with a linear computational cost. Journal of the American Statistical Association. 107(500):1590–1598, 2012.CrossRef
37.
go back to reference Jaccard, P: Nouvelles recherches sur la distribution florale. Bull. Soc. Vaudoise Sci. Nat. 44:223-270, 1908 Jaccard, P: Nouvelles recherches sur la distribution florale. Bull. Soc. Vaudoise Sci. Nat. 44:223-270, 1908
39.
go back to reference Goulden, CH: Methods of Statistical Analysis, 2nd ed. New York, Wiley, 1956 Goulden, CH: Methods of Statistical Analysis, 2nd ed. New York, Wiley, 1956
40.
go back to reference Beyer, WH: CRC Standard Mathematical Tables, 31st ed. Boca Raton, FL, CRC Press, 2002. Beyer, WH: CRC Standard Mathematical Tables, 31st ed. Boca Raton, FL, CRC Press, 2002.
41.
go back to reference Wasserstein, RL, Lazar, NA: The ASA's Statement on p-Values: Context, Process, and Purpose. The American Statistician, 70(2):129–133, 2016.CrossRef Wasserstein, RL, Lazar, NA: The ASA's Statement on p-Values: Context, Process, and Purpose. The American Statistician, 70(2):129–133, 2016.CrossRef
42.
go back to reference Craparo, RM: Significance leve. In Salkind, Neil J. (ed.). Encyclopedia of Measurement and Statistics. Vol. 3. Thousand Oaks, CA: SAGE Publications. pp. 889–891, 2007 Craparo, RM: Significance leve. In Salkind, Neil J. (ed.). Encyclopedia of Measurement and Statistics. Vol. 3. Thousand Oaks, CA: SAGE Publications. pp. 889–891, 2007
43.
go back to reference Derks J, Schaller D, Håkansson J, Wennström JL, Tomasi C, Berglundh T: Peri-implantitis - onset and pattern of progression. J. Clin. Periodontol, 43(4): 383-388, 2016CrossRefPubMed Derks J, Schaller D, Håkansson J, Wennström JL, Tomasi C, Berglundh T: Peri-implantitis - onset and pattern of progression. J. Clin. Periodontol, 43(4): 383-388, 2016CrossRefPubMed
Metadata
Title
Artificial Intelligence Techniques for Automatic Detection of Peri-implant Marginal Bone Remodeling in Intraoral Radiographs
Authors
María Vera
María José Gómez-Silva
Vicente Vera
Clara I. López-González
Ignacio Aliaga
Esther Gascó
Vicente Vera-González
María Pedrera-Canal
Eva Besada-Portas
Gonzalo Pajares
Publication date
19-07-2023
Publisher
Springer International Publishing
Published in
Journal of Imaging Informatics in Medicine / Issue 5/2023
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-023-00880-3

Other articles of this Issue 5/2023

Journal of Digital Imaging 5/2023 Go to the issue