Skip to main content
Top
Published in: Journal of the Association for Research in Otolaryngology 2/2015

01-04-2015 | Research Article

The Olivocochlear Reflex Strength and Cochlear Sensitivity are Independently Modulated by Auditory Cortex Microstimulation

Authors: Constantino D. Dragicevic, Cristian Aedo, Alex León, Macarena Bowen, Natalia Jara, Gonzalo Terreros, Luis Robles, Paul H. Delano

Published in: Journal of the Association for Research in Otolaryngology | Issue 2/2015

Login to get access

Abstract

In mammals, efferent projections to the cochlear receptor are constituted by olivocochlear (OC) fibers that originate in the superior olivary complex. Medial and lateral OC neurons make synapses with outer hair cells and with auditory nerve fibers, respectively. In addition to the OC system, there are also descending projections from the auditory cortex that are directed towards the thalamus, inferior colliculus, cochlear nucleus, and superior olivary complex. Olivocochlear function can be assessed by measuring a brainstem reflex mediated by auditory nerve fibers, cochlear nucleus neurons, and OC fibers. Although it is known that the OC reflex is activated by contralateral acoustic stimulation and produces a suppression of cochlear responses, the influence of cortical descending pathways in the OC reflex is largely unknown. Here, we used auditory cortex electrical microstimulation in chinchillas to study a possible cortical modulation of cochlear and auditory nerve responses to tones in the absence and presence of contralateral noise. We found that cortical microstimulation produces two different peripheral modulations: (i) changes in cochlear sensitivity evidenced by amplitude modulation of cochlear microphonics and auditory nerve compound action potentials and (ii) enhancement or suppression of the OC reflex strength as measured by auditory nerve responses, which depended on the intersubject variability of the OC reflex. Moreover, both corticofugal effects were not correlated, suggesting the presence of two functionally different efferent pathways. These results demonstrate that auditory cortex electrical microstimulation independently modulates the OC reflex strength and cochlear sensitivity.
Literature
go back to reference Anderson LA, Malmierca MS (2013) The effect of auditory cortex deactivation on stimulus-specific adaptation in the inferior colliculus of the rat. Eur J Neurosci 37:52–62CrossRefPubMed Anderson LA, Malmierca MS (2013) The effect of auditory cortex deactivation on stimulus-specific adaptation in the inferior colliculus of the rat. Eur J Neurosci 37:52–62CrossRefPubMed
go back to reference Antunes FM, Malmierca MS (2011) Effect of auditory cortex deactivation on stimulus-specific adaptation in the medial geniculate body. J Neurosci 31:17306–16CrossRefPubMed Antunes FM, Malmierca MS (2011) Effect of auditory cortex deactivation on stimulus-specific adaptation in the medial geniculate body. J Neurosci 31:17306–16CrossRefPubMed
go back to reference Azeredo WJ, Kliment ML, Morley BJ, Relkin E, Slepecky NB, Sterns A, Warr WB, Weekly JM, Woods CI (1999) Olivocochlear neurons in the chinchilla: a retrograde fluorescent labelling study. Hear Res 134:57–70CrossRefPubMed Azeredo WJ, Kliment ML, Morley BJ, Relkin E, Slepecky NB, Sterns A, Warr WB, Weekly JM, Woods CI (1999) Olivocochlear neurons in the chinchilla: a retrograde fluorescent labelling study. Hear Res 134:57–70CrossRefPubMed
go back to reference Backus BC, Guinan JJ Jr (2007) Measurement of the distribution of medial olivocochlear acoustic reflex strengths across normal-hearing individuals via otoacoustic emissions. J Assoc Res Otolaryngol 8:484–96CrossRefPubMedCentralPubMed Backus BC, Guinan JJ Jr (2007) Measurement of the distribution of medial olivocochlear acoustic reflex strengths across normal-hearing individuals via otoacoustic emissions. J Assoc Res Otolaryngol 8:484–96CrossRefPubMedCentralPubMed
