Skip to main content
Top
Published in: Clinical and Experimental Medicine 1/2014

01-02-2014 | Review Article

Therapeutic application of mesenchymal stem cells in bone and joint diseases

Authors: Yi Liu, Jianmei Wu, Youming Zhu, Jinxiang Han

Published in: Clinical and Experimental Medicine | Issue 1/2014

Login to get access

Abstract

Mesenchymal stem cells (MSCs), the non-hematopoietic progenitor cells, are multi-potent stem cells from a variety of tissues with the capability of self-renewal, proliferation, differentiation into multi-lineage cell types, as well as anti-inflammatory and immunomodulatory. These properties make MSCs an ideal source of cell therapy in bone and joint diseases. This review describes the advances of animal study and preliminary clinical application in the past few years, related to MSC-based cell therapy in the common bone and joint diseases, including osteoarthritis, rheumatoid arthritis, osteoporosis, osteonecrosis of the femoral head and osteogenesis imperfecta. It highlights the promising prospect of MSC in clinical application of bone and joint diseases.
Literature
1.
go back to reference Friedenstin AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinetics 3:393–403 Friedenstin AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinetics 3:393–403
2.
go back to reference da Silva ML, Chagatelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213 da Silva ML, Chagatelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213
3.
go back to reference Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98:2396–2402PubMed Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98:2396–2402PubMed
4.
go back to reference Kim JY, Jeon HB, Yang YS, Oh W, Chang JW (2010) Application of human umbilical cord blood-derived mesenchymal stem cells in disease models. World J Stem Cells 2:34–38PubMedCentralPubMed Kim JY, Jeon HB, Yang YS, Oh W, Chang JW (2010) Application of human umbilical cord blood-derived mesenchymal stem cells in disease models. World J Stem Cells 2:34–38PubMedCentralPubMed
5.
go back to reference Rodriguez AM, Elabd C, Amri EZ, Aihaud G, Dani C (2005) The human adipose tissue is a source of multipotent stem cells. Biochimie 87:125–128PubMed Rodriguez AM, Elabd C, Amri EZ, Aihaud G, Dani C (2005) The human adipose tissue is a source of multipotent stem cells. Biochimie 87:125–128PubMed
6.
go back to reference Ilancheran S, Moodley Y, Manuelpillai U (2009) Human fetal membranes: a source of stem cells for tissue regeneration and repair? Placenta 30:2–10PubMed Ilancheran S, Moodley Y, Manuelpillai U (2009) Human fetal membranes: a source of stem cells for tissue regeneration and repair? Placenta 30:2–10PubMed
7.
go back to reference Oh W, Kim DS, Yang YS, Lee JK (2008) Immunological properties of umbilical cord blood-derived mesenchymal stromal cells. Cell Immunol 251:116–123PubMed Oh W, Kim DS, Yang YS, Lee JK (2008) Immunological properties of umbilical cord blood-derived mesenchymal stromal cells. Cell Immunol 251:116–123PubMed
8.
go back to reference Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843PubMed Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843PubMed
9.
go back to reference Ren G, Su J, Zhang L, Zhao X, Ling W, L’huillie A, Zhang J, Lu Y, Roberts AI, Ji W, Zhang H, Rabson AB, Shi Y (2009) Species variation in the mechanisms of mesenchymall stem cell-mediated immunosuppression. Stem Cells 27:1954–1962PubMed Ren G, Su J, Zhang L, Zhao X, Ling W, L’huillie A, Zhang J, Lu Y, Roberts AI, Ji W, Zhang H, Rabson AB, Shi Y (2009) Species variation in the mechanisms of mesenchymall stem cell-mediated immunosuppression. Stem Cells 27:1954–1962PubMed
10.
go back to reference Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, Galun E, Rachmilewitz J (2005) Human mesenchymal stem cells alter antigen-presenting cell maturation and induced T-cell unresponsiveness. Blood 105:2214–2219PubMed Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, Galun E, Rachmilewitz J (2005) Human mesenchymal stem cells alter antigen-presenting cell maturation and induced T-cell unresponsiveness. Blood 105:2214–2219PubMed
11.
go back to reference Gharbi M, Deberg M, Henrotin Y (2011) Application for proteomic techniques in studying osteoarthritis: a review. Front Physiol 2:90PubMedCentralPubMed Gharbi M, Deberg M, Henrotin Y (2011) Application for proteomic techniques in studying osteoarthritis: a review. Front Physiol 2:90PubMedCentralPubMed
12.
go back to reference Mokbel AN, El Tookhy OS, Shamaa AA, Rashed LA, Sabry D, El Sayed AM (2011) Homing and reparative effect of intra-articular injection of autologous mesenchymal stem cells in osteoarthritic animal model. BMC Musculoskelet Discord 12:259 Mokbel AN, El Tookhy OS, Shamaa AA, Rashed LA, Sabry D, El Sayed AM (2011) Homing and reparative effect of intra-articular injection of autologous mesenchymal stem cells in osteoarthritic animal model. BMC Musculoskelet Discord 12:259
13.
go back to reference Aigner T, Rose J, Martin J, Buckwalter J (2004) Aging theories of primary osteoarthritis: from epidemiology to molecular biology. Rejuvenation Res 7:134–145PubMed Aigner T, Rose J, Martin J, Buckwalter J (2004) Aging theories of primary osteoarthritis: from epidemiology to molecular biology. Rejuvenation Res 7:134–145PubMed
14.
go back to reference Mobasheri A (2011) Applications of proteomics to osteoarthritis, a musculoskeletal disease characterized by aging. Front Physiol 2:108PubMedCentralPubMed Mobasheri A (2011) Applications of proteomics to osteoarthritis, a musculoskeletal disease characterized by aging. Front Physiol 2:108PubMedCentralPubMed
15.
go back to reference Nöth U, Steinert AF, Tuan RS (2008) Technology Insight: adult mesenchymal stem cells for osteoarthritis therapy: delivery modes for Mesenchymal stem cells. Nat Clin Pract Rheumatol 4:371–380PubMed Nöth U, Steinert AF, Tuan RS (2008) Technology Insight: adult mesenchymal stem cells for osteoarthritis therapy: delivery modes for Mesenchymal stem cells. Nat Clin Pract Rheumatol 4:371–380PubMed
16.
go back to reference Ameye LG, Young MF (2006) Animal models of osteoarthritis: lessons learned while seeking the ‘Holy Grail’. Curr Opin Rheumatol 18:537–547PubMed Ameye LG, Young MF (2006) Animal models of osteoarthritis: lessons learned while seeking the ‘Holy Grail’. Curr Opin Rheumatol 18:537–547PubMed
17.
go back to reference Liu Y, Shu XZ, Prestwich GD (2006) Osteochondral defect repair with autologous bone marrow-derived mesenchymal stem cells in an injectable, in situ, cross-linked synthetic extracellular matrix. Tissue Eng 12:3405–3416PubMed Liu Y, Shu XZ, Prestwich GD (2006) Osteochondral defect repair with autologous bone marrow-derived mesenchymal stem cells in an injectable, in situ, cross-linked synthetic extracellular matrix. Tissue Eng 12:3405–3416PubMed
18.
go back to reference Guo X, Wang X, Zhang Y, Xia R, Hu M, Duan C (2004) Repair of large articular cartilage defects with implants of autologous mesenchymal stem cells seeded into beta-tricalcium phosphate in a sheep model. Tissue Eng 10:1818–1829PubMed Guo X, Wang X, Zhang Y, Xia R, Hu M, Duan C (2004) Repair of large articular cartilage defects with implants of autologous mesenchymal stem cells seeded into beta-tricalcium phosphate in a sheep model. Tissue Eng 10:1818–1829PubMed
19.
