Skip to main content
Top
Published in: Journal of Digital Imaging 2/2018

01-04-2018

Integrating Natural Language Processing and Machine Learning Algorithms to Categorize Oncologic Response in Radiology Reports

Authors: Po-Hao Chen, Hanna Zafar, Maya Galperin-Aizenberg, Tessa Cook

Published in: Journal of Imaging Informatics in Medicine | Issue 2/2018

Login to get access

Abstract

A significant volume of medical data remains unstructured. Natural language processing (NLP) and machine learning (ML) techniques have shown to successfully extract insights from radiology reports. However, the codependent effects of NLP and ML in this context have not been well-studied. Between April 1, 2015 and November 1, 2016, 9418 cross-sectional abdomen/pelvis CT and MR examinations containing our internal structured reporting element for cancer were separated into four categories: Progression, Stable Disease, Improvement, or No Cancer. We combined each of three NLP techniques with five ML algorithms to predict the assigned label using the unstructured report text and compared the performance of each combination. The three NLP algorithms included term frequency-inverse document frequency (TF-IDF), term frequency weighting (TF), and 16-bit feature hashing. The ML algorithms included logistic regression (LR), random decision forest (RDF), one-vs-all support vector machine (SVM), one-vs-all Bayes point machine (BPM), and fully connected neural network (NN). The best-performing NLP model consisted of tokenized unigrams and bigrams with TF-IDF. Increasing N-gram length yielded little to no added benefit for most ML algorithms. With all parameters optimized, SVM had the best performance on the test dataset, with 90.6 average accuracy and F score of 0.813. The interplay between ML and NLP algorithms and their effect on interpretation accuracy is complex. The best accuracy is achieved when both algorithms are optimized concurrently.
Appendix
Available only for authorised users
Literature
1.
go back to reference Schwartz LH, Panicek DM, Berk AR, Li Y, Hricak H: Improving communication of diagnostic radiology findings through structured reporting. Radiology. 260(1):174–181, 2011CrossRefPubMedPubMedCentral Schwartz LH, Panicek DM, Berk AR, Li Y, Hricak H: Improving communication of diagnostic radiology findings through structured reporting. Radiology. 260(1):174–181, 2011CrossRefPubMedPubMedCentral
2.
go back to reference Lakhani P, Kim W, Langlotz CP: Automated extraction of critical test values and communications from unstructured radiology reports: an analysis of 9.3 million reports from 1990 to 2011. Radiology. 265(3):809–818, 2012CrossRefPubMed Lakhani P, Kim W, Langlotz CP: Automated extraction of critical test values and communications from unstructured radiology reports: an analysis of 9.3 million reports from 1990 to 2011. Radiology. 265(3):809–818, 2012CrossRefPubMed
3.
go back to reference Lakhani P, Kim W, Langlotz CP: Automated detection of critical results in radiology reports. J Digit Imaging. 25(1):30–36, 2012CrossRefPubMed Lakhani P, Kim W, Langlotz CP: Automated detection of critical results in radiology reports. J Digit Imaging. 25(1):30–36, 2012CrossRefPubMed
4.
go back to reference Cai T, Giannopoulos AA, Yu S, Kelil T, Ripley B, Kumamaru KK et al.: Natural language processing technologies in radiology research and clinical applications. Radiogr Rev Publ Radiol Soc N Am Inc. 36(1):176–191, 2016 Cai T, Giannopoulos AA, Yu S, Kelil T, Ripley B, Kumamaru KK et al.: Natural language processing technologies in radiology research and clinical applications. Radiogr Rev Publ Radiol Soc N Am Inc. 36(1):176–191, 2016
5.
go back to reference Yim W-W, Yetisgen M, Harris WP, Kwan SW: Natural language processing in oncology: a review. JAMA Oncol. 2(6):797–804, 2016CrossRefPubMed Yim W-W, Yetisgen M, Harris WP, Kwan SW: Natural language processing in oncology: a review. JAMA Oncol. 2(6):797–804, 2016CrossRefPubMed