go back to reference Bajo VM, Moore DR (2005) Descending projections from the auditory cortex to the inferior colliculus in the gerbil, Meriones unguiculatus. J Comp Neurol 486:101–16CrossRefPubMed Bajo VM, Moore DR (2005) Descending projections from the auditory cortex to the inferior colliculus in the gerbil, Meriones unguiculatus. J Comp Neurol 486:101–16CrossRefPubMed
go back to reference Brown DJ, Patuzzi RB (2010) Evidence that the compound action potential (CAP) from the auditory nerve is a stationary potential generated across dura mater. Hear Res 267:12–26CrossRefPubMed Brown DJ, Patuzzi RB (2010) Evidence that the compound action potential (CAP) from the auditory nerve is a stationary potential generated across dura mater. Hear Res 267:12–26CrossRefPubMed
go back to reference Buño W Jr (1978) Auditory nerve fiber activity influenced by contralateral ear sound stimulation. Exp Neurol 59:62–74CrossRefPubMed Buño W Jr (1978) Auditory nerve fiber activity influenced by contralateral ear sound stimulation. Exp Neurol 59:62–74CrossRefPubMed
go back to reference Chambers AR, Hancock KE, Maison SF, Liberman MC, Polley DB (2012) Sound-evoked olivocochlear activation in unanesthetized mice. J Assoc Res Otolaryngol 13:209–17CrossRefPubMedCentralPubMed Chambers AR, Hancock KE, Maison SF, Liberman MC, Polley DB (2012) Sound-evoked olivocochlear activation in unanesthetized mice. J Assoc Res Otolaryngol 13:209–17CrossRefPubMedCentralPubMed
go back to reference Clarac F (2008) Some historical reflections on the neural control of locomotion. Brain Res Rev 57:13–21CrossRefPubMed Clarac F (2008) Some historical reflections on the neural control of locomotion. Brain Res Rev 57:13–21CrossRefPubMed
go back to reference Delano PH, Elgueda D, Hamame CM, Robles L (2007) Selective attention to visual stimuli reduces cochlear sensitivity in chinchillas. J Neurosci 27:4146–53CrossRefPubMed Delano PH, Elgueda D, Hamame CM, Robles L (2007) Selective attention to visual stimuli reduces cochlear sensitivity in chinchillas. J Neurosci 27:4146–53CrossRefPubMed
go back to reference Delano PH, Pavez E, Robles L, Maldonado PE (2008) Stimulus-dependent oscillations and evoked potentials in chinchilla auditory cortex. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194:693–700CrossRefPubMed Delano PH, Pavez E, Robles L, Maldonado PE (2008) Stimulus-dependent oscillations and evoked potentials in chinchilla auditory cortex. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194:693–700CrossRefPubMed
go back to reference De Ridder D, Verstraeten E, Van der Kelen K, De Mulder G, Sunaert S, Verlooy J, Van de Heyning P, Moller A (2005) Transcranial magnetic stimulation for tinnitus: influence of tinnitus duration on stimulation parameter choice and maximal tinnitus suppression. Otol Neurotol 26:616–9CrossRefPubMed De Ridder D, Verstraeten E, Van der Kelen K, De Mulder G, Sunaert S, Verlooy J, Van de Heyning P, Moller A (2005) Transcranial magnetic stimulation for tinnitus: influence of tinnitus duration on stimulation parameter choice and maximal tinnitus suppression. Otol Neurotol 26:616–9CrossRefPubMed
go back to reference de Venecia RK, Liberman MC, Guinan JJ Jr, Brown MC (2005) Medial olivocochlear reflex interneurons are located in the posteroventral cochlear nucleus: a kainic acid lesion study in guinea pigs. J Comp Neurol 487:345–60CrossRefPubMedCentralPubMed de Venecia RK, Liberman MC, Guinan JJ Jr, Brown MC (2005) Medial olivocochlear reflex interneurons are located in the posteroventral cochlear nucleus: a kainic acid lesion study in guinea pigs. J Comp Neurol 487:345–60CrossRefPubMedCentralPubMed
go back to reference Doucet JR, Rose L, Ryugo DK (2002) The cellular origin of corticofugal projections to the superior olivary complex in the rat. Brain Res 925:28–41CrossRefPubMed Doucet JR, Rose L, Ryugo DK (2002) The cellular origin of corticofugal projections to the superior olivary complex in the rat. Brain Res 925:28–41CrossRefPubMed
go back to reference Eldredge DH, Miller JD, Bohne BA (1981) A frequency-position map for the chinchilla cochlea. J Acoust Soc Am 69:1091–1095CrossRefPubMed Eldredge DH, Miller JD, Bohne BA (1981) A frequency-position map for the chinchilla cochlea. J Acoust Soc Am 69:1091–1095CrossRefPubMed