go back to reference Hui JHP, Chen F, Thambyah A, Lee EH (2004) Treatment of chondral lesions in advanced osteochondritis dissecans: a comparative study of the efficacy of chondrocytes, mesenchymal stem cells, periosteal graft, and mosaicplasty (osteochondral autograft) in animal models. J Pediatr Orthop 24:427–433PubMed Hui JHP, Chen F, Thambyah A, Lee EH (2004) Treatment of chondral lesions in advanced osteochondritis dissecans: a comparative study of the efficacy of chondrocytes, mesenchymal stem cells, periosteal graft, and mosaicplasty (osteochondral autograft) in animal models. J Pediatr Orthop 24:427–433PubMed
20.
go back to reference Yan H, Yu C (2007) Repair of full-thickness cartilage defects with cells of different origin in a rabbit model. Arthroscopy 23:178–187PubMed Yan H, Yu C (2007) Repair of full-thickness cartilage defects with cells of different origin in a rabbit model. Arthroscopy 23:178–187PubMed
21.
go back to reference Kayakabe M, Tsutsumi S, Watanabe H, Kato Y, Takagishi K (2006) Transplantation of autologous rabbit BM-derived mesenchymal stromal cells embedded in hyaluronic acid gel sponge into osteochondral defects of the knee. Cytotherapy 8:343–353PubMed Kayakabe M, Tsutsumi S, Watanabe H, Kato Y, Takagishi K (2006) Transplantation of autologous rabbit BM-derived mesenchymal stromal cells embedded in hyaluronic acid gel sponge into osteochondral defects of the knee. Cytotherapy 8:343–353PubMed
22.
go back to reference Kuroda R, Ishida K, Matsumoto T, Akisue T, Fujioka H, Mizuno K (2007) Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone marrow stromal cells. Osteoarthritis Cartilage 15:226–231PubMed Kuroda R, Ishida K, Matsumoto T, Akisue T, Fujioka H, Mizuno K (2007) Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone marrow stromal cells. Osteoarthritis Cartilage 15:226–231PubMed
23.
go back to reference Lee KBL, Hui JHP, Song IC, Ardany L, Lee EH (2007) Injectable mesenchymal stem cell therapy for large cartilage defects-a porcine model. Stem Cells 25:2964–2971PubMed Lee KBL, Hui JHP, Song IC, Ardany L, Lee EH (2007) Injectable mesenchymal stem cell therapy for large cartilage defects-a porcine model. Stem Cells 25:2964–2971PubMed
24.
go back to reference Murphy JM, Fink DJ, Hunziker EB, Barry FP (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48:3464–3474PubMed Murphy JM, Fink DJ, Hunziker EB, Barry FP (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48:3464–3474PubMed
25.
go back to reference Mokbel AN, El Tookhy OS, Shamaa AA, Rashed LA, Sabry D, El Sayed AM (2011) Homing and reparative effect of intra-articular injection of autologous mesenchymal stem cells in osteoarthritic animal model. BMC Musculoskelet Disord 12:259PubMedCentralPubMed Mokbel AN, El Tookhy OS, Shamaa AA, Rashed LA, Sabry D, El Sayed AM (2011) Homing and reparative effect of intra-articular injection of autologous mesenchymal stem cells in osteoarthritic animal model. BMC Musculoskelet Disord 12:259PubMedCentralPubMed
26.
go back to reference Sato M, Uchida K, Nakajima H, Miyazaki T, Guerrero AR, Watanabe S, Roberts S, Baba H (2012) Direct transplantation of mesenchymal stem cells into the knee joints of Hartley Strain guinea pig with spontaneous osteoarthritis. Arthritis Res Ther 14:R31PubMedCentralPubMed Sato M, Uchida K, Nakajima H, Miyazaki T, Guerrero AR, Watanabe S, Roberts S, Baba H (2012) Direct transplantation of mesenchymal stem cells into the knee joints of Hartley Strain guinea pig with spontaneous osteoarthritis. Arthritis Res Ther 14:R31PubMedCentralPubMed
27.
go back to reference Horie M, Sekiya I, Muneta T, Ichinose S, Matsumoto K, Saito H, Murakami T, Kobayashi E (2009) Intra-articular injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization of distant organs in rat massive meniscal defect. Stem Cells 27:878–887PubMed Horie M, Sekiya I, Muneta T, Ichinose S, Matsumoto K, Saito H, Murakami T, Kobayashi E (2009) Intra-articular injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization of distant organs in rat massive meniscal defect. Stem Cells 27:878–887PubMed
28.
go back to reference Fan J, Varshney RR, Ren L, Cai D, Wang DA (2009) Synovium-derived mesenchymal stem cells: a new cell source for musculoskeletal regeneration. Tissue Eng Part B Rev 15:75–86PubMed Fan J, Varshney RR, Ren L, Cai D, Wang DA (2009) Synovium-derived mesenchymal stem cells: a new cell source for musculoskeletal regeneration. Tissue Eng Part B Rev 15:75–86PubMed
29.
go back to reference Koga H, Shimaya M, Muneta T, Nimura A, Morito T, Hayashi M, Suzuki S, Ju YJ, Mochizuki T, Sekiya I (2008) Local adherent technique for transplanting mesenchymal stem cells as a potential treatment of cartilage defect. Arthritis Res Ther 10:R84PubMedCentralPubMed Koga H, Shimaya M, Muneta T, Nimura A, Morito T, Hayashi M, Suzuki S, Ju YJ, Mochizuki T, Sekiya I (2008) Local adherent technique for transplanting mesenchymal stem cells as a potential treatment of cartilage defect. Arthritis Res Ther 10:R84PubMedCentralPubMed
30.
go back to reference Vishnubalaji R, Al-Nbaheen M, Kadalmani B, Aldahmash A, Ramesh T (2012) Comparative investigation of the differentiation capability of bone-marrow-and adipose-derived mesenchymal stem cells by qualitative and quantitative analysis. Cell Tissue Res 347:419–427PubMed Vishnubalaji R, Al-Nbaheen M, Kadalmani B, Aldahmash A, Ramesh T (2012) Comparative investigation of the differentiation capability of bone-marrow-and adipose-derived mesenchymal stem cells by qualitative and quantitative analysis. Cell Tissue Res 347:419–427PubMed
31.
go back to reference Guilak F, Awad HA, Fermor B, Leddy HA, Gimble JM (2004) Adipose-derived adult stem cells for cartilage tissue engineering. Biorheology 41:389–399PubMed Guilak F, Awad HA, Fermor B, Leddy HA, Gimble JM (2004) Adipose-derived adult stem cells for cartilage tissue engineering. Biorheology 41:389–399PubMed
32.
go back to reference Black LL, Gaynor J, Gahring D, Adams C, Aron D, Harman S, Gingerich DA, Harman R (2007) Effect of adipose-derived mesenchymal stem and regenerative cells on lameness in dogs with chronic osteoarthritis of the coxofemoral joints: a randomized, double-blinded, multicenter, controlled trial. Veterinary Therapeutics 8:272–284PubMed Black LL, Gaynor J, Gahring D, Adams C, Aron D, Harman S, Gingerich DA, Harman R (2007) Effect of adipose-derived mesenchymal stem and regenerative cells on lameness in dogs with chronic osteoarthritis of the coxofemoral joints: a randomized, double-blinded, multicenter, controlled trial. Veterinary Therapeutics 8:272–284PubMed
33.
