Skip to main content
Top
Published in: Odontology 3/2022

Open Access 11-02-2022 | Caries | Original Article

The power of weak ion-exchange resins assisted by amelogenin for natural remineralization of dental enamel: an in vitro study

Authors: Sandra Diez-García, María-Jesús Sánchez-Martín, Manuel Valiente

Published in: Odontology | Issue 3/2022

Login to get access

Abstract

This study aims to develop an innovative dental product to remineralize dental enamel by a proper combination of ion-exchange resins as controlled release of mineral ions that form dental enamel, in the presence of amelogenin to guide the appropriate crystal growth. The novel product proposed consists of a combination of ion-exchange resins (weak acid and weak base) individually loaded with the remineralizing ions: Ca2+, PO43− and F, also including Zn2+ in a minor amount as antibacterial, together with the protein amelogenin. Such cocktail provides onsite controlled release of the ions necessary for enamel remineralization due to the weak character of the resins and at the same time, a guiding tool for related crystal growth by the indicated protein. Amelogenin protein is involved in the structural development of natural enamel and takes a key role in controlling the crystal growth morphology and alignment at the enamel surface. Bovine teeth were treated by applying the resins and protein together with artificial saliva. Treated teeth were evaluated with nanoindentation, scanning electron microscopy and energy-dispersive X-ray spectroscopy. The innovative material induces the dental remineralization creating a fluorapatite layer with a hardness equivalent to sound enamel, with the appropriate alignment of corresponding nanocrystals, being the fluorapatite more acid resistant than the original mineral. Our results suggest that the new product shows potential for promoting long-term remineralization leading to the inhibition of caries and protection of dental structures.
Literature
1.
go back to reference Hicks J, Catherine FG. Biological factors in dental caries: role of saliva and dental plaque in the dynamic process of demineralization and remineralization (part 1). J Clin Pediatr Dent. 2003;28:47–52.CrossRefPubMed Hicks J, Catherine FG. Biological factors in dental caries: role of saliva and dental plaque in the dynamic process of demineralization and remineralization (part 1). J Clin Pediatr Dent. 2003;28:47–52.CrossRefPubMed
2.
go back to reference Hicks J, Garcia-Godoy F, Flaitz C. Biological factors in dental caries: enamel structure and the caries process in the dynamic process of demineralization and remineralization (part 2). J Clin Pediatr Dent. 2004;28:119–24.CrossRefPubMed Hicks J, Garcia-Godoy F, Flaitz C. Biological factors in dental caries: enamel structure and the caries process in the dynamic process of demineralization and remineralization (part 2). J Clin Pediatr Dent. 2004;28:119–24.CrossRefPubMed
3.
go back to reference Hicks J, Catherine FG. Biological factors in dental caries: role of remineralization and fluoride in the dynamic process of demineralization and remineralization (part 3). J Clin Pediatr Dent. 2004;28:203–14.CrossRefPubMed Hicks J, Catherine FG. Biological factors in dental caries: role of remineralization and fluoride in the dynamic process of demineralization and remineralization (part 3). J Clin Pediatr Dent. 2004;28:203–14.CrossRefPubMed
4.
go back to reference Wang D, Deng J, Deng X, Fang C, Zhang X, Yang P. Controlling enamel remineralization by amyloid-like amelogenin mimics. Adv Mater. 2020;32:200208. Wang D, Deng J, Deng X, Fang C, Zhang X, Yang P. Controlling enamel remineralization by amyloid-like amelogenin mimics. Adv Mater. 2020;32:200208.
5.
go back to reference Featherstone JD. Prevention and reversal of dental caries: role of low level fluoride. Community Dent Oral Epidemiol. 1999;27:31–40.CrossRefPubMed Featherstone JD. Prevention and reversal of dental caries: role of low level fluoride. Community Dent Oral Epidemiol. 1999;27:31–40.CrossRefPubMed
6.
go back to reference Yoshihara K, Nagaoka N, Nakamura A, Hara T, Hayakawa S, Yoshida Y, et al. Three-dimensional observation and analysis of remineralization in dentinal caries lesions. Sci Rep. 2020;10:4387.CrossRefPubMedPubMedCentral Yoshihara K, Nagaoka N, Nakamura A, Hara T, Hayakawa S, Yoshida Y, et al. Three-dimensional observation and analysis of remineralization in dentinal caries lesions. Sci Rep. 2020;10:4387.CrossRefPubMedPubMedCentral
7.
go back to reference Carrouel F, Viennot S, Ottolenghi L, Gaillard C, Bourgeois D. Nanoparticles as anti-microbial, anti-inflammatory, and remineralizing agents in oral care cosmetics: a review of the current situation. Nanomaterials. 2020;10:140.CrossRefPubMedCentral Carrouel F, Viennot S, Ottolenghi L, Gaillard C, Bourgeois D. Nanoparticles as anti-microbial, anti-inflammatory, and remineralizing agents in oral care cosmetics: a review of the current situation. Nanomaterials. 2020;10:140.CrossRefPubMedCentral
8.