go back to reference Elgueda D, Delano PH, Robles L (2011) Effects of electrical stimulation of olivocochlear fibers in cochlear potentials in the chinchilla. J Assoc Res Otolaryngol 12:317–27CrossRefPubMedCentralPubMed Elgueda D, Delano PH, Robles L (2011) Effects of electrical stimulation of olivocochlear fibers in cochlear potentials in the chinchilla. J Assoc Res Otolaryngol 12:317–27CrossRefPubMedCentralPubMed
go back to reference Feldman AG, Orlovsky GN (1972) The influence of different descending systems on the tonic stretch reflex in the cat. Exp Neurol 37:481–94CrossRefPubMed Feldman AG, Orlovsky GN (1972) The influence of different descending systems on the tonic stretch reflex in the cat. Exp Neurol 37:481–94CrossRefPubMed
go back to reference Fenoy AJ, Severson MA, Volkov IO, Brugge JF, Howard MA 3rd (2006) Hearing suppression induced by electrical stimulation of human auditory cortex. Brain Res 1118:75–83CrossRefPubMed Fenoy AJ, Severson MA, Volkov IO, Brugge JF, Howard MA 3rd (2006) Hearing suppression induced by electrical stimulation of human auditory cortex. Brain Res 1118:75–83CrossRefPubMed
go back to reference Fregni F, Marcondes R, Boggio PS, Marcolin MA, Rigonatti SP, Sanchez G, Nitsche MA, Pascual-Leone A (2006) Transient tinnitus suppression induced by repetitive transcranial magnetic stimulation and transcranial direct current stimulation. Eur J Neurol 13:996–1001CrossRefPubMed Fregni F, Marcondes R, Boggio PS, Marcolin MA, Rigonatti SP, Sanchez G, Nitsche MA, Pascual-Leone A (2006) Transient tinnitus suppression induced by repetitive transcranial magnetic stimulation and transcranial direct current stimulation. Eur J Neurol 13:996–1001CrossRefPubMed
go back to reference Gaucher Q, Edeline JM, Gourévitch B (2012) How different are the local field potentials and spiking activities? Insights from multi-electrodes arrays. J Physiol Paris 106:93–103CrossRefPubMed Gaucher Q, Edeline JM, Gourévitch B (2012) How different are the local field potentials and spiking activities? Insights from multi-electrodes arrays. J Physiol Paris 106:93–103CrossRefPubMed
go back to reference Groff JA, Liberman MC (2003) Modulation of cochlear afferent response by the lateral olivocochlear system: activation via electrical stimulation of the inferior colliculus. J Neurophysiol 90:3178–200CrossRefPubMed Groff JA, Liberman MC (2003) Modulation of cochlear afferent response by the lateral olivocochlear system: activation via electrical stimulation of the inferior colliculus. J Neurophysiol 90:3178–200CrossRefPubMed
go back to reference Guitton MJ, Avan P, Puel JL, Bonfils P (2004) Medial olivocochlear efferent activity in awake guinea pigs. Neuroreport 15:1379–82CrossRefPubMed Guitton MJ, Avan P, Puel JL, Bonfils P (2004) Medial olivocochlear efferent activity in awake guinea pigs. Neuroreport 15:1379–82CrossRefPubMed
go back to reference Harel N, Mori N, Sawada S, Mount RJ, Harrison RV (2000) Three distinct auditory areas of cortex (AI, AII, and AAF) defined by optical imaging of intrinsic signals. Neuroimage 11:302–12CrossRefPubMed Harel N, Mori N, Sawada S, Mount RJ, Harrison RV (2000) Three distinct auditory areas of cortex (AI, AII, and AAF) defined by optical imaging of intrinsic signals. Neuroimage 11:302–12CrossRefPubMed
go back to reference Harrison RV, Kakigi A, Hirakawa H, Harel N, Mount RJ (1996) Tonotopic mapping in auditory cortex of the chinchilla. Hear Res 100:157–63CrossRefPubMed Harrison RV, Kakigi A, Hirakawa H, Harel N, Mount RJ (1996) Tonotopic mapping in auditory cortex of the chinchilla. Hear Res 100:157–63CrossRefPubMed
go back to reference Kawase T, Liberman MC (1993) Antimasking effects of the olivocochlear reflex. I. Enhancement of compound action potentials to masked tones. J Neurophysiol 70:2519–32PubMed Kawase T, Liberman MC (1993) Antimasking effects of the olivocochlear reflex. I. Enhancement of compound action potentials to masked tones. J Neurophysiol 70:2519–32PubMed