go back to reference Black LL, Gaynor J, Adams C, Dhupa S, Sams AE, Taylor R, Harman S, Gingerich DA, Harman R (2008) Effect of intraarticular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Vet Ther 9:192–200PubMed Black LL, Gaynor J, Adams C, Dhupa S, Sams AE, Taylor R, Harman S, Gingerich DA, Harman R (2008) Effect of intraarticular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Vet Ther 9:192–200PubMed
34.
go back to reference Hou T, Xu J, Wu X, Xie Z, Luo F, Zhang Z, Zeng L (2009) Umbilical cord Wharton’s Jelly: a new potential cell source of mesenchymal stomal cells for bone tissue engineering. Tissue Eng Part A 15:2325–2334PubMed Hou T, Xu J, Wu X, Xie Z, Luo F, Zhang Z, Zeng L (2009) Umbilical cord Wharton’s Jelly: a new potential cell source of mesenchymal stomal cells for bone tissue engineering. Tissue Eng Part A 15:2325–2334PubMed
35.
go back to reference Fan CG, Zhang QJ, Zhou JR (2011) Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord. Stem Cell Rev 7:195–207PubMed Fan CG, Zhang QJ, Zhou JR (2011) Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord. Stem Cell Rev 7:195–207PubMed
36.
go back to reference Wang L, Tran I, Seshareddy K, Weiss ML, Detamore MS (2009) A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Eng Part A 15:2259–2266PubMed Wang L, Tran I, Seshareddy K, Weiss ML, Detamore MS (2009) A comparison of human bone marrow-derived mesenchymal stem cells and human umbilical cord-derived mesenchymal stromal cells for cartilage tissue engineering. Tissue Eng Part A 15:2259–2266PubMed
37.
go back to reference Fong CY, Subramanian A, Gauthaman K, Venugopal J, Biswas A, Ramakrishna S, Bongso A (2012) Human umbilical cord Whaton’s Jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment. Stem Cell Rev 8:195–209PubMed Fong CY, Subramanian A, Gauthaman K, Venugopal J, Biswas A, Ramakrishna S, Bongso A (2012) Human umbilical cord Whaton’s Jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment. Stem Cell Rev 8:195–209PubMed
38.
go back to reference Huang K, Zhang C, Zhang XW, Bao JP, Wu LD (2011) Effect of dehydroepiandrosterone on aggrecanase expression in articular cartilage in a rabbit model of osteoarthritis. Mol Biol Rep 38:3569–3572PubMed Huang K, Zhang C, Zhang XW, Bao JP, Wu LD (2011) Effect of dehydroepiandrosterone on aggrecanase expression in articular cartilage in a rabbit model of osteoarthritis. Mol Biol Rep 38:3569–3572PubMed
39.
go back to reference Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M (2002) Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knee. Osteoarthritis Cartilage 10:199–206PubMed Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M (2002) Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knee. Osteoarthritis Cartilage 10:199–206PubMed
40.
go back to reference Ohgushi H, Kotobuki N, Funaoka H, Machida H, Hirose M, Tanaka Y, Takakura Y (2005) Tissue engineered ceramic artificial joint-ex vivo osteogenic differentiation of patient mesenchymal cells on total ankle joints for treatment of osteoarthritis. Biomaterials 26:4654–4661PubMed Ohgushi H, Kotobuki N, Funaoka H, Machida H, Hirose M, Tanaka Y, Takakura Y (2005) Tissue engineered ceramic artificial joint-ex vivo osteogenic differentiation of patient mesenchymal cells on total ankle joints for treatment of osteoarthritis. Biomaterials 26:4654–4661PubMed
41.
go back to reference Pak J (2011) Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose-tissue-derived stem cells: a case series. J Med Case Rep 5:296PubMedCentralPubMed Pak J (2011) Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose-tissue-derived stem cells: a case series. J Med Case Rep 5:296PubMedCentralPubMed
42.
go back to reference Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M, Karli D (2008) Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician 11:343–353PubMed Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M, Karli D (2008) Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician 11:343–353PubMed
43.
go back to reference Davatchi F, Abdollahi BS, Mohyeddin M, Shahram F, Nikbin B (2011) Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis 14:211–215PubMed Davatchi F, Abdollahi BS, Mohyeddin M, Shahram F, Nikbin B (2011) Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis 14:211–215PubMed
44.
go back to reference Fournier C (2005) Where do T cells stand in rheumatoid arthritis? Joint Bone Spine 72:527–532PubMed Fournier C (2005) Where do T cells stand in rheumatoid arthritis? Joint Bone Spine 72:527–532PubMed
45.
go back to reference Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423:356–361PubMed Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423:356–361PubMed
46.
go back to reference Gonzalez MA, Gonzalez-Rey E, Rico L, Buscher D, Delgado M (2009) Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum 60:1006–1019PubMed Gonzalez MA, Gonzalez-Rey E, Rico L, Buscher D, Delgado M (2009) Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum 60:1006–1019PubMed
47.
go back to reference Fox DA (1997) The role of T cells in the immunopathogenesis of rheumatoid arthritis: new perspectives. Arthritis Rheum 40:598–609PubMed Fox DA (1997) The role of T cells in the immunopathogenesis of rheumatoid arthritis: new perspectives. Arthritis Rheum 40:598–609PubMed
48.
go back to reference Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, Zhao RC, Shi Y (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2:141–150PubMed Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, Zhao RC, Shi Y (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2:141–150PubMed
49.
go back to reference MacDonal GI, Augello A, De Bari C (2011) Role of mesenchymal stem cells in reestablishing immunologic tolerance in autoimmune rheumatic diseases. Arthritis Rheum 63(9):2547–2557 MacDonal GI, Augello A, De Bari C (2011) Role of mesenchymal stem cells in reestablishing immunologic tolerance in autoimmune rheumatic diseases. Arthritis Rheum 63(9):2547–2557
50.
go back to reference Djouad F, Fritz V, Apparailly F, Louis-Plence P, Bony C, Sany J, Jorgensen C, Noel D (2005) Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor alpha in collagen-induced arthritis. Arthritis Rheum 52:1595–1603PubMed Djouad F, Fritz V, Apparailly F, Louis-Plence P, Bony C, Sany J, Jorgensen C, Noel D (2005) Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor alpha in collagen-induced arthritis. Arthritis Rheum 52:1595–1603PubMed
51.
go back to reference Schurgers E, Kelchtermans H, Mitera T, Geboes L, Matthys P (2010) Discrepancy between the in vitro and in vivo effect of murine mesenchymal stem cells on T-cell proliferation and collagen-induced arthritis. Arthritis Res Therapy 12:R31 Schurgers E, Kelchtermans H, Mitera T, Geboes L, Matthys P (2010) Discrepancy between the in vitro and in vivo effect of murine mesenchymal stem cells on T-cell proliferation and collagen-induced arthritis. Arthritis Res Therapy 12:R31
52.
go back to reference Chen B, Hu J, Liao L (2010) Flk-1 + mesenchymal stem cells aggravate collagen-induced arthritis by up-regulating interleukin-6. Clin Exp Immunol 159:292–302PubMedCentralPubMed Chen B, Hu J, Liao L (2010) Flk-1 + mesenchymal stem cells aggravate collagen-induced arthritis by up-regulating interleukin-6. Clin Exp Immunol 159:292–302PubMedCentralPubMed
53.
go back to reference Augello A, Tasso R, Negrini SM, Cancedda R, Pennesi G (2007) Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum 56:1175–1186PubMed Augello A, Tasso R, Negrini SM, Cancedda R, Pennesi G (2007) Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum 56:1175–1186PubMed
54.