go back to reference Sandomierski M, Buchwald Z, Koczorowski W, Voelkel A. Calcium forms of zeolites A and X as fillers in dental restorative materials with remineralizing potential. Microporous Mesoporous Mater. 2020;294:109899.CrossRef Sandomierski M, Buchwald Z, Koczorowski W, Voelkel A. Calcium forms of zeolites A and X as fillers in dental restorative materials with remineralizing potential. Microporous Mesoporous Mater. 2020;294:109899.CrossRef
9.
go back to reference Bapat RA, Chaubal TV, Dharmadhikari S, Abdulla AM, Bapat P, Alexander A, et al. Recent advances of gold nanoparticles as biomaterial in dentistry. Int J Pharm. 2020;586:119596.CrossRefPubMed Bapat RA, Chaubal TV, Dharmadhikari S, Abdulla AM, Bapat P, Alexander A, et al. Recent advances of gold nanoparticles as biomaterial in dentistry. Int J Pharm. 2020;586:119596.CrossRefPubMed
10.
go back to reference Owens TS, Dansereau RJ, Sakr A. Development and evaluation of extended release bioadhesive sodium fluoride tablets. Int J Pharm. 2005;288:109–22.CrossRefPubMed Owens TS, Dansereau RJ, Sakr A. Development and evaluation of extended release bioadhesive sodium fluoride tablets. Int J Pharm. 2005;288:109–22.CrossRefPubMed
11.
go back to reference Xiao Z, Que K, Wang H, An R, Chen Z, Qiu Z, et al. Rapid biomimetic remineralization of the demineralized enamel surface using nano-particles of amorphous calcium phosphate guided by chimaeric peptides. Dent Mater. 2017;33:1217–28.CrossRefPubMed Xiao Z, Que K, Wang H, An R, Chen Z, Qiu Z, et al. Rapid biomimetic remineralization of the demineralized enamel surface using nano-particles of amorphous calcium phosphate guided by chimaeric peptides. Dent Mater. 2017;33:1217–28.CrossRefPubMed
12.
go back to reference Bröseler F, Tietmann C, Bommer C, Drechsel T, Heinzel-Gutenbrunner M, Jepsen S. Randomised clinical trial investigating self-assembling peptide P11-4 in the treatment of early caries. Clin Oral Investig. 2020;24:123–32.CrossRefPubMed Bröseler F, Tietmann C, Bommer C, Drechsel T, Heinzel-Gutenbrunner M, Jepsen S. Randomised clinical trial investigating self-assembling peptide P11-4 in the treatment of early caries. Clin Oral Investig. 2020;24:123–32.CrossRefPubMed
13.
go back to reference Örtengren U, Lehrkinder A, Safarloo A, Axelsson J, Lingström P. Opportunities for caries prevention using an ion-releasing coating material: a randomised clinical study. Odontology. 2021;109:358–67.CrossRefPubMed Örtengren U, Lehrkinder A, Safarloo A, Axelsson J, Lingström P. Opportunities for caries prevention using an ion-releasing coating material: a randomised clinical study. Odontology. 2021;109:358–67.CrossRefPubMed
14.
go back to reference Cummins D. The development and validation of a new technology, based upon 1.5% arginine, an insoluble calcium compound and fluoride, for everyday use in the prevention and treatment of dental caries. J Dent. 2013;41:S1–11.CrossRefPubMed Cummins D. The development and validation of a new technology, based upon 1.5% arginine, an insoluble calcium compound and fluoride, for everyday use in the prevention and treatment of dental caries. J Dent. 2013;41:S1–11.CrossRefPubMed
15.
go back to reference Fan M, Yang J, Xu HHK, Weir MD, Tao S, Yu Z, et al. Remineralization effectiveness of adhesive containing amorphous calcium phosphate nanoparticles on artificial initial enamel caries in a biofilm-challenged environment. Clin Oral Investig. 2021;25:5375–90.CrossRefPubMed Fan M, Yang J, Xu HHK, Weir MD, Tao S, Yu Z, et al. Remineralization effectiveness of adhesive containing amorphous calcium phosphate nanoparticles on artificial initial enamel caries in a biofilm-challenged environment. Clin Oral Investig. 2021;25:5375–90.CrossRefPubMed
16.
go back to reference Rodríguez-Martínez J, Valiente M, Sánchez-Martín M. Tooth whitening: From the established treatments to novel approaches to prevent side effects. J Esthet Restor Dent. 2019;31:431–40.CrossRefPubMed Rodríguez-Martínez J, Valiente M, Sánchez-Martín M. Tooth whitening: From the established treatments to novel approaches to prevent side effects. J Esthet Restor Dent. 2019;31:431–40.CrossRefPubMed
17.
go back to reference Marquillas CB, Procaccini R, Malmagro MV. Breaking the rules: tooth whitening by means of a reducing agent. Clin Oral Investig. 2019;24:2773–9.CrossRefPubMed Marquillas CB, Procaccini R, Malmagro MV. Breaking the rules: tooth whitening by means of a reducing agent. Clin Oral Investig. 2019;24:2773–9.CrossRefPubMed
18.