go back to reference Khalfa S, Bougeard R, Morand N, Veuillet E, Isnard J, Guenot M, Ryvlin P, Fischer C, Collet L (2001) Evidence of peripheral auditory activity modulation by the auditory cortex in humans. Neuroscience 104:347–58CrossRefPubMed Khalfa S, Bougeard R, Morand N, Veuillet E, Isnard J, Guenot M, Ryvlin P, Fischer C, Collet L (2001) Evidence of peripheral auditory activity modulation by the auditory cortex in humans. Neuroscience 104:347–58CrossRefPubMed
go back to reference Kong L, Xiong C, Li L, Yan J (2014) Frequency-specific corticofugal modulation of the dorsal cochlear nucleus in mice. Front Syst Neurosci 1;8:125. Kong L, Xiong C, Li L, Yan J (2014) Frequency-specific corticofugal modulation of the dorsal cochlear nucleus in mice. Front Syst Neurosci 1;8:125.
go back to reference Lamas V, Alvarado JC, Carro J, Merchán MA (2013) Long-term evolution of brainstem electrical evoked responses to sound after restricted ablation of the auditory cortex. PLoS One 8(9):e73585CrossRefPubMedCentralPubMed Lamas V, Alvarado JC, Carro J, Merchán MA (2013) Long-term evolution of brainstem electrical evoked responses to sound after restricted ablation of the auditory cortex. PLoS One 8(9):e73585CrossRefPubMedCentralPubMed
go back to reference Langguth B, De Ridder D (2013) Tinnitus: therapeutic use of superficial brain stimulation. Handb Clin Neurol 116:441–67CrossRefPubMed Langguth B, De Ridder D (2013) Tinnitus: therapeutic use of superficial brain stimulation. Handb Clin Neurol 116:441–67CrossRefPubMed
go back to reference Larsen E, Liberman MC (2009) Slow build-up of cochlear suppression during sustained contralateral noise: central modulation of olivocochlear efferents? Hear Res 256:1–10CrossRefPubMedCentralPubMed Larsen E, Liberman MC (2009) Slow build-up of cochlear suppression during sustained contralateral noise: central modulation of olivocochlear efferents? Hear Res 256:1–10CrossRefPubMedCentralPubMed
go back to reference Leon A, Elgueda D, Silva MA, Hamamé CM, Delano PH (2012) Auditory cortex basal activity modulates cochlear responses in chinchillas. PLoS One 7(4):e36203CrossRefPubMedCentralPubMed Leon A, Elgueda D, Silva MA, Hamamé CM, Delano PH (2012) Auditory cortex basal activity modulates cochlear responses in chinchillas. PLoS One 7(4):e36203CrossRefPubMedCentralPubMed
go back to reference Liberman MC (1989) Rapid assessment of sound-evoked olivocochlear feedback: suppression of compound action potentials by contralateral sound. Hear Res 38:47–56CrossRefPubMed Liberman MC (1989) Rapid assessment of sound-evoked olivocochlear feedback: suppression of compound action potentials by contralateral sound. Hear Res 38:47–56CrossRefPubMed
go back to reference Luo F, Wang Q, Kashani A, Yan J (2008) Corticofugal modulation of initial sound processing in the brain. J Neurosci 28:11615–21CrossRefPubMed Luo F, Wang Q, Kashani A, Yan J (2008) Corticofugal modulation of initial sound processing in the brain. J Neurosci 28:11615–21CrossRefPubMed
go back to reference Liu X, Yan Y, Wang Y, Yan J (2010) Corticofugal modulation of initial neural processing of sound information from the ipsilateral ear in the mouse. PLoS One 5(11):e14038CrossRefPubMedCentralPubMed Liu X, Yan Y, Wang Y, Yan J (2010) Corticofugal modulation of initial neural processing of sound information from the ipsilateral ear in the mouse. PLoS One 5(11):e14038CrossRefPubMedCentralPubMed
go back to reference Maison SF, Liberman MC (2000) Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength. J Neurosci 20:4701–7PubMed Maison SF, Liberman MC (2000) Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength. J Neurosci 20:4701–7PubMed
go back to reference Malmierca and Ryugo (2011) Descending connections of the auditory cortex to the midbrain and the brainstem. Chapter 9, The auditory cortex, Eds. Winer JA and Schreiner CE, Springer. Malmierca and Ryugo (2011) Descending connections of the auditory cortex to the midbrain and the brainstem. Chapter 9, The auditory cortex, Eds. Winer JA and Schreiner CE, Springer.