go back to reference GonZalez MA, Gonzalez-Rey E, Rico L, Buscher D, Delgado M (2009) Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum 60:1006–1019PubMed GonZalez MA, Gonzalez-Rey E, Rico L, Buscher D, Delgado M (2009) Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum 60:1006–1019PubMed
55.
go back to reference Gonzalez-Rey E, Gonzalez MA, Varela N, O’Valle F, Hernandez-Cortes P, Rico L, Buscher D, Delgado M (2010) Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann Rheum Dis 69:241–248PubMed Gonzalez-Rey E, Gonzalez MA, Varela N, O’Valle F, Hernandez-Cortes P, Rico L, Buscher D, Delgado M (2010) Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Ann Rheum Dis 69:241–248PubMed
56.
go back to reference Zhou B, Yuan J, Zhou Y, Ghawji M Jr, Deng YP, Lee AJ, Lee AJ, Nair U, Kang AH, Brand DD, Yoo TJ (2011) Administering human adipose-derived stem cells to prevent and treat experimental arthritis. Clin Immunol 141:328–337PubMed Zhou B, Yuan J, Zhou Y, Ghawji M Jr, Deng YP, Lee AJ, Lee AJ, Nair U, Kang AH, Brand DD, Yoo TJ (2011) Administering human adipose-derived stem cells to prevent and treat experimental arthritis. Clin Immunol 141:328–337PubMed
57.
go back to reference Liu Y, Mu R, Wang S, Long L, Liu X, Li R, Sun J, Guo J, Zhang X, Guo J, Yu P, Li C, Liu X, Huang Z, Wang D, Li H, Gu Z, Liu B, Li Z (2010) Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis. Arthritis Res Ther 12:R210PubMedCentralPubMed Liu Y, Mu R, Wang S, Long L, Liu X, Li R, Sun J, Guo J, Zhang X, Guo J, Yu P, Li C, Liu X, Huang Z, Wang D, Li H, Gu Z, Liu B, Li Z (2010) Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis. Arthritis Res Ther 12:R210PubMedCentralPubMed
58.
go back to reference Choi JJ, Yoo SA, Park SJ, Kang YJ, Kim WU, Oh IH, Cho CS (2008) Mesenchymal stem cells overexpressing interleukin-10 attenuate collagen-induced arthritis in mice. Clin Exp Immunol 153:269–276PubMedCentralPubMed Choi JJ, Yoo SA, Park SJ, Kang YJ, Kim WU, Oh IH, Cho CS (2008) Mesenchymal stem cells overexpressing interleukin-10 attenuate collagen-induced arthritis in mice. Clin Exp Immunol 153:269–276PubMedCentralPubMed
59.
go back to reference Park MJ, Park HS, Cho ML, Oh HJ, Cho YG, Min SY, Chung BH, Lee JW, Kim HY, Cho SG (2011) Transforming growth factor β-transduced mesenchymal stem cells ameliorate experimental autoimmune arthritis through reciprocal regulation of Treg/Th17 cells and osteoclastogenesis. Arthritis Rheum 63:1668–1680PubMed Park MJ, Park HS, Cho ML, Oh HJ, Cho YG, Min SY, Chung BH, Lee JW, Kim HY, Cho SG (2011) Transforming growth factor β-transduced mesenchymal stem cells ameliorate experimental autoimmune arthritis through reciprocal regulation of Treg/Th17 cells and osteoclastogenesis. Arthritis Rheum 63:1668–1680PubMed
60.
go back to reference Ra JC, Kang SK, Shin IS, Park HG, Joo SA, Kim JG, Kang BC, Lee YS, Nakama K, Piao M, Sohl B, Kurtz A (2011) Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells. J Transl Med 9:181PubMedCentralPubMed Ra JC, Kang SK, Shin IS, Park HG, Joo SA, Kim JG, Kang BC, Lee YS, Nakama K, Piao M, Sohl B, Kurtz A (2011) Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells. J Transl Med 9:181PubMedCentralPubMed
61.
go back to reference Liang J, Li X, Zhang H, Wang D, Feng X, Wang H, Hua B, Liu B, Sun L (2012) Allogeneic mesenchymal stem cells transplantation in patients with refractory RA. Clin Rheumatol 31:157–161PubMed Liang J, Li X, Zhang H, Wang D, Feng X, Wang H, Hua B, Liu B, Sun L (2012) Allogeneic mesenchymal stem cells transplantation in patients with refractory RA. Clin Rheumatol 31:157–161PubMed
62.
go back to reference Peng KY, Horing LY, Sung HC, Huang HC, Wu RT (2011) Antiosteoporotic activity of dioscorea alata L.cv. Phyto through driving mesenchymal stem cells differentiation for bone formation. Evid Based Complement Alternat Med 2011:712892PubMedCentralPubMed Peng KY, Horing LY, Sung HC, Huang HC, Wu RT (2011) Antiosteoporotic activity of dioscorea alata L.cv. Phyto through driving mesenchymal stem cells differentiation for bone formation. Evid Based Complement Alternat Med 2011:712892PubMedCentralPubMed
63.
64.
go back to reference Wang Z, Goh J, De Das S, Ge Z, Ouyang H, Chong JS, Low SL, Lee EH (2006) Efficacy of bone marrow-derived stem cells in strengthening osteoporotic bone in a rabbit model. Tissue Eng 12:1753–1761PubMed Wang Z, Goh J, De Das S, Ge Z, Ouyang H, Chong JS, Low SL, Lee EH (2006) Efficacy of bone marrow-derived stem cells in strengthening osteoporotic bone in a rabbit model. Tissue Eng 12:1753–1761PubMed
65.
go back to reference Turgeman G, Aslan H, Gazit Z, Gazit D (2002) Cell-mediated gene therapy for bone formation and regeneration. Curr Opin Mol Ther 4:390–394PubMed Turgeman G, Aslan H, Gazit Z, Gazit D (2002) Cell-mediated gene therapy for bone formation and regeneration. Curr Opin Mol Ther 4:390–394PubMed
66.
go back to reference Bruder SP, Fink DJ, Caplan AI (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 56:283–294PubMed Bruder SP, Fink DJ, Caplan AI (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 56:283–294PubMed
67.
go back to reference Nuttall ME, Patton AJ, Olivera DJ, Nadeau DP, Gowen M (1998) Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: implications for osteopenic disorders. J Bone Miner Res 13:371–382PubMed Nuttall ME, Patton AJ, Olivera DJ, Nadeau DP, Gowen M (1998) Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: implications for osteopenic disorders. J Bone Miner Res 13:371–382PubMed
68.
go back to reference Turgeman G, Zilberman Y, Zhou S, Kelly P, Moutsatsos IK, Kharode YP, Borella LE, Bex FJ, Komm BS, Bodine PV, Gazit D (2002) Systemically administered rh BMP-2 promotes MSC activity and reverses bone and cartilage loss in osteopenic mice. J Cell Biochem 86:461–474PubMed Turgeman G, Zilberman Y, Zhou S, Kelly P, Moutsatsos IK, Kharode YP, Borella LE, Bex FJ, Komm BS, Bodine PV, Gazit D (2002) Systemically administered rh BMP-2 promotes MSC activity and reverses bone and cartilage loss in osteopenic mice. J Cell Biochem 86:461–474PubMed
69.