go back to reference Babot-Marquillas C, Sánchez-Martín MJ, Rodríguez-Martínez J, Estelrich J, Busquets MA, Valiente M. Flash tooth whitening: a friendly formulation based on a nanoencapsulated reductant. Colloids Surf B Biointerfaces. 2020;195:111241.CrossRefPubMed Babot-Marquillas C, Sánchez-Martín MJ, Rodríguez-Martínez J, Estelrich J, Busquets MA, Valiente M. Flash tooth whitening: a friendly formulation based on a nanoencapsulated reductant. Colloids Surf B Biointerfaces. 2020;195:111241.CrossRefPubMed
19.
go back to reference Kwon SR, Kurti SR, Oyoyo U, Li Y. Effect of various tooth whitening modalities on microhardness, surface roughness and surface morphology of the enamel. Odontology. 2015;103:274–9.CrossRefPubMed Kwon SR, Kurti SR, Oyoyo U, Li Y. Effect of various tooth whitening modalities on microhardness, surface roughness and surface morphology of the enamel. Odontology. 2015;103:274–9.CrossRefPubMed
20.
go back to reference Olivan SRG, Sfalcin RA, Fernandes KPS, Ferrari RAM, Horliana ACRT, Motta LJ, et al. Preventive effect of remineralizing materials on dental erosion lesions by speckle technique: an in vitro analysis. Photodiagn Photodyn Ther. 2020;29:101655.CrossRef Olivan SRG, Sfalcin RA, Fernandes KPS, Ferrari RAM, Horliana ACRT, Motta LJ, et al. Preventive effect of remineralizing materials on dental erosion lesions by speckle technique: an in vitro analysis. Photodiagn Photodyn Ther. 2020;29:101655.CrossRef
21.
go back to reference Perioli L, Nocchetti M, Giannelli P, Pagano C, Bastianini M. Hydrotalcite composites for an effective fluoride buccal administration: a new technological approach. Int J Pharm. 2013;454:259–68.CrossRefPubMed Perioli L, Nocchetti M, Giannelli P, Pagano C, Bastianini M. Hydrotalcite composites for an effective fluoride buccal administration: a new technological approach. Int J Pharm. 2013;454:259–68.CrossRefPubMed
22.
23.
go back to reference Welborn VV. Enamel synthesis explained. Proc Natl Acad Sci USA. 2020;117:21847–8.CrossRef Welborn VV. Enamel synthesis explained. Proc Natl Acad Sci USA. 2020;117:21847–8.CrossRef
25.
go back to reference Guentsch A, Fahmy MD, Wehrle C, Nietzsche S, Popp J, Watts DC, et al. Effect of biomimetic mineralization on enamel and dentin: a Raman and EDX analysis. Dent Mater. 2019;35:1300–7.CrossRefPubMed Guentsch A, Fahmy MD, Wehrle C, Nietzsche S, Popp J, Watts DC, et al. Effect of biomimetic mineralization on enamel and dentin: a Raman and EDX analysis. Dent Mater. 2019;35:1300–7.CrossRefPubMed
26.
go back to reference Simmer JP, Fincham AG. Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med. 1995;6:84–108.CrossRefPubMed Simmer JP, Fincham AG. Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med. 1995;6:84–108.CrossRefPubMed
27.
go back to reference Taha AA, Fleming PS, Hill RG, Patel MP. Enamel remineralization with novel bioactive glass air abrasion. J Dent Res. 2018;97:1438–44.CrossRefPubMed Taha AA, Fleming PS, Hill RG, Patel MP. Enamel remineralization with novel bioactive glass air abrasion. J Dent Res. 2018;97:1438–44.CrossRefPubMed
28.
go back to reference Widyarman AS, Udawatte NS, Theodorea CF, Apriani A, Richi M, Astoeti TE, et al. Casein phosphopeptide-amorphous calcium phosphate fluoride treatment enriches the symbiotic dental plaque microbiome in children. J Dent. 2021;106:103582.CrossRefPubMed Widyarman AS, Udawatte NS, Theodorea CF, Apriani A, Richi M, Astoeti TE, et al. Casein phosphopeptide-amorphous calcium phosphate fluoride treatment enriches the symbiotic dental plaque microbiome in children. J Dent. 2021;106:103582.CrossRefPubMed
29.
go back to reference Tammaro L, Vittoria V, Calarco A, Petillo O, Riccitiello F, Peluso G. Effect of layered double hydroxide intercalated with fluoride ions on the physical, biological and release properties of a dental composite resin. J Dent. 2014;42:60–7.CrossRefPubMed Tammaro L, Vittoria V, Calarco A, Petillo O, Riccitiello F, Peluso G. Effect of layered double hydroxide intercalated with fluoride ions on the physical, biological and release properties of a dental composite resin. J Dent. 2014;42:60–7.CrossRefPubMed
30.