go back to reference McIntyre D, Ring C, Carroll D (2004) Effects of arousal and natural baroreceptor activation on the human muscle stretch reflex. Psychophysiology 41:954–60CrossRefPubMed McIntyre D, Ring C, Carroll D (2004) Effects of arousal and natural baroreceptor activation on the human muscle stretch reflex. Psychophysiology 41:954–60CrossRefPubMed
go back to reference Mulders WH, Robertson D (2000) Evidence for direct cortical innervation of medial olivocochlear neurones in rats. Hear Res 144:65–72CrossRefPubMed Mulders WH, Robertson D (2000) Evidence for direct cortical innervation of medial olivocochlear neurones in rats. Hear Res 144:65–72CrossRefPubMed
go back to reference Oatman LC (1971) Role of visual attention on auditory evoked potentials in unanesthetized cats. Exp Neurol 32:341–356CrossRefPubMed Oatman LC (1971) Role of visual attention on auditory evoked potentials in unanesthetized cats. Exp Neurol 32:341–356CrossRefPubMed
go back to reference Perrot X, Ryvlin P, Isnard J, Guénot M, Catenoix H, Fischer C, Mauguière F, Collet L (2006) Evidence for corticofugal modulation of peripheral auditory activity in humans. Cereb Cortex 16:941–8CrossRefPubMed Perrot X, Ryvlin P, Isnard J, Guénot M, Catenoix H, Fischer C, Mauguière F, Collet L (2006) Evidence for corticofugal modulation of peripheral auditory activity in humans. Cereb Cortex 16:941–8CrossRefPubMed
go back to reference Robles L, Delano PH (2008) Efferent system. The senses: a comprehensive reference. Academic Press, London, pp 413–445CrossRef Robles L, Delano PH (2008) Efferent system. The senses: a comprehensive reference. Academic Press, London, pp 413–445CrossRef
go back to reference Saldaña E, Feliciano M, Mugnaini E (1996) Distribution of descending projections from primary auditory neocortex to inferior colliculus mimics the topography of intracollicular projections. J Comp Neurol 371:15–40CrossRefPubMed Saldaña E, Feliciano M, Mugnaini E (1996) Distribution of descending projections from primary auditory neocortex to inferior colliculus mimics the topography of intracollicular projections. J Comp Neurol 371:15–40CrossRefPubMed
go back to reference Schofield BR (2010) Central descending auditory pathways. Auditory and vestibular efferents. Springer, New York, pp 261–290 Schofield BR (2010) Central descending auditory pathways. Auditory and vestibular efferents. Springer, New York, pp 261–290
go back to reference Schofield BR, Coomes DL (2005) Auditory cortical projections to the cochlear nucleus in guinea pigs. Hear Res 199:89–102CrossRefPubMed Schofield BR, Coomes DL (2005) Auditory cortical projections to the cochlear nucleus in guinea pigs. Hear Res 199:89–102CrossRefPubMed
go back to reference Sellick P, Patuzzi R, Robertson D (2003) Primary afferent and cochlear nucleus contributions to extracellular potentials during tone-bursts. Hear Res 176:42–58CrossRefPubMed Sellick P, Patuzzi R, Robertson D (2003) Primary afferent and cochlear nucleus contributions to extracellular potentials during tone-bursts. Hear Res 176:42–58CrossRefPubMed
go back to reference Sridhar TS, Liberman MC, Brown MC, Sewell WF (1995) A novel cholinergic “slow effect” of efferent stimulation on cochlear potentials in the guinea pig. J Neurosci 15:3667–78PubMed Sridhar TS, Liberman MC, Brown MC, Sewell WF (1995) A novel cholinergic “slow effect” of efferent stimulation on cochlear potentials in the guinea pig. J Neurosci 15:3667–78PubMed