go back to reference Zhou S, Zilberman Y, Wassermann K, Bain SD, Sadovsky Y, Gazit D (2001) Estrogen modulates estrogen receptor alpha and beta expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic mice. J Cell Biochem Suppl 36(Suppl):144–155PubMed Zhou S, Zilberman Y, Wassermann K, Bain SD, Sadovsky Y, Gazit D (2001) Estrogen modulates estrogen receptor alpha and beta expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic mice. J Cell Biochem Suppl 36(Suppl):144–155PubMed
70.
go back to reference Ocarino Nde M, Boeloni JN, Jorgetti V, Gomes DA, Goes AM, Serakides R (2010) Intra-bone marrow injection of mesenchymal stem cells improves the femur bone mass of osteoporotic female rats. Connect Tissue Res 51:426–433PubMed Ocarino Nde M, Boeloni JN, Jorgetti V, Gomes DA, Goes AM, Serakides R (2010) Intra-bone marrow injection of mesenchymal stem cells improves the femur bone mass of osteoporotic female rats. Connect Tissue Res 51:426–433PubMed
71.
go back to reference Egermann M, Gerhardt C, Barth A, Maestroni GJ, Schnerder E, Alini M (2011) Pinealectomy affects bone mineral density and structure-an experimental study in sheep. BMC Musculoskelet Disord 12:271PubMedCentralPubMed Egermann M, Gerhardt C, Barth A, Maestroni GJ, Schnerder E, Alini M (2011) Pinealectomy affects bone mineral density and structure-an experimental study in sheep. BMC Musculoskelet Disord 12:271PubMedCentralPubMed
72.
go back to reference Jerome C, Missbach M, Gamse R (2011) Balicatib, a cathepsin K inhibitor, stimulates periosteal bone formation in monkeys. Osteoporos Int 22:3001–3011PubMed Jerome C, Missbach M, Gamse R (2011) Balicatib, a cathepsin K inhibitor, stimulates periosteal bone formation in monkeys. Osteoporos Int 22:3001–3011PubMed
73.
go back to reference Tang YC, Tang W, Tian WD, Chen XZ, Li SW (2006) A study on repairing mandibular defect by means of tissue-engineering and human bone morphogenetic protein-2 gene transfection in osteoporotic rats. Zhonghua Kou Qiang Yi Xue Za Zhi 41:430–431PubMed Tang YC, Tang W, Tian WD, Chen XZ, Li SW (2006) A study on repairing mandibular defect by means of tissue-engineering and human bone morphogenetic protein-2 gene transfection in osteoporotic rats. Zhonghua Kou Qiang Yi Xue Za Zhi 41:430–431PubMed
74.
go back to reference Hsiao FS, Cheng CC, Peng SY, Huang HY, Lian WS, Jan ML, Fang YT, Cheng EC, Lee KH, Cheng WT, Lin SP, Wu SC (2010) Isolation of therapeutically functional mouse bone marrow mesenchymal stem cells within 3 h by an effective single-step plastic-adherent method. Cell Prolif 43:235–248PubMed Hsiao FS, Cheng CC, Peng SY, Huang HY, Lian WS, Jan ML, Fang YT, Cheng EC, Lee KH, Cheng WT, Lin SP, Wu SC (2010) Isolation of therapeutically functional mouse bone marrow mesenchymal stem cells within 3 h by an effective single-step plastic-adherent method. Cell Prolif 43:235–248PubMed
75.
go back to reference Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192PubMed Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192PubMed
76.
go back to reference Kanakaris NK, Petsatodis G, Tagil M, Giannoudis PV (2009) Is there a role for bone morphogenetic proteins in osteoporotic fractures? Injury 40(Suppl 3):S21–S26PubMed Kanakaris NK, Petsatodis G, Tagil M, Giannoudis PV (2009) Is there a role for bone morphogenetic proteins in osteoporotic fractures? Injury 40(Suppl 3):S21–S26PubMed
77.
go back to reference Turgeman G, Pittman DD, Muller R, Kurkalli BG, Zhou S, Pelled G, Peyser A, Ziberman Y, Moutsatsos IK, Gazit D (2001) Engineered human mesenchymal stem cells: a novel platform for skeletal cell mediated gene therapy. J Gene Med 3:240–251PubMed Turgeman G, Pittman DD, Muller R, Kurkalli BG, Zhou S, Pelled G, Peyser A, Ziberman Y, Moutsatsos IK, Gazit D (2001) Engineered human mesenchymal stem cells: a novel platform for skeletal cell mediated gene therapy. J Gene Med 3:240–251PubMed
78.
go back to reference Egermann M, Baltzer AW, Adamaszek S, Evans C, Robbins P, Schneider E, Lill CA (2006) Direct adenoviral transfer of bone morphogenetic protein-2 cDNA enhances fracture healing in osteoporotic sheep. Hum Gene Ther 17:507–517PubMed Egermann M, Baltzer AW, Adamaszek S, Evans C, Robbins P, Schneider E, Lill CA (2006) Direct adenoviral transfer of bone morphogenetic protein-2 cDNA enhances fracture healing in osteoporotic sheep. Hum Gene Ther 17:507–517PubMed
79.
go back to reference Kumar S, Mahendra G, Nagy TR, Ponnazhagan S (2004) Osteogenic differentiation of recombinant adeno-associated virus 2-transduced murine mesenchymal stem cells and development of an immunocompetent mouse model for ex vivo osteoporosis gene therapy. Hum Gene Ther 15:1197–1206PubMed Kumar S, Mahendra G, Nagy TR, Ponnazhagan S (2004) Osteogenic differentiation of recombinant adeno-associated virus 2-transduced murine mesenchymal stem cells and development of an immunocompetent mouse model for ex vivo osteoporosis gene therapy. Hum Gene Ther 15:1197–1206PubMed
80.
go back to reference Zhang XS, Linkhart TA, Chen ST, Peng H, Wergedal JE, Guttierez GG, Sheng MH, Lau KH, Baylink DJ (2004) Local ex vivo gene therapy with bone marrow stromal cells expressing human BMP4 promotes endosteal bone formation in mice. J Gene Med 6:4–15PubMed Zhang XS, Linkhart TA, Chen ST, Peng H, Wergedal JE, Guttierez GG, Sheng MH, Lau KH, Baylink DJ (2004) Local ex vivo gene therapy with bone marrow stromal cells expressing human BMP4 promotes endosteal bone formation in mice. J Gene Med 6:4–15PubMed
81.
go back to reference Hu J, Qi MC, Zou SJ, Li JH, Luo E (2007) Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res 25:241–251PubMed Hu J, Qi MC, Zou SJ, Li JH, Luo E (2007) Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res 25:241–251PubMed
82.
go back to reference Dumon RJ, Dyoub H, Li JZ, Dumont AS, Kallmes DF, Hankins GR, Helm GA (2002) Ex vivo bone morphogenetic protein-9 gene therapy using human mesenchymal stem cells induces spinal fusion in rodents. Neurosurgery 51:1239–1245 Dumon RJ, Dyoub H, Li JZ, Dumont AS, Kallmes DF, Hankins GR, Helm GA (2002) Ex vivo bone morphogenetic protein-9 gene therapy using human mesenchymal stem cells induces spinal fusion in rodents. Neurosurgery 51:1239–1245
83.
go back to reference Kim D, Cho SW, Her SJ, Yang JY, Kim SW, Kim SY, Shin CS (2006) Retrovirus-mediated gene transfer of receptor activator of nuclear factor-kappaB-Fc prevents bone loss in ovariectomized mice. Stem Cells 24:1798–1805PubMed Kim D, Cho SW, Her SJ, Yang JY, Kim SW, Kim SY, Shin CS (2006) Retrovirus-mediated gene transfer of receptor activator of nuclear factor-kappaB-Fc prevents bone loss in ovariectomized mice. Stem Cells 24:1798–1805PubMed
84.