go back to reference Bijle MN, Abdalla MM, Ashraf U, Ekambaram M, Yiu CKY. Enamel remineralization potential of arginine-fluoride varnish in a multi-species bacterial pH-cycling model. J Dent. 2021;104:103528.CrossRefPubMed Bijle MN, Abdalla MM, Ashraf U, Ekambaram M, Yiu CKY. Enamel remineralization potential of arginine-fluoride varnish in a multi-species bacterial pH-cycling model. J Dent. 2021;104:103528.CrossRefPubMed
31.
go back to reference Hoxha A, Gillam DG, Agha A, Karpukhina N, Bushby AJ, Patel MP. Novel fluoride rechargeable dental composites containing MgAl and CaAl layered double hydroxide (LDH). Dent Mater. 2020;36:973–86.CrossRefPubMed Hoxha A, Gillam DG, Agha A, Karpukhina N, Bushby AJ, Patel MP. Novel fluoride rechargeable dental composites containing MgAl and CaAl layered double hydroxide (LDH). Dent Mater. 2020;36:973–86.CrossRefPubMed
32.
go back to reference Wei SuL, Lin DJ, Yen UJ. Novel dental resin composites containing LiAl-F layered double hydroxide (LDH) filler: fluoride release/recharge, mechanical properties, color change, and cytotoxicity. Dent Mater. 2019;35:663–72.CrossRef Wei SuL, Lin DJ, Yen UJ. Novel dental resin composites containing LiAl-F layered double hydroxide (LDH) filler: fluoride release/recharge, mechanical properties, color change, and cytotoxicity. Dent Mater. 2019;35:663–72.CrossRef
33.
go back to reference Reis DP, Filho JDN, Rossi AL, Neves AA, Portela MB, da Silva EM. Remineralizing potential of dental composites containing silanized silica-hydroxyapatite (Si-HAp) nanoporous particles charged with sodium fluoride (NaF). J Dent. 2019;90:103211.CrossRefPubMed Reis DP, Filho JDN, Rossi AL, Neves AA, Portela MB, da Silva EM. Remineralizing potential of dental composites containing silanized silica-hydroxyapatite (Si-HAp) nanoporous particles charged with sodium fluoride (NaF). J Dent. 2019;90:103211.CrossRefPubMed
34.
go back to reference Wierichs RJ, Zelck H, Doerfer CE, Appel P, Paris S, Esteves-Oliveira M, et al. Effects of dentifrices differing in fluoride compounds on artificial enamel caries lesions in vitro. Odontology. 2017;105:36–45.CrossRefPubMed Wierichs RJ, Zelck H, Doerfer CE, Appel P, Paris S, Esteves-Oliveira M, et al. Effects of dentifrices differing in fluoride compounds on artificial enamel caries lesions in vitro. Odontology. 2017;105:36–45.CrossRefPubMed
35.
go back to reference Pendrys DG. Risk of fluorosis in a fluoridated population. Implications for the dentist and hygienist. J Am Dent Assoc. 1995;126:1617–24.CrossRefPubMed Pendrys DG. Risk of fluorosis in a fluoridated population. Implications for the dentist and hygienist. J Am Dent Assoc. 1995;126:1617–24.CrossRefPubMed
36.
go back to reference Valiente M. Remineralizing material for organomineral tissues. USA patent US 6,413,498 B1. 1999. Valiente M. Remineralizing material for organomineral tissues. USA patent US 6,413,498 B1. 1999.
37.
go back to reference Imazato S, Kohno T, Tsuboi R, Thongthai P, Xu HHK, Kitagawa H. Cutting-edge filler technologies to release bio-active components for restorative and preventive dentistry. Dent Mater J. 2020;39:69–79.CrossRefPubMed Imazato S, Kohno T, Tsuboi R, Thongthai P, Xu HHK, Kitagawa H. Cutting-edge filler technologies to release bio-active components for restorative and preventive dentistry. Dent Mater J. 2020;39:69–79.CrossRefPubMed
38.
go back to reference Torrado A, Valiente M, Zhang W, Li Y, Muñoz CA. Remineralization potential of a new toothpaste formulation: an in-vitro study. J Contemp Dent Pract. 2004;5:18–30.CrossRefPubMed Torrado A, Valiente M, Zhang W, Li Y, Muñoz CA. Remineralization potential of a new toothpaste formulation: an in-vitro study. J Contemp Dent Pract. 2004;5:18–30.CrossRefPubMed
39.
go back to reference Torrado A, Valiente M. Kinetics characterization of ion release under dynamic and batch conditions. I. Weak acid and weak base ion exchange resins. J Solution Chem. 2008;37:581–94.CrossRef Torrado A, Valiente M. Kinetics characterization of ion release under dynamic and batch conditions. I. Weak acid and weak base ion exchange resins. J Solution Chem. 2008;37:581–94.CrossRef
40.