go back to reference Srinivasan S, Keil A, Stratis K, Woodruff Carr KL, Smith DW (2012) Effects of cross-modal selective attention on the sensory periphery: cochlear sensitivity is altered by selective attention. Neuroscience 223:325–32CrossRefPubMedCentralPubMed Srinivasan S, Keil A, Stratis K, Woodruff Carr KL, Smith DW (2012) Effects of cross-modal selective attention on the sensory periphery: cochlear sensitivity is altered by selective attention. Neuroscience 223:325–32CrossRefPubMedCentralPubMed
go back to reference Straka H (2010) Ontogenetic rules and constraints of vestibulo-ocular reflex development. Curr Opin Neurobiol 20:689–95CrossRefPubMed Straka H (2010) Ontogenetic rules and constraints of vestibulo-ocular reflex development. Curr Opin Neurobiol 20:689–95CrossRefPubMed
go back to reference Tang AH, Schroeder LA (1973) Spinal-cord depressant effects of ketamine and etoxadrol in the cat and the rat. Anesthesiology 39:37–43CrossRefPubMed Tang AH, Schroeder LA (1973) Spinal-cord depressant effects of ketamine and etoxadrol in the cat and the rat. Anesthesiology 39:37–43CrossRefPubMed
go back to reference Thompson AM, Thompson GC (1993) Relationship of descending inferior colliculus projections to olivocochlear neurons. J Comp Neurol 335:402–12CrossRefPubMed Thompson AM, Thompson GC (1993) Relationship of descending inferior colliculus projections to olivocochlear neurons. J Comp Neurol 335:402–12CrossRefPubMed
go back to reference Velluti R, Pedemonte M, Garcia-Austt E (1989) Correlative changes of auditory nerve and microphonic potentials throughout sleep. Hear Res 39:203–208CrossRefPubMed Velluti R, Pedemonte M, Garcia-Austt E (1989) Correlative changes of auditory nerve and microphonic potentials throughout sleep. Hear Res 39:203–208CrossRefPubMed
go back to reference Wittekindt A, Kaiser J, Abel C (2014) Attentional modulation of the inner ear: a combined otoacoustic emission and EEG study. J Neurosci 34:9995–10002CrossRefPubMed Wittekindt A, Kaiser J, Abel C (2014) Attentional modulation of the inner ear: a combined otoacoustic emission and EEG study. J Neurosci 34:9995–10002CrossRefPubMed
go back to reference Xiao Z, Suga N (2002a) Modulation of cochlear hair cells by the auditory cortex in the mustached bat. Nat Neurosci 5:57–63CrossRefPubMed Xiao Z, Suga N (2002a) Modulation of cochlear hair cells by the auditory cortex in the mustached bat. Nat Neurosci 5:57–63CrossRefPubMed
go back to reference Zhang J (2013) Auditory cortex stimulation to suppress tinnitus: mechanisms and strategies. Hear Res 295:38–57CrossRefPubMed Zhang J (2013) Auditory cortex stimulation to suppress tinnitus: mechanisms and strategies. Hear Res 295:38–57CrossRefPubMed
Metadata
Title
The Olivocochlear Reflex Strength and Cochlear Sensitivity are Independently Modulated by Auditory Cortex Microstimulation
Authors
Constantino D. Dragicevic
Cristian Aedo
Alex León
Macarena Bowen
Natalia Jara
Gonzalo Terreros
Luis Robles
Paul H. Delano
Publication date
01-04-2015
Publisher
Springer US
Published in
Journal of the Association for Research in Otolaryngology / Issue 2/2015
Print ISSN: 1525-3961
Electronic ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-015-0509-9

Other articles of this Issue 2/2015

Journal of the Association for Research in Otolaryngology 2/2015 Go to the issue