go back to reference Cho SW, Sun HJ, Yang JY, Jung JY, An JH, Cho HY, Choi HJ, Kim SW, Kim SY, Kim D, Shin CS (2009) Transplantation of mesenchymal stem cells overexpressing RANK-Fc or CXCR4 prevents bone loss in ovariectomized mice. Mol Ther 17:1979–1987PubMed Cho SW, Sun HJ, Yang JY, Jung JY, An JH, Cho HY, Choi HJ, Kim SW, Kim SY, Kim D, Shin CS (2009) Transplantation of mesenchymal stem cells overexpressing RANK-Fc or CXCR4 prevents bone loss in ovariectomized mice. Mol Ther 17:1979–1987PubMed
85.
go back to reference Lien CY, Chih-Yuan Ho K, Lee OK, Blunn GW, Su Y (2009) Restoration of bone mass and strength in glucocorticoid-treated mice by systemic transplantation of CXCR4 and cbfa-1 co-expressing mesenchymal stem cells. J Bone Miner Res 24:837–848PubMed Lien CY, Chih-Yuan Ho K, Lee OK, Blunn GW, Su Y (2009) Restoration of bone mass and strength in glucocorticoid-treated mice by systemic transplantation of CXCR4 and cbfa-1 co-expressing mesenchymal stem cells. J Bone Miner Res 24:837–848PubMed
86.
go back to reference Chen HT, Lee MJ, Chen CH et al (2012) Proliferation and differentiation potential of human adipose-derived mesenchymal stem cells isolated from elderly patients with osteoporotic fractures. J Cell Mol Med 16:582–593PubMed Chen HT, Lee MJ, Chen CH et al (2012) Proliferation and differentiation potential of human adipose-derived mesenchymal stem cells isolated from elderly patients with osteoporotic fractures. J Cell Mol Med 16:582–593PubMed
87.
go back to reference Wang CJ, Wang FS, Huang CC, Yang KD, Weng LH, Huang HY (2005) Treatment for osteonecrosis of the femoral head: comparison of extracorporeal shock waves with core decompression and bone-grafting. J Bone Joint Surg Am 87:2380–2387PubMed Wang CJ, Wang FS, Huang CC, Yang KD, Weng LH, Huang HY (2005) Treatment for osteonecrosis of the femoral head: comparison of extracorporeal shock waves with core decompression and bone-grafting. J Bone Joint Surg Am 87:2380–2387PubMed
88.
go back to reference Feitosa ML, Fadel L, Beltrao-Braga PC et al (2010) Successful transplant of mesenchymal stem cells in induced osteonecrosis of the ovine femoral head: preliminary results. Acta Cir Bras 25:416–422PubMed Feitosa ML, Fadel L, Beltrao-Braga PC et al (2010) Successful transplant of mesenchymal stem cells in induced osteonecrosis of the ovine femoral head: preliminary results. Acta Cir Bras 25:416–422PubMed
89.
go back to reference Chan TW, Dalinka MK, Steinberg ME, Kressel HY (1991) MRI appearance of femoral head osteonecrosis following core decompression and bone grafting. Skeletal Radiol 20:103–107PubMed Chan TW, Dalinka MK, Steinberg ME, Kressel HY (1991) MRI appearance of femoral head osteonecrosis following core decompression and bone grafting. Skeletal Radiol 20:103–107PubMed
90.
go back to reference Wassenaar RP, Verburg H, Taconis WK, van der Eijken JW (1996) Avascular osteonecrosis of the femoral head treated with a vascularized iliac bone graft: preliminary results and follow-up with radiography and MR imaging. Radiographics 16:585–594PubMed Wassenaar RP, Verburg H, Taconis WK, van der Eijken JW (1996) Avascular osteonecrosis of the femoral head treated with a vascularized iliac bone graft: preliminary results and follow-up with radiography and MR imaging. Radiographics 16:585–594PubMed
91.
go back to reference Hernigou P, Beaujean F (2002) Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop 405:14–23PubMed Hernigou P, Beaujean F (2002) Treatment of osteonecrosis with autologous bone marrow grafting. Clin Orthop 405:14–23PubMed
92.
go back to reference Hernigou P, Manicom O, Poignard A et al (2004) Core decompression with marrow stem cells. Operative Tech Orthop 14:68–74 Hernigou P, Manicom O, Poignard A et al (2004) Core decompression with marrow stem cells. Operative Tech Orthop 14:68–74
93.
go back to reference Gangji V, Hauzeur JP, Matos C, De Maertelaer V, Toungouz M, Lambermont M (2004) Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. A pilot study. J Bone Joint Surg Am 86-A:1153–1160PubMed Gangji V, Hauzeur JP, Matos C, De Maertelaer V, Toungouz M, Lambermont M (2004) Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. A pilot study. J Bone Joint Surg Am 86-A:1153–1160PubMed
94.
go back to reference Wang BL, Sun W, Shi ZC et al (2010) Treatment of nontraumatic osteonecrosis of the femoral head with the implantation of core decompression and concentrated autologous bone marrow containing mononuclear cells. Arch Orthop Trauma Surg 130:859–865PubMed Wang BL, Sun W, Shi ZC et al (2010) Treatment of nontraumatic osteonecrosis of the femoral head with the implantation of core decompression and concentrated autologous bone marrow containing mononuclear cells. Arch Orthop Trauma Surg 130:859–865PubMed
95.
go back to reference Hernigou P, Poignard A, Zilber S, Rouard H (2009) Cell therapy of hip osteonecrosis with autologous bone marrow grafting. Indian J Orthop 43:40–45PubMedCentralPubMed Hernigou P, Poignard A, Zilber S, Rouard H (2009) Cell therapy of hip osteonecrosis with autologous bone marrow grafting. Indian J Orthop 43:40–45PubMedCentralPubMed
96.
go back to reference GangJi V, De Maertelaer V, Hauzeur JP (2011) Autologous bone marrow cell implantation in the treatment of non-traumatic osteonecrosis of the femoral head: five year follow-up of a prospective controlled study. Bone 49:1005–1009PubMed GangJi V, De Maertelaer V, Hauzeur JP (2011) Autologous bone marrow cell implantation in the treatment of non-traumatic osteonecrosis of the femoral head: five year follow-up of a prospective controlled study. Bone 49:1005–1009PubMed
97.
go back to reference Hernigou P (1998) Growth factors released from bone marrow are promising tools in orthopedic surgery. Rev Rhum Engl Ed 65:79–84PubMed Hernigou P (1998) Growth factors released from bone marrow are promising tools in orthopedic surgery. Rev Rhum Engl Ed 65:79–84PubMed
98.
go back to reference Noel D, Djouad F, Jorgense C (2002) Regenerative medicine through mesenchymal stem cells for bone and cartilage repair. Curr Opin Investig Drugs 3:1000–1004PubMed Noel D, Djouad F, Jorgense C (2002) Regenerative medicine through mesenchymal stem cells for bone and cartilage repair. Curr Opin Investig Drugs 3:1000–1004PubMed
99.
go back to reference Kuo TK, Ho JH, Lee OK (2009) Mesenchymal stem cell therapy for nonmusculoskeletal diseases: emerging applications. Cell Transplant 18:1013–1028PubMed Kuo TK, Ho JH, Lee OK (2009) Mesenchymal stem cell therapy for nonmusculoskeletal diseases: emerging applications. Cell Transplant 18:1013–1028PubMed
100.