go back to reference Li L, Mao C, Wang J, Xu X, Pan H, Deng Y, et al. Bio-inspired enamel repair via glu-directed assembly of apatite nanoparticles: an approach to biomaterials with optimal characteristics. Adv Mater. 2011;23:4695–701.CrossRefPubMed Li L, Mao C, Wang J, Xu X, Pan H, Deng Y, et al. Bio-inspired enamel repair via glu-directed assembly of apatite nanoparticles: an approach to biomaterials with optimal characteristics. Adv Mater. 2011;23:4695–701.CrossRefPubMed
41.
go back to reference Jágr M, Ergang P, Pataridis S, Kolrosová M, Bartoš M, Mikšík I. Proteomic analysis of dentin–enamel junction and adjacent protein-containing enamel matrix layer of healthy human molar teeth. Eur J Oral Sci. 2019;127:112–21.CrossRefPubMed Jágr M, Ergang P, Pataridis S, Kolrosová M, Bartoš M, Mikšík I. Proteomic analysis of dentin–enamel junction and adjacent protein-containing enamel matrix layer of healthy human molar teeth. Eur J Oral Sci. 2019;127:112–21.CrossRefPubMed
42.
go back to reference Alkilzy M, Tarabaih A, Santamaria RM, Splieth CH. Self-assembling peptide P11–4 and fluoride for regenerating enamel. J Dent Res. 2018;97:148–54.CrossRefPubMed Alkilzy M, Tarabaih A, Santamaria RM, Splieth CH. Self-assembling peptide P11–4 and fluoride for regenerating enamel. J Dent Res. 2018;97:148–54.CrossRefPubMed
43.
go back to reference Bai Y, Yu Z, Ackerman L, Zhang Y, Bonde J, Li W, et al. Protein nanoribbons template enamel mineralization. Proc Natl Acad Sci USA. 2020;117:19201–8.CrossRefPubMedPubMedCentral Bai Y, Yu Z, Ackerman L, Zhang Y, Bonde J, Li W, et al. Protein nanoribbons template enamel mineralization. Proc Natl Acad Sci USA. 2020;117:19201–8.CrossRefPubMedPubMedCentral
44.
go back to reference Sharma V, Srinivasan A, Roychoudhury A, Rani K, Tyagi M, Dev K, et al. Characterization of protein extracts from different types of human teeth and insight in biomineralization. Sci Rep. 2019;9:9314.CrossRefPubMedPubMedCentral Sharma V, Srinivasan A, Roychoudhury A, Rani K, Tyagi M, Dev K, et al. Characterization of protein extracts from different types of human teeth and insight in biomineralization. Sci Rep. 2019;9:9314.CrossRefPubMedPubMedCentral
45.
go back to reference Cao Y, Liu W, Ning T, Mei ML, Li QL, Lo ECM, et al. A novel oligopeptide simulating dentine matrix protein 1 for biomimetic mineralization of dentine. Clin Oral Investig. 2014;18:873–81.CrossRefPubMed Cao Y, Liu W, Ning T, Mei ML, Li QL, Lo ECM, et al. A novel oligopeptide simulating dentine matrix protein 1 for biomimetic mineralization of dentine. Clin Oral Investig. 2014;18:873–81.CrossRefPubMed
46.
go back to reference Fan M, Zhang M, Xu HHK, Tao S, Yu Z, Yang J, et al. Remineralization effectiveness of the PAMAM dendrimer with different terminal groups on artificial initial enamel caries in vitro. Dent Mater. 2020;36:210–20.CrossRefPubMed Fan M, Zhang M, Xu HHK, Tao S, Yu Z, Yang J, et al. Remineralization effectiveness of the PAMAM dendrimer with different terminal groups on artificial initial enamel caries in vitro. Dent Mater. 2020;36:210–20.CrossRefPubMed
48.
go back to reference Li D, Lv X, Tu H, Zhou X, Yu H, Zhang L. Remineralization of initial enamel caries in vitro using a novel peptide based on amelogenin. Front Mater Sci. 2015;9:293–302.CrossRef Li D, Lv X, Tu H, Zhou X, Yu H, Zhang L. Remineralization of initial enamel caries in vitro using a novel peptide based on amelogenin. Front Mater Sci. 2015;9:293–302.CrossRef
49.
go back to reference Fan YW, Sun Z, Wang R, Abbott C, Moradian-Oldak J. Enamel inspired nanocomposite fabrication through amelogenin supramolecular assembly. Biomaterials. 2007;28:3034–42.CrossRefPubMedPubMedCentral Fan YW, Sun Z, Wang R, Abbott C, Moradian-Oldak J. Enamel inspired nanocomposite fabrication through amelogenin supramolecular assembly. Biomaterials. 2007;28:3034–42.CrossRefPubMedPubMedCentral
50.
go back to reference Fan Y, Sun Z, Moradian-Oldak J. Controlled remineralization of enamel in the presence of amelogenin and fluoride. Biomaterials. 2009;30:478–83.CrossRefPubMed Fan Y, Sun Z, Moradian-Oldak J. Controlled remineralization of enamel in the presence of amelogenin and fluoride. Biomaterials. 2009;30:478–83.CrossRefPubMed
51.
go back to reference Fan Y, Nelson JR, Alvarez JR, Hagan J, Berrier A, Xu X. Amelogenin-assisted ex vivo remineralization of human enamel: effects of supersaturation degree and fluoride concentration. Acta Biomater. 2011;7:2293–302.CrossRefPubMedPubMedCentral Fan Y, Nelson JR, Alvarez JR, Hagan J, Berrier A, Xu X. Amelogenin-assisted ex vivo remineralization of human enamel: effects of supersaturation degree and fluoride concentration. Acta Biomater. 2011;7:2293–302.CrossRefPubMedPubMedCentral
52.
go back to reference Fan Y, Wen ZT, Liao S, Lallier T, Hagan JL, Twomley JT, et al. Novel amelogenin-releasing hydrogel for remineralization of enamel artificial caries. J Bioact Compat Polym. 2012;27:585–603.CrossRefPubMedPubMedCentral Fan Y, Wen ZT, Liao S, Lallier T, Hagan JL, Twomley JT, et al. Novel amelogenin-releasing hydrogel for remineralization of enamel artificial caries. J Bioact Compat Polym. 2012;27:585–603.CrossRefPubMedPubMedCentral
53.
go back to reference Kwak SY, Litman A, Margolis HC, Yamakoshi Y, Simmer JP. Biomimetic enamel regeneration mediated by leucine-rich amelogenin peptide. J Dent Res. 2017;96:524–30.CrossRefPubMedPubMedCentral Kwak SY, Litman A, Margolis HC, Yamakoshi Y, Simmer JP. Biomimetic enamel regeneration mediated by leucine-rich amelogenin peptide. J Dent Res. 2017;96:524–30.CrossRefPubMedPubMedCentral
54.
go back to reference Iijima M, Moradian-Oldak J. Control of apatite crystal growth in a fluoride containing amelogenin-rich matrix. Biomaterials. 2005;26:1595–603.CrossRefPubMed Iijima M, Moradian-Oldak J. Control of apatite crystal growth in a fluoride containing amelogenin-rich matrix. Biomaterials. 2005;26:1595–603.CrossRefPubMed
55.
go back to reference Wei M, Evans JH, Bostrom T, Grondahl L. Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite. J Mater Sci Mater Med. 2003;14:311–20.CrossRefPubMed Wei M, Evans JH, Bostrom T, Grondahl L. Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite. J Mater Sci Mater Med. 2003;14:311–20.CrossRefPubMed
56.
57.
go back to reference Posada MC, Sánches CF, Gallego GJ, Vargas AP, Restrepo LF, López JD. Dientes de bovino como sustituto de dientes humanos para su uso en la odontología. Revisión de literatura CES odontol. 2006;19:63–8. Posada MC, Sánches CF, Gallego GJ, Vargas AP, Restrepo LF, López JD. Dientes de bovino como sustituto de dientes humanos para su uso en la odontología. Revisión de literatura CES odontol. 2006;19:63–8.
58.
go back to reference Kim IH, Son JS, Min BK, Kim YK, Kim KH, Kwon TY. A simple, sensitive and non-destructive technique for characterizing bovine dental enamel erosion: attenuated total reflection Fourier transform infrared spectroscopy. Int J Oral Sci. 2016;8:54–60.CrossRefPubMedPubMedCentral Kim IH, Son JS, Min BK, Kim YK, Kim KH, Kwon TY. A simple, sensitive and non-destructive technique for characterizing bovine dental enamel erosion: attenuated total reflection Fourier transform infrared spectroscopy. Int J Oral Sci. 2016;8:54–60.CrossRefPubMedPubMedCentral
59.
go back to reference Nakamichi I, Iwaku M, Fusayama T. Bovine teeth as possible substitutes in the adhesion test. J Dent Res. 1983;62:1076–81.CrossRefPubMed Nakamichi I, Iwaku M, Fusayama T. Bovine teeth as possible substitutes in the adhesion test. J Dent Res. 1983;62:1076–81.CrossRefPubMed
60.
go back to reference Yassen GH, Platt JA, Hara AT. Bovine teeth as substitute for human teeth in dental research: a review of literature. J Oral Sci. 2011;53:273–82.CrossRefPubMed Yassen GH, Platt JA, Hara AT. Bovine teeth as substitute for human teeth in dental research: a review of literature. J Oral Sci. 2011;53:273–82.CrossRefPubMed
61.
go back to reference Olek A, Klimek L, Bottacz-Rzepkowska E. Comparative scanning electron microscope analysis of the enamel of permanent human, bovine and porcine teeth. J Vet Sci. 2020;21:e83.CrossRefPubMedPubMedCentral Olek A, Klimek L, Bottacz-Rzepkowska E. Comparative scanning electron microscope analysis of the enamel of permanent human, bovine and porcine teeth. J Vet Sci. 2020;21:e83.CrossRefPubMedPubMedCentral
62.
go back to reference Fonseca RB, Haiter-Neto F, Carlo HL, Soares CJ, Sinhoreti MAC, Puppin-Rontani RM, et al. Radiodensity and hardness of enamel and dentin of human and bovine teeth, varying bovine teeth age. Arch Oral Biol. 2008;53:1023–9.CrossRefPubMed Fonseca RB, Haiter-Neto F, Carlo HL, Soares CJ, Sinhoreti MAC, Puppin-Rontani RM, et al. Radiodensity and hardness of enamel and dentin of human and bovine teeth, varying bovine teeth age. Arch Oral Biol. 2008;53:1023–9.CrossRefPubMed
63.
go back to reference Fonseca RB, Haiter-Neto F, Fernandes-Neto AJ, Barbosa GAS, Soares CJ. Radiodensity of enamel and dentin of human, bovine and swine teeth. Arch Oral Biol. 2004;49:919–22.CrossRefPubMed Fonseca RB, Haiter-Neto F, Fernandes-Neto AJ, Barbosa GAS, Soares CJ. Radiodensity of enamel and dentin of human, bovine and swine teeth. Arch Oral Biol. 2004;49:919–22.CrossRefPubMed
64.
go back to reference Groenhuis RAJ, Jongebloed WL, ten Bosch JJ. Surface roughness of acid-etched and demineralized bovine enamel measured by a laser speckle method. Caries Res. 1980;14:333–40.CrossRefPubMed Groenhuis RAJ, Jongebloed WL, ten Bosch JJ. Surface roughness of acid-etched and demineralized bovine enamel measured by a laser speckle method. Caries Res. 1980;14:333–40.CrossRefPubMed
65.
go back to reference Braly A, Darnell LA, Mann AB, Teaford MF, Weihs TP. The effect of prism orientation on the indentation testing of human molar enamel. Arch Oral Biol. 2007;52:856–60.CrossRefPubMedPubMedCentral Braly A, Darnell LA, Mann AB, Teaford MF, Weihs TP. The effect of prism orientation on the indentation testing of human molar enamel. Arch Oral Biol. 2007;52:856–60.CrossRefPubMedPubMedCentral
66.
go back to reference Xu HHK, Smith DT, Jahanmir S, Romberg E, Kelly JR, Thompson VP, et al. Indentation damage and mechanical properties of human enamel and dentin. J Dent Res. 1998;77:472–80.CrossRefPubMed Xu HHK, Smith DT, Jahanmir S, Romberg E, Kelly JR, Thompson VP, et al. Indentation damage and mechanical properties of human enamel and dentin. J Dent Res. 1998;77:472–80.CrossRefPubMed
67.
go back to reference Ma Y, Cohen SR, Addadi L, Weiner S. Sea urchin tooth design: An “all-calcite” polycrystalline reinforced fiber composite for grinding rocks. Adv Mater. 2008;20:1555–9.CrossRef Ma Y, Cohen SR, Addadi L, Weiner S. Sea urchin tooth design: An “all-calcite” polycrystalline reinforced fiber composite for grinding rocks. Adv Mater. 2008;20:1555–9.CrossRef
68.
go back to reference Puigdomenech I. Program MEDUSA (make equilibrium diagrams using sophisticated algorithms). R Inst Technol Inorg Chem. 2010: 10644. Puigdomenech I. Program MEDUSA (make equilibrium diagrams using sophisticated algorithms). R Inst Technol Inorg Chem. 2010: 10644.
69.
go back to reference Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophoton Int. 2004;11:36–41. Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with ImageJ. Biophoton Int. 2004;11:36–41.
71.
go back to reference Wu YJ, Tseng YH, Chan JCC. Morphology control of fluorapatite crystallites by citrate ions. Cryst Growth Des. 2010;10:4240–2.CrossRef Wu YJ, Tseng YH, Chan JCC. Morphology control of fluorapatite crystallites by citrate ions. Cryst Growth Des. 2010;10:4240–2.CrossRef
72.
go back to reference Simon P, Schwarz U, Kniep R. Hierarchical architecture and real structure in a biomimetic nano-composite of fluorapatite with gelatine: a model system for steps in dentino- and osteogenesis? J Mater Chem. 2005;15:4992–6.CrossRef Simon P, Schwarz U, Kniep R. Hierarchical architecture and real structure in a biomimetic nano-composite of fluorapatite with gelatine: a model system for steps in dentino- and osteogenesis? J Mater Chem. 2005;15:4992–6.CrossRef
73.
go back to reference Busch S, Schwarz U, Kniep R. Morphogenesis and structure of human teeth in relation to biomimetically grown fluorapatite–gelatine composites. Chem Mater. 2001;13:3260–71.CrossRef Busch S, Schwarz U, Kniep R. Morphogenesis and structure of human teeth in relation to biomimetically grown fluorapatite–gelatine composites. Chem Mater. 2001;13:3260–71.CrossRef
74.
go back to reference Busch S, Dolhaine H, DuChesne A, Heinz S, Hochrein O, Laeri F, et al. Biomimetic morphogenesis of fluorapatite–gelatin composites: fractal growth, the question of intrinsic electric fields, core/shell assemblies, hollow spheres and reorganization of denatured collagen. Eur J Inorg Chem. 1999;1999:1643–53.CrossRef Busch S, Dolhaine H, DuChesne A, Heinz S, Hochrein O, Laeri F, et al. Biomimetic morphogenesis of fluorapatite–gelatin composites: fractal growth, the question of intrinsic electric fields, core/shell assemblies, hollow spheres and reorganization of denatured collagen. Eur J Inorg Chem. 1999;1999:1643–53.CrossRef
75.
go back to reference Habelitz S, Kullar A, Marshall SJ, DenBesten PK, Balooch M, Marshall GW, et al. Amelogenin-guided crystal growth on fluoroapatite glass-ceramics. J Dent Res. 2004;83:698–702.CrossRefPubMed Habelitz S, Kullar A, Marshall SJ, DenBesten PK, Balooch M, Marshall GW, et al. Amelogenin-guided crystal growth on fluoroapatite glass-ceramics. J Dent Res. 2004;83:698–702.CrossRefPubMed
76.
go back to reference Jardim JJ, Pagot MA, Maltz M. Artificial enamel dental caries treated with different topical fluoride regimes: an in situ study. J Dent. 2008;36:396–401.CrossRefPubMed Jardim JJ, Pagot MA, Maltz M. Artificial enamel dental caries treated with different topical fluoride regimes: an in situ study. J Dent. 2008;36:396–401.CrossRefPubMed
78.
go back to reference Yao S, Jin B, Liu Z, Shao C, Zhao R, Wang X, et al. Biomineralization: from material tactics to biological strategy. Adv Mater. 2017;29:1605903.CrossRef Yao S, Jin B, Liu Z, Shao C, Zhao R, Wang X, et al. Biomineralization: from material tactics to biological strategy. Adv Mater. 2017;29:1605903.CrossRef
79.
go back to reference Wei Y, Liu S, Xiao Z, Zhao H, Luo J, Deng X, et al. Enamel repair with amorphous ceramics. Adv Mater. 2020;32:1907067.CrossRef Wei Y, Liu S, Xiao Z, Zhao H, Luo J, Deng X, et al. Enamel repair with amorphous ceramics. Adv Mater. 2020;32:1907067.CrossRef
80.
go back to reference Cochrane NJ, Cai F, Huq NL, Burrow MF, Reynolds EC. New approaches to enhanced remineralization of tooth enamel. J Dent Res. 2010;89:1187–97.CrossRefPubMed Cochrane NJ, Cai F, Huq NL, Burrow MF, Reynolds EC. New approaches to enhanced remineralization of tooth enamel. J Dent Res. 2010;89:1187–97.CrossRefPubMed
81.
go back to reference Walker G, Cai F, Shen P, Reynolds C, Ward B, Fone C, et al. Increased remineralization of tooth enamel by milk containing added casein phosphopeptide-amorphous calcium phosphate. J Dairy Res. 2006;73:74–8.CrossRefPubMed Walker G, Cai F, Shen P, Reynolds C, Ward B, Fone C, et al. Increased remineralization of tooth enamel by milk containing added casein phosphopeptide-amorphous calcium phosphate. J Dairy Res. 2006;73:74–8.CrossRefPubMed
82.
go back to reference Taha AA, Patel MP, Hill RG, Fleming PS. The effect of bioactive glasses on enamel remineralization: a systematic review. J Dent. 2017;67:9–17.CrossRefPubMed Taha AA, Patel MP, Hill RG, Fleming PS. The effect of bioactive glasses on enamel remineralization: a systematic review. J Dent. 2017;67:9–17.CrossRefPubMed
83.
go back to reference Reynolds EC. Calcium phosphate-based remineralization systems: scientific evidence? Aust Dent J. 2008;53:268–73.CrossRefPubMed Reynolds EC. Calcium phosphate-based remineralization systems: scientific evidence? Aust Dent J. 2008;53:268–73.CrossRefPubMed
84.
go back to reference Srinivasan N, Kavitha M, Loganathan SC. Comparison of the remineralization potential of CPP-ACP and CPP-ACP with 900 ppm fluoride on eroded human enamel: an in situ study. Arch Oral Biol. 2010;55:541–4.CrossRefPubMed Srinivasan N, Kavitha M, Loganathan SC. Comparison of the remineralization potential of CPP-ACP and CPP-ACP with 900 ppm fluoride on eroded human enamel: an in situ study. Arch Oral Biol. 2010;55:541–4.CrossRefPubMed
Metadata
Title
The power of weak ion-exchange resins assisted by amelogenin for natural remineralization of dental enamel: an in vitro study
Authors
Sandra Diez-García
María-Jesús Sánchez-Martín
Manuel Valiente
Publication date
11-02-2022
Publisher
Springer Nature Singapore
Keyword
Caries
Published in
Odontology / Issue 3/2022
Print ISSN: 1618-1247
Electronic ISSN: 1618-1255
DOI
https://doi.org/10.1007/s10266-022-00688-7

Other articles of this Issue 3/2022

Odontology 3/2022 Go to the issue