6.
go back to reference Kocbek S, Cavedon L, Martinez D, Bain C, Mac Manus C, Haffari G et al.: Text mining electronic hospital records to automatically classify admissions against disease: measuring the impact of linking data sources. J Biomed Inform., 2016 Kocbek S, Cavedon L, Martinez D, Bain C, Mac Manus C, Haffari G et al.: Text mining electronic hospital records to automatically classify admissions against disease: measuring the impact of linking data sources. J Biomed Inform., 2016
8.
go back to reference Porter MF: An algorithm for suffix stripping. Program. 14(3):130–137, 1980CrossRef Porter MF: An algorithm for suffix stripping. Program. 14(3):130–137, 1980CrossRef
9.
go back to reference Wu HC, Luk RWP, Wong KF, Kwok KL: Interpreting TF-IDF term weights as making relevance decisions. ACM Trans Inf Syst. 26(3):1–37, 2008CrossRef Wu HC, Luk RWP, Wong KF, Kwok KL: Interpreting TF-IDF term weights as making relevance decisions. ACM Trans Inf Syst. 26(3):1–37, 2008CrossRef
11.
go back to reference Hassanpour S, Langlotz CP. Unsupervised Topic Modeling in a Large Free Text Radiology Report Repository. J Digit Imaging. 29(1):59–62, 2016. Hassanpour S, Langlotz CP. Unsupervised Topic Modeling in a Large Free Text Radiology Report Repository. J Digit Imaging. 29(1):59–62, 2016.
12.
go back to reference Hassanpour S, Langlotz CP. Information extraction from multi-institutional radiology reports. Artif Intell Med. 66:29–39, 2016. Hassanpour S, Langlotz CP. Information extraction from multi-institutional radiology reports. Artif Intell Med. 66:29–39, 2016.
13.
go back to reference Horng S, Sontag DA, Halpern Y, Jernite Y, Shapiro NI, Nathanson LA: Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning. PloS One. 12(4):e0174708, 2017CrossRefPubMedPubMedCentral Horng S, Sontag DA, Halpern Y, Jernite Y, Shapiro NI, Nathanson LA: Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning. PloS One. 12(4):e0174708, 2017CrossRefPubMedPubMedCentral
14.
go back to reference Morid MA, Fiszman M, Raja K, Jonnalagadda SR, Del Fiol G: Classification of clinically useful sentences in clinical evidence resources. J Biomed Inform. 60:14–22, 2016CrossRefPubMedPubMedCentral Morid MA, Fiszman M, Raja K, Jonnalagadda SR, Del Fiol G: Classification of clinically useful sentences in clinical evidence resources. J Biomed Inform. 60:14–22, 2016CrossRefPubMedPubMedCentral
15.
go back to reference Polak S, Mendyk A: Artificial neural networks as an engine of Internet based hypertension prediction tool. Stud Health Technol Inform. 103:61–69, 2004PubMed Polak S, Mendyk A: Artificial neural networks as an engine of Internet based hypertension prediction tool. Stud Health Technol Inform. 103:61–69, 2004PubMed
16.
go back to reference Tong W, Xie Q, Hong H, Shi L, Fang H, Perkins R et al.: Using decision forest to classify prostate cancer samples on the basis of SELDI-TOF MS data: assessing chance correlation and prediction confidence. Environ Health Perspect. 112(16):1622–1627, 2004CrossRefPubMedPubMedCentral Tong W, Xie Q, Hong H, Shi L, Fang H, Perkins R et al.: Using decision forest to classify prostate cancer samples on the basis of SELDI-TOF MS data: assessing chance correlation and prediction confidence. Environ Health Perspect. 112(16):1622–1627, 2004CrossRefPubMedPubMedCentral
18.
go back to reference Zafar HM, Chadalavada SC, Kahn CE, Cook TS, Sloan CE, Lalevic D et al.: Code abdomen: an assessment coding scheme for abdominal imaging findings possibly representing cancer. J Am Coll Radiol JACR. 12(9):947–950, 2015CrossRefPubMed Zafar HM, Chadalavada SC, Kahn CE, Cook TS, Sloan CE, Lalevic D et al.: Code abdomen: an assessment coding scheme for abdominal imaging findings possibly representing cancer. J Am Coll Radiol JACR. 12(9):947–950, 2015CrossRefPubMed
19.
go back to reference Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L et al.: New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst. 92(3):205–216, 2000CrossRefPubMed Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L et al.: New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst. 92(3):205–216, 2000CrossRefPubMed
20.
go back to reference Bird S, Klein E, Loper E: Natural language processing with Python, 1st edition. Beijing: O’Reilly, 2009, 479 p Bird S, Klein E, Loper E: Natural language processing with Python, 1st edition. Beijing: O’Reilly, 2009, 479 p
21.
go back to reference Lipton ZC, Elkan C, Naryanaswamy B: Optimal thresholding of classifiers to maximize F1 measure. Mach Learn Knowl Discov Databases Eur Conf ECML PKDD Proc ECML PKDD Conf. 8725:225–239, 2014 Lipton ZC, Elkan C, Naryanaswamy B: Optimal thresholding of classifiers to maximize F1 measure. Mach Learn Knowl Discov Databases Eur Conf ECML PKDD Proc ECML PKDD Conf. 8725:225–239, 2014
22.
go back to reference Bennasar M, Hicks Y, Setchi R: Feature selection using joint mutual information maximisation. Expert Syst Appl. 42(22):8520–8532, 2015CrossRef Bennasar M, Hicks Y, Setchi R: Feature selection using joint mutual information maximisation. Expert Syst Appl. 42(22):8520–8532, 2015CrossRef
23.
go back to reference Hripcsak G, Rothschild AS: Agreement, the f-measure, and reliability in information retrieval. J Am Med Inform Assoc JAMIA. 12(3):296–298, 2005CrossRefPubMed Hripcsak G, Rothschild AS: Agreement, the f-measure, and reliability in information retrieval. J Am Med Inform Assoc JAMIA. 12(3):296–298, 2005CrossRefPubMed
25.
go back to reference Mikolov T, Chen K, Corrado G, Dean J. Efficient Estimation of Word Representations in Vector Space. ICLR Workshop. 2013 Jan 16; Mikolov T, Chen K, Corrado G, Dean J. Efficient Estimation of Word Representations in Vector Space. ICLR Workshop. 2013 Jan 16;
27.
go back to reference Dietrich R, Opper M, Sompolinsky H: Statistical mechanics of support vector networks. Phys Rev Lett. 82(14):2975–2978, 1999CrossRef Dietrich R, Opper M, Sompolinsky H: Statistical mechanics of support vector networks. Phys Rev Lett. 82(14):2975–2978, 1999CrossRef
29.
go back to reference Liu X, Song M, Tao D, Liu Z, Zhang L, Chen C et al.: Random forest construction with robust semisupervised node splitting. IEEE Trans Image Process Publ IEEE Signal Process Soc. 24(1):471–483, 2015CrossRef Liu X, Song M, Tao D, Liu Z, Zhang L, Chen C et al.: Random forest construction with robust semisupervised node splitting. IEEE Trans Image Process Publ IEEE Signal Process Soc. 24(1):471–483, 2015CrossRef
30.
go back to reference Wang J, Zhang J, An Y, Lin H, Yang Z, Zhang Y et al.: Biomedical event trigger detection by dependency-based word embedding. BMC Med Genomics 9 Suppl 2:45, 2016CrossRefPubMed Wang J, Zhang J, An Y, Lin H, Yang Z, Zhang Y et al.: Biomedical event trigger detection by dependency-based word embedding. BMC Med Genomics 9 Suppl 2:45, 2016CrossRefPubMed
31.
go back to reference Wei W, Marmor R, Singh S, Wang S, Demner-Fushman D, Kuo T-T et al.: Finding related publications: extending the set of terms used to assess article similarity. AMIA Jt Summits Transl Sci Proc AMIA Jt Summits Transl Sci. 2016:225–234, 2016 Wei W, Marmor R, Singh S, Wang S, Demner-Fushman D, Kuo T-T et al.: Finding related publications: extending the set of terms used to assess article similarity. AMIA Jt Summits Transl Sci Proc AMIA Jt Summits Transl Sci. 2016:225–234, 2016
Metadata
Title
Integrating Natural Language Processing and Machine Learning Algorithms to Categorize Oncologic Response in Radiology Reports
Authors
Po-Hao Chen
Hanna Zafar
Maya Galperin-Aizenberg
Tessa Cook
Publication date
01-04-2018
Publisher
Springer International Publishing
Published in
Journal of Imaging Informatics in Medicine / Issue 2/2018
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-017-0027-x

Other articles of this Issue 2/2018

Journal of Digital Imaging 2/2018 Go to the issue