go back to reference Cui Q, Xiao Z, Li X, Saleh KJ, Balian G (2006) Use of genetically engineered bone-marrow stem cells to treat femoral defects: an experimental study. J Bone Joint Surg Am 88(Suppl 3):167–172PubMed Cui Q, Xiao Z, Li X, Saleh KJ, Balian G (2006) Use of genetically engineered bone-marrow stem cells to treat femoral defects: an experimental study. J Bone Joint Surg Am 88(Suppl 3):167–172PubMed
101.
go back to reference Matsuya H, Kushida T, Asada T, Umeda M, Wada T, Iida H (2008) Regenerative effects of transplanting autologous mesenchymal stem cells on corticosteroid-induced osteonecrosis in rabbits. Mod Rhheumatol 18:132–139 Matsuya H, Kushida T, Asada T, Umeda M, Wada T, Iida H (2008) Regenerative effects of transplanting autologous mesenchymal stem cells on corticosteroid-induced osteonecrosis in rabbits. Mod Rhheumatol 18:132–139
102.
go back to reference Li ZH, Liao W, Cui XL et al (2011) Intravenous transplantation of allogeneic bone marrow mesenchymal stem cells and its directional migration to the necrotic femoral head. Int J Med Sci 8:74–83PubMedCentralPubMed Li ZH, Liao W, Cui XL et al (2011) Intravenous transplantation of allogeneic bone marrow mesenchymal stem cells and its directional migration to the necrotic femoral head. Int J Med Sci 8:74–83PubMedCentralPubMed
103.
go back to reference Yan Z, Hang D, Guo C, Chen Z (2009) Fate of mesenchymal stem cells transplanted to osteonecrosis of femoral head. J Orthop Res 27:442–446PubMed Yan Z, Hang D, Guo C, Chen Z (2009) Fate of mesenchymal stem cells transplanted to osteonecrosis of femoral head. J Orthop Res 27:442–446PubMed
104.
go back to reference Peng J, Wen C, Wang A et al (2011) Micro-CT-based bone ceramic scaffolding and its performance after seeding with mesenchymal stem cells for repair of load-bearing bone defect in canine femoral head. J Biomed Mater Res B Appl Biomater 96:316–325PubMed Peng J, Wen C, Wang A et al (2011) Micro-CT-based bone ceramic scaffolding and its performance after seeding with mesenchymal stem cells for repair of load-bearing bone defect in canine femoral head. J Biomed Mater Res B Appl Biomater 96:316–325PubMed
105.
go back to reference Feitosa ML, Fadel L, Beltrao-Braga PC et al (2010) Successful transplant of mesenchymal stem cells in induced osteonecrosis of the ovine femoral head: preliminary results. Acta Cir Bras 25:416–422PubMed Feitosa ML, Fadel L, Beltrao-Braga PC et al (2010) Successful transplant of mesenchymal stem cells in induced osteonecrosis of the ovine femoral head: preliminary results. Acta Cir Bras 25:416–422PubMed
106.
go back to reference Yang J, Wang L, Xu Y, Wang J, Wang Y (2008) An experimental study on treatment of steroid-associated femoral head necrosis with simvastatin and BMSCs transplantation. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 22:290–294PubMed Yang J, Wang L, Xu Y, Wang J, Wang Y (2008) An experimental study on treatment of steroid-associated femoral head necrosis with simvastatin and BMSCs transplantation. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 22:290–294PubMed
107.
go back to reference Wen Q, Zhou L, Zhou C, Zhou M, Luo W, Ma L (2012) Change in hepatocyte growth factor concentration promote mesenchymal stem cell-mediated osteogenic regeneration. J Cell Mol Med 16:1260–1273PubMed Wen Q, Zhou L, Zhou C, Zhou M, Luo W, Ma L (2012) Change in hepatocyte growth factor concentration promote mesenchymal stem cell-mediated osteogenic regeneration. J Cell Mol Med 16:1260–1273PubMed
108.
go back to reference Liu BY, Zhao DW (2009) Treatment for osteonecrosis of femoral head by hVEGF-165 gene modified marrow stromal stem cells under arthroscope. Zhonghua Yi Xue Za Zhi 89:2629–2633PubMed Liu BY, Zhao DW (2009) Treatment for osteonecrosis of femoral head by hVEGF-165 gene modified marrow stromal stem cells under arthroscope. Zhonghua Yi Xue Za Zhi 89:2629–2633PubMed
109.
go back to reference Zhang C, Wang KZ, Qiang H et al (2010) Angiopoiesis and bone regeneration via co-expression of the hVEGF and hBMP genes from an adeno-associated viral vector in vitro and in vivo. Acta Pharmacol Sin 31:821–830PubMed Zhang C, Wang KZ, Qiang H et al (2010) Angiopoiesis and bone regeneration via co-expression of the hVEGF and hBMP genes from an adeno-associated viral vector in vitro and in vivo. Acta Pharmacol Sin 31:821–830PubMed
110.
go back to reference Shi ZB, Wang KZ (2010) Effects of recombinant adeno-associated viral vectors on angiopoiesis and osteogenesis in cultured rabbit bone marrow stem cells via co-expressing hVEGF and hBMP genes: a preliminary study in vitro. Tissue Cell 42:314–321PubMed Shi ZB, Wang KZ (2010) Effects of recombinant adeno-associated viral vectors on angiopoiesis and osteogenesis in cultured rabbit bone marrow stem cells via co-expressing hVEGF and hBMP genes: a preliminary study in vitro. Tissue Cell 42:314–321PubMed
111.
go back to reference Zhang C, Ma Q, Qiang H, Li M, Dang X, Wang K (2010) Study on effect of recombinant adeno-associated virus co-expressing human vascular endothelial growth factor 165 and human bone morphogenetic protein 7 genes on bone regeneration and angiopoiesis in vivo. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 24:1449–1454PubMed Zhang C, Ma Q, Qiang H, Li M, Dang X, Wang K (2010) Study on effect of recombinant adeno-associated virus co-expressing human vascular endothelial growth factor 165 and human bone morphogenetic protein 7 genes on bone regeneration and angiopoiesis in vivo. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 24:1449–1454PubMed
112.
go back to reference Tang TT, Lu B, Yue B et al (2007) Treatment of osteonecrosis of the femoral head with hBMP-2-gene-modified tissue-engineered bone in goats. J Bone Joint Surg Br 89:127–129PubMed Tang TT, Lu B, Yue B et al (2007) Treatment of osteonecrosis of the femoral head with hBMP-2-gene-modified tissue-engineered bone in goats. J Bone Joint Surg Br 89:127–129PubMed
113.
go back to reference Xiao ZM, Jiang H, Zhan XL, Wu ZG, Zhang XL (2008) Treatment of osteonecrosis of femoral head with BMSCs-seeded bio-derived bone materials combined with rhBMP-2 in rabbits. Chin J Traumatol 11:165–170PubMed Xiao ZM, Jiang H, Zhan XL, Wu ZG, Zhang XL (2008) Treatment of osteonecrosis of femoral head with BMSCs-seeded bio-derived bone materials combined with rhBMP-2 in rabbits. Chin J Traumatol 11:165–170PubMed
114.
go back to reference Chang T, Tang K, Tao X et al (2010) Treatment of early avascular necrosis of femoral head by core decompression combined with autologous bone marrow mesenchymal stem cells transplantation. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 24:739–743PubMed Chang T, Tang K, Tao X et al (2010) Treatment of early avascular necrosis of femoral head by core decompression combined with autologous bone marrow mesenchymal stem cells transplantation. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 24:739–743PubMed
115.
go back to reference Zhao D, Cui D, Wang B et al (2012) Treatment of early stage osteonecrosis of the femoral head with autologous implantation of bone marrow-derived and cultured mesenchymal stem cells. Bone 50:325–330PubMed Zhao D, Cui D, Wang B et al (2012) Treatment of early stage osteonecrosis of the femoral head with autologous implantation of bone marrow-derived and cultured mesenchymal stem cells. Bone 50:325–330PubMed
116.
go back to reference Pak J (2012) Autologous adipose tissue-derived stem cells induce persistent bone-like tissue in osteonecrotic femoral heads. Pain Physician 15:75–85PubMed Pak J (2012) Autologous adipose tissue-derived stem cells induce persistent bone-like tissue in osteonecrotic femoral heads. Pain Physician 15:75–85PubMed
117.
go back to reference Byers PH, Wallis GA, Willing MC (1991) Osteogenesis imperfecta: translation of mutation to phenotype. J Med Genet 28:433–442PubMed Byers PH, Wallis GA, Willing MC (1991) Osteogenesis imperfecta: translation of mutation to phenotype. J Med Genet 28:433–442PubMed
118.
go back to reference Cabral WA, Marini JC (2004) High proportion of mutant osteoblasts is compatible with normal skeletal function in mosaic carriers of osteogenesis imperfecta. Am J Hum Genet 74:752–760PubMedCentralPubMed Cabral WA, Marini JC (2004) High proportion of mutant osteoblasts is compatible with normal skeletal function in mosaic carriers of osteogenesis imperfecta. Am J Hum Genet 74:752–760PubMedCentralPubMed
119.
go back to reference Millington-Ward S, Allers C, Tuohy G et al (2002) Validation in mesenchymal progenitor cells of a mutation-independent ex vivo approach to gene therapy for osteogenesis imperfecta. Hum Mol Gent 11:2201–2206 Millington-Ward S, Allers C, Tuohy G et al (2002) Validation in mesenchymal progenitor cells of a mutation-independent ex vivo approach to gene therapy for osteogenesis imperfecta. Hum Mol Gent 11:2201–2206
120.
go back to reference Caplan AI (1995) Osteogenesis imperfecta, rehabilitation medicine, fundamental research and mesenchymal stem cells. Connect Tissue Res 31:S9–S14PubMed Caplan AI (1995) Osteogenesis imperfecta, rehabilitation medicine, fundamental research and mesenchymal stem cells. Connect Tissue Res 31:S9–S14PubMed
121.
go back to reference Pereira RF, O’Hara MD, Laptev AV et al (1998) Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Pro Natl Acad Sci USA 95:1142–1147 Pereira RF, O’Hara MD, Laptev AV et al (1998) Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Pro Natl Acad Sci USA 95:1142–1147
122.
go back to reference Guillot PV, Abass O, Bassett JH et al (2008) Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice. Blood 111:1717–1725PubMed Guillot PV, Abass O, Bassett JH et al (2008) Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice. Blood 111:1717–1725PubMed
123.
go back to reference Horwitz EM, Prockop DJ, Fitzpatrick LA et al (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313PubMed Horwitz EM, Prockop DJ, Fitzpatrick LA et al (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313PubMed
124.
go back to reference Horwitz EM, Prockop DJ, Gordon PL et al (2001) Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 97:1227–1231PubMed Horwitz EM, Prockop DJ, Gordon PL et al (2001) Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 97:1227–1231PubMed
125.
go back to reference Horwitz EM, Gordon PL, Koo WK et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 99:8932–8937PubMed Horwitz EM, Gordon PL, Koo WK et al (2002) Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci USA 99:8932–8937PubMed
126.
go back to reference Le Blanc K, Gotherstrom C, Ringden O et al (2005) Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patients with severe osteogenesis imperfecta. Transplantation 79:1607–1614PubMed Le Blanc K, Gotherstrom C, Ringden O et al (2005) Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patients with severe osteogenesis imperfecta. Transplantation 79:1607–1614PubMed
127.
go back to reference Millington-Ward S, McMahon HP, Allen D et al (2004) RNAi of COL1A1 in mesenchymal progenitor cells. Eur J Hum Genet 12:864–866PubMed Millington-Ward S, McMahon HP, Allen D et al (2004) RNAi of COL1A1 in mesenchymal progenitor cells. Eur J Hum Genet 12:864–866PubMed
128.
go back to reference Ljunggren O, Lindahl K, Rubin CJ, Kindmark A (2011) Allele-specific gene silencing in osteogenesis imperfecta. Endocr Dev 21:85–90PubMed Ljunggren O, Lindahl K, Rubin CJ, Kindmark A (2011) Allele-specific gene silencing in osteogenesis imperfecta. Endocr Dev 21:85–90PubMed
129.
go back to reference Jaganathan BG, Bonnet D (2012) Human mesenchymal stromal cells senesce with exogenous OCT4. Cytotherapy 14:1054–1063PubMed Jaganathan BG, Bonnet D (2012) Human mesenchymal stromal cells senesce with exogenous OCT4. Cytotherapy 14:1054–1063PubMed
130.
go back to reference Symonds CE, Galderisi U, Giordano A (2009) Aging of the inceptive cellular population: the relationship between stem cells and aging. Aging (Albany NY) 1:372–381 Symonds CE, Galderisi U, Giordano A (2009) Aging of the inceptive cellular population: the relationship between stem cells and aging. Aging (Albany NY) 1:372–381
131.
go back to reference Galderisi U, Helmbold H, Squillaro T, Alessio N, Komm N, Khadang B, Cipollaro M, Bohn W, Giordano A (2009) In vitro senescence of rat mesenchymal stem cell is accompanied by downregulation of stemness-related and DNA damage repair genes. Stem Cells Dev 18:1033–1042PubMed Galderisi U, Helmbold H, Squillaro T, Alessio N, Komm N, Khadang B, Cipollaro M, Bohn W, Giordano A (2009) In vitro senescence of rat mesenchymal stem cell is accompanied by downregulation of stemness-related and DNA damage repair genes. Stem Cells Dev 18:1033–1042PubMed
132.
go back to reference Liu TM, Ng WM, Tan HS, Vinitha D, Yang Z, Fan JB, Zou Y, Hui JH, Lee EH, Lim B (2012) Molecular basis of immortalization of human mesenchymal stem cells by combination of p53 knockdown and human telomerase reverse transcriptase overexpression. Stem Cells Dev Aug 21 [Epub ahead of print] Liu TM, Ng WM, Tan HS, Vinitha D, Yang Z, Fan JB, Zou Y, Hui JH, Lee EH, Lim B (2012) Molecular basis of immortalization of human mesenchymal stem cells by combination of p53 knockdown and human telomerase reverse transcriptase overexpression. Stem Cells Dev Aug 21 [Epub ahead of print]
Metadata
Title
Therapeutic application of mesenchymal stem cells in bone and joint diseases
Authors
Yi Liu
Jianmei Wu
Youming Zhu
Jinxiang Han
Publication date
01-02-2014
Publisher
Springer Milan
Published in
Clinical and Experimental Medicine / Issue 1/2014
Print ISSN: 1591-8890
Electronic ISSN: 1591-9528
DOI
https://doi.org/10.1007/s10238-012-0218-1

Other articles of this Issue 1/2014

Clinical and Experimental Medicine 1/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine