Skip to main content
Top
Published in: Journal of the Association for Research in Otolaryngology 1/2010

01-03-2010

The Effect of Contralateral Acoustic Stimulation on Spontaneous Otoacoustic Emissions

Authors: Wei Zhao, Sumitrajit Dhar

Published in: Journal of the Association for Research in Otolaryngology | Issue 1/2010

Login to get access

Abstract

Evoked otoacoustic emissions are often used to study the medial olivocochlear (MOC) efferents in humans. There has been concern that the emission-evoking stimulus may itself elicit efferent activity and alter the evoked otoacoustic emission. Spontaneous otoacoustic emissions (SOAEs) are hence advantageous as no external stimulation is necessary to record the response in the test ear. Contralateral acoustic stimulation (CAS) has been shown to suppress SOAE level and elevate SOAE frequency, but the time course of these effects is largely unknown. By utilizing the Choi–Williams distribution, here we report a gradual adaptation during the presence of CAS and an overshoot following CAS offset in both SOAE magnitude and frequency from six normal-hearing female human subjects. Furthermore, we have quantified the time constants of both magnitude and frequency shifts at the onset, presence, and offset of four levels of CAS. Most studies using contralateral elicitors do not stringently control the middle-ear muscle (MEM) reflex, leaving the results difficult to interpret. In addition to clinically available measures of the MEM reflex, we have incorporated a sensitive laboratory technique to monitor the MEM reflex in our subjects, allowing us to interpret the results with greater confidence.
Literature
go back to reference Backus BC, Guinan JJ Jr (2006) Time-course of the human medial olivocochlear reflex. J. Acoust. Soc. Am. 119:2889–2904CrossRefPubMed Backus BC, Guinan JJ Jr (2006) Time-course of the human medial olivocochlear reflex. J. Acoust. Soc. Am. 119:2889–2904CrossRefPubMed
go back to reference Bassim MK, Miller RL, Buss E, Smith DW (2003) Rapid adaptation of the 2f1–f2 DPOAE in humans: binaural and contralateral stimulation effects. Hear Res 182:140–152CrossRefPubMed Bassim MK, Miller RL, Buss E, Smith DW (2003) Rapid adaptation of the 2f1–f2 DPOAE in humans: binaural and contralateral stimulation effects. Hear Res 182:140–152CrossRefPubMed
go back to reference Brown MC (1989) Morphology and response properties of single olivocochlear fibers in the guinea pig. Hear. Res. 40:93–109CrossRefPubMed Brown MC (1989) Morphology and response properties of single olivocochlear fibers in the guinea pig. Hear. Res. 40:93–109CrossRefPubMed
go back to reference Burns EM, Harrison WA, Bulen JC, Keefe DH (1993) Voluntary contraction of middle ear muscles: effects on input impedance, energy reflectance and spontaneous otoacoustic emissions. Hear. Res. 67:117–127CrossRefPubMed Burns EM, Harrison WA, Bulen JC, Keefe DH (1993) Voluntary contraction of middle ear muscles: effects on input impedance, energy reflectance and spontaneous otoacoustic emissions. Hear. Res. 67:117–127CrossRefPubMed
go back to reference Cohen L (1995) Time–frequency analysis. Prentice Hall, Englewood Cliffs Cohen L (1995) Time–frequency analysis. Prentice Hall, Englewood Cliffs
go back to reference Collet L, Kemp DT, Veuillet E, Duclaux R, Moulin A, Morgon A (1990) Effect of contralateral auditory stimuli on active cochlear micro-mechanical properties in human subjects. Hear. Res. 43:251–261CrossRefPubMed Collet L, Kemp DT, Veuillet E, Duclaux R, Moulin A, Morgon A (1990) Effect of contralateral auditory stimuli on active cochlear micro-mechanical properties in human subjects. Hear. Res. 43:251–261CrossRefPubMed
go back to reference Cooper NP, Guinan JJ Jr (2003) Separate mechanical processes underlie fast and slow effects of medial olivocochlear efferent activity. J. Physiol. 548:307–312CrossRefPubMed Cooper NP, Guinan JJ Jr (2003) Separate mechanical processes underlie fast and slow effects of medial olivocochlear efferent activity. J. Physiol. 548:307–312CrossRefPubMed
go back to reference Dolan DF, Guo MH, Nuttall AL (1997) Frequency-dependent enhancement of basilar membrane velocity during olivocochlear bundle stimulation. J. Acoust. Soc. Am. 102:3587–3596CrossRefPubMed Dolan DF, Guo MH, Nuttall AL (1997) Frequency-dependent enhancement of basilar membrane velocity during olivocochlear bundle stimulation. J. Acoust. Soc. Am. 102:3587–3596CrossRefPubMed
go back to reference Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S (1994) Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79:705–715CrossRefPubMed Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S (1994) Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79:705–715CrossRefPubMed
go back to reference Elgoyhen AB, Vetter DE, Katz E, Rothlin CV, Heinemann SF, Boulter J (2001) Alpha10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc. Natl. Acad. Sci. USA 98:3501–3506CrossRefPubMed Elgoyhen AB, Vetter DE, Katz E, Rothlin CV, Heinemann SF, Boulter J (2001) Alpha10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc. Natl. Acad. Sci. USA 98:3501–3506CrossRefPubMed
go back to reference Erostegui C, Norris CH, Bobbin RP (1994) In vitro pharmacologic characterization of a cholinergic receptor on outer hair cells. Hear. Res. 74:135–147CrossRefPubMed Erostegui C, Norris CH, Bobbin RP (1994) In vitro pharmacologic characterization of a cholinergic receptor on outer hair cells. Hear. Res. 74:135–147CrossRefPubMed
go back to reference Evans MG (1996) Acetylcholine activates two currents in guinea-pig outer hair cells. J. Physiol. 491(Pt 2):563–578PubMed Evans MG (1996) Acetylcholine activates two currents in guinea-pig outer hair cells. J. Physiol. 491(Pt 2):563–578PubMed
go back to reference Eybalin M (1993) Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol. Rev. 73:309–373PubMed Eybalin M (1993) Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol. Rev. 73:309–373PubMed
go back to reference Feeney MP, Keefe DH, Marryott LP (2003) Contralateral acoustic reflex thresholds for tonal activators using wideband energy reflectance and admittance. J. Speech. Lang. Hear. Res. 46:128–136CrossRefPubMed Feeney MP, Keefe DH, Marryott LP (2003) Contralateral acoustic reflex thresholds for tonal activators using wideband energy reflectance and admittance. J. Speech. Lang. Hear. Res. 46:128–136CrossRefPubMed
go back to reference Fex J (1962) Auditory activity in centrifugal and centripetal cochlear fibres in cat. A study of a feedback system. Acta. Physiol. Scand. Suppl. 189:1–68 Fex J (1962) Auditory activity in centrifugal and centripetal cochlear fibres in cat. A study of a feedback system. Acta. Physiol. Scand. Suppl. 189:1–68
go back to reference Fuchs PA, Murrow BW (1992) Cholinergic inhibition of short (outer) hair cells of the chick’s cochlea. J. Neurosci. 12:800–809PubMed Fuchs PA, Murrow BW (1992) Cholinergic inhibition of short (outer) hair cells of the chick’s cochlea. J. Neurosci. 12:800–809PubMed
go back to reference Galambos R (1956) Suppression of auditory nerve activity by stimulation of efferent fibers to cochlea. J. Neurophysiol. 19:424–437PubMed Galambos R (1956) Suppression of auditory nerve activity by stimulation of efferent fibers to cochlea. J. Neurophysiol. 19:424–437PubMed
go back to reference Garinis AC, Glattke T, Cone-Wesson BK (2008) TEOAE suppression in adults with learning disabilities. Int. J. Audiol. 47:607–614CrossRefPubMed Garinis AC, Glattke T, Cone-Wesson BK (2008) TEOAE suppression in adults with learning disabilities. Int. J. Audiol. 47:607–614CrossRefPubMed
go back to reference Gelfand SA (1984) The contralateral acoustic reflex. In: Silman S (ed) The acoustic reflex: basic principles and clinical applications. Academic, Orlando, pp 137–186 Gelfand SA (1984) The contralateral acoustic reflex. In: Silman S (ed) The acoustic reflex: basic principles and clinical applications. Academic, Orlando, pp 137–186
go back to reference Gifford ML, Guinan JJ Jr (1987) Effects of electrical stimulation of medial olivocochlear neurons on ipsilateral and contralateral cochlear responses. Hear. Res. 29:179–194CrossRefPubMed Gifford ML, Guinan JJ Jr (1987) Effects of electrical stimulation of medial olivocochlear neurons on ipsilateral and contralateral cochlear responses. Hear. Res. 29:179–194CrossRefPubMed
go back to reference Giraud AL, Collet L, Chery-Croze S, Magnan J, Chays A (1995) Evidence of a medial olivocochlear involvement in contralateral suppression of otoacoustic emissions in humans. Brain. Res. 705:15–23CrossRefPubMed Giraud AL, Collet L, Chery-Croze S, Magnan J, Chays A (1995) Evidence of a medial olivocochlear involvement in contralateral suppression of otoacoustic emissions in humans. Brain. Res. 705:15–23CrossRefPubMed
go back to reference Goodman SS, Keefe DH (2006) Simultaneous measurement of noise-activated middle-ear muscle reflex and stimulus frequency otoacoustic emissions. J. Assoc. Res. Otolaryngol. 7:125–139CrossRefPubMed Goodman SS, Keefe DH (2006) Simultaneous measurement of noise-activated middle-ear muscle reflex and stimulus frequency otoacoustic emissions. J. Assoc. Res. Otolaryngol. 7:125–139CrossRefPubMed
go back to reference Guinan JJ Jr (2006) Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear. Hear. 27:589–607CrossRefPubMed Guinan JJ Jr (2006) Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear. Hear. 27:589–607CrossRefPubMed
go back to reference Guinan JJ Jr, Backus BC, Lilaonitkul W, Aharonson V (2003) Medial olivocochlear efferent reflex in humans: otoacoustic emission (OAE) measurement issues and the advantages of stimulus frequency OAEs. J. Assoc. Res. Otolaryngol. 4:521–540CrossRefPubMed Guinan JJ Jr, Backus BC, Lilaonitkul W, Aharonson V (2003) Medial olivocochlear efferent reflex in humans: otoacoustic emission (OAE) measurement issues and the advantages of stimulus frequency OAEs. J. Assoc. Res. Otolaryngol. 4:521–540CrossRefPubMed
go back to reference Harrison WA, Burns EM (1993) Effects of contralateral acoustic stimulation on spontaneous otoacoustic emissions. J. Acoust. Soc. Am. 94:2649–2658CrossRefPubMed Harrison WA, Burns EM (1993) Effects of contralateral acoustic stimulation on spontaneous otoacoustic emissions. J. Acoust. Soc. Am. 94:2649–2658CrossRefPubMed
go back to reference Hirsh IJ, Ward WD (1952) Recovery of the auditory threshold after strong acoustic stimulation. J. Acoust. Soc. Am. 24:131–141CrossRef Hirsh IJ, Ward WD (1952) Recovery of the auditory threshold after strong acoustic stimulation. J. Acoust. Soc. Am. 24:131–141CrossRef
go back to reference Hood LJ, Berlin CI, Bordelon J, Rose K (2003) Patients with auditory neuropathy/dys-synchrony lack efferent suppression of transient evoked otoacoustic emissions. J. Am. Acad. Audiol. 14:302–313PubMed Hood LJ, Berlin CI, Bordelon J, Rose K (2003) Patients with auditory neuropathy/dys-synchrony lack efferent suppression of transient evoked otoacoustic emissions. J. Am. Acad. Audiol. 14:302–313PubMed
go back to reference Housley GD, Ashmore JF (1991) Direct measurement of the action of acetylcholine on isolated outer hair cells of the guinea pig cochlea. Proc. Biol. Sci. 244:161–167CrossRefPubMed Housley GD, Ashmore JF (1991) Direct measurement of the action of acetylcholine on isolated outer hair cells of the guinea pig cochlea. Proc. Biol. Sci. 244:161–167CrossRefPubMed
go back to reference Kakehata S, Nakagawa T, Takasaka T, Akaike N (1993) Cellular mechanism of acetylcholine-induced response in dissociated outer hair cells of guinea-pig cochlea. J. Physiol. 463:227–244PubMed Kakehata S, Nakagawa T, Takasaka T, Akaike N (1993) Cellular mechanism of acetylcholine-induced response in dissociated outer hair cells of guinea-pig cochlea. J. Physiol. 463:227–244PubMed
go back to reference Kemp DT (1986) Otoacoustic emissions, travelling waves and cochlear mechanisms. Hear. Res. 22:95–104CrossRefPubMed Kemp DT (1986) Otoacoustic emissions, travelling waves and cochlear mechanisms. Hear. Res. 22:95–104CrossRefPubMed
go back to reference Kevanishvili Z, Hofmann G, Burdzgla I, Pietsch M, Gamgebeli Z, Yarin Y, Tushishvili M, Zahnert T (2006) Behavior of evoked otoacoustic emission under low-frequency tone exposure: objective study of the bounce phenomenon in humans. Hear. Res. 222:62–69CrossRefPubMed Kevanishvili Z, Hofmann G, Burdzgla I, Pietsch M, Gamgebeli Z, Yarin Y, Tushishvili M, Zahnert T (2006) Behavior of evoked otoacoustic emission under low-frequency tone exposure: objective study of the bounce phenomenon in humans. Hear. Res. 222:62–69CrossRefPubMed
go back to reference Kim DO, Dorn PA, Neely ST, Gorga MP (2001) Adaptation of distortion product otoacoustic emission in humans. J. Assoc. Res. Otolaryngol. 2:31–40PubMed Kim DO, Dorn PA, Neely ST, Gorga MP (2001) Adaptation of distortion product otoacoustic emission in humans. J. Assoc. Res. Otolaryngol. 2:31–40PubMed
go back to reference Kirk DL, Patuzzi RB (1997) Transient changes in cochlear potentials and DPOAEs after low-frequency tones: the ‘two-minute bounce’ revisited. Hear. Res. 112:49–68CrossRefPubMed Kirk DL, Patuzzi RB (1997) Transient changes in cochlear potentials and DPOAEs after low-frequency tones: the ‘two-minute bounce’ revisited. Hear. Res. 112:49–68CrossRefPubMed
go back to reference Kirk DL, Moleirinho A, Patuzzi RB (1997) Microphonic and DPOAE measurements suggest a micromechanical mechanism for the ‘bounce’ phenomenon following low-frequency tones. Hear. Res. 112:69–86CrossRefPubMed Kirk DL, Moleirinho A, Patuzzi RB (1997) Microphonic and DPOAE measurements suggest a micromechanical mechanism for the ‘bounce’ phenomenon following low-frequency tones. Hear. Res. 112:69–86CrossRefPubMed
go back to reference Kujawa SG, Liberman MC (2001) Effects of olivocochlear feedback on distortion product otoacoustic emissions in guinea pig. J. Assoc. Res. Otolaryngol. 2:268–278PubMed Kujawa SG, Liberman MC (2001) Effects of olivocochlear feedback on distortion product otoacoustic emissions in guinea pig. J. Assoc. Res. Otolaryngol. 2:268–278PubMed
go back to reference Liberman MC (1989) Rapid assessment of sound-evoked olivocochlear feedback: suppression of compound action potentials by contralateral sound. Hear. Res. 38:47–56CrossRefPubMed Liberman MC (1989) Rapid assessment of sound-evoked olivocochlear feedback: suppression of compound action potentials by contralateral sound. Hear. Res. 38:47–56CrossRefPubMed
go back to reference Liberman MC, Brown MC (1986) Physiology and anatomy of single olivocochlear neurons in the cat. Hear. Res. 24:17–36CrossRefPubMed Liberman MC, Brown MC (1986) Physiology and anatomy of single olivocochlear neurons in the cat. Hear. Res. 24:17–36CrossRefPubMed
go back to reference Liberman MC, Puria S, Guinan JJ Jr (1996) The ipsilaterally evoked olivocochlear reflex causes rapid adaptation of the 2f1-f2 distortion product otoacoustic emission. J. Acoust. Soc. Am. 99:3572–3584CrossRefPubMed Liberman MC, Puria S, Guinan JJ Jr (1996) The ipsilaterally evoked olivocochlear reflex causes rapid adaptation of the 2f1-f2 distortion product otoacoustic emission. J. Acoust. Soc. Am. 99:3572–3584CrossRefPubMed
go back to reference Lilaonitkul W, Guinan JJ Jr (2009) Human Medial Olivocochlear Reflex: Effects as Functions of Contralateral, Ipsilateral, and Bilateral Elicitor Bandwidths. J Assoc Res Otolaryngol 10:459–470CrossRefPubMed Lilaonitkul W, Guinan JJ Jr (2009) Human Medial Olivocochlear Reflex: Effects as Functions of Contralateral, Ipsilateral, and Bilateral Elicitor Bandwidths. J Assoc Res Otolaryngol 10:459–470CrossRefPubMed
go back to reference Long GR, Talmadge CL (1997) Spontaneous otoacoustic emission frequency is modulated by heartbeat. J. Acoust. Soc. Am. 102:2831–2848CrossRefPubMed Long GR, Talmadge CL (1997) Spontaneous otoacoustic emission frequency is modulated by heartbeat. J. Acoust. Soc. Am. 102:2831–2848CrossRefPubMed
go back to reference Maison S, Micheyl C, Andeol G, Gallego S, Collet L (2000) Activation of medial olivocochlear efferent system in humans: influence of stimulus bandwidth. Hear. Res. 140:111–125CrossRefPubMed Maison S, Micheyl C, Andeol G, Gallego S, Collet L (2000) Activation of medial olivocochlear efferent system in humans: influence of stimulus bandwidth. Hear. Res. 140:111–125CrossRefPubMed
go back to reference Maison SF, Adams JC, Liberman MC (2003) Olivocochlear innervation in the mouse: immunocytochemical maps, crossed versus uncrossed contributions, and transmitter colocalization. J. Comp. Neurol. 455:406–416CrossRefPubMed Maison SF, Adams JC, Liberman MC (2003) Olivocochlear innervation in the mouse: immunocytochemical maps, crossed versus uncrossed contributions, and transmitter colocalization. J. Comp. Neurol. 455:406–416CrossRefPubMed
go back to reference Mott JB, Norton SJ, Neely ST, Warr WB (1989) Changes in spontaneous otoacoustic emissions produced by acoustic stimulation of the contralateral ear. Hear. Res. 38:229–242CrossRefPubMed Mott JB, Norton SJ, Neely ST, Warr WB (1989) Changes in spontaneous otoacoustic emissions produced by acoustic stimulation of the contralateral ear. Hear. Res. 38:229–242CrossRefPubMed
go back to reference Moulin A, Collet L, Duclaux R (1993a) Contralateral auditory stimulation alters acoustic distortion products in humans. Hear Res 65:193–210CrossRefPubMed Moulin A, Collet L, Duclaux R (1993a) Contralateral auditory stimulation alters acoustic distortion products in humans. Hear Res 65:193–210CrossRefPubMed
go back to reference Moulin A, Collet L, Duclaux R (1993b) Contralateral auditory stimulation alters acoustic distortion products in humans. Hear. Res. 65:193–210CrossRef Moulin A, Collet L, Duclaux R (1993b) Contralateral auditory stimulation alters acoustic distortion products in humans. Hear. Res. 65:193–210CrossRef
go back to reference Mountain DC (1980) Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics. Science 210:71–72CrossRefPubMed Mountain DC (1980) Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics. Science 210:71–72CrossRefPubMed
go back to reference Muller-Wehlau M, Mauermann M, Dau T, Kollmeier B (2005) The effects of neural synchronization and peripheral compression on the acoustic-reflex threshold. J. Acoust. Soc. Am. 117:3016–3027CrossRefPubMed Muller-Wehlau M, Mauermann M, Dau T, Kollmeier B (2005) The effects of neural synchronization and peripheral compression on the acoustic-reflex threshold. J. Acoust. Soc. Am. 117:3016–3027CrossRefPubMed
go back to reference Murphy WJ, Tubis A, Talmadge CL, Long GR (1995) Relaxation dynamics of spontaneous otoacoustic emissions perturbed by external tones. II. Suppression of interacting emissions. J. Acoust. Soc. Am. 97:3711–3720CrossRefPubMed Murphy WJ, Tubis A, Talmadge CL, Long GR (1995) Relaxation dynamics of spontaneous otoacoustic emissions perturbed by external tones. II. Suppression of interacting emissions. J. Acoust. Soc. Am. 97:3711–3720CrossRefPubMed
go back to reference Murugasu E, Russell IJ (1996) The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. J. Neurosci. 16:325–332PubMed Murugasu E, Russell IJ (1996) The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. J. Neurosci. 16:325–332PubMed
go back to reference Neumann J, Uppenkamp S, Kollmeier B (1996) Detection of the acoustic reflex below 80 dB HL. Audiol. Neurootol. 1:359–369CrossRefPubMed Neumann J, Uppenkamp S, Kollmeier B (1996) Detection of the acoustic reflex below 80 dB HL. Audiol. Neurootol. 1:359–369CrossRefPubMed
go back to reference Norman M, Thornton AR (1993) Frequency analysis of the contralateral suppression of evoked otoacoustic emissions by narrow-band noise. Br. J. Audiol. 27:281–289CrossRefPubMed Norman M, Thornton AR (1993) Frequency analysis of the contralateral suppression of evoked otoacoustic emissions by narrow-band noise. Br. J. Audiol. 27:281–289CrossRefPubMed
go back to reference Oliver D, Klocker N, Schuck J, Baukrowitz T, Ruppersberg JP, Fakler B (2000) Gating of Ca2+-activated K+ channels controls fast inhibitory synaptic transmission at auditory outer hair cells. Neuron 26:595–601CrossRefPubMed Oliver D, Klocker N, Schuck J, Baukrowitz T, Ruppersberg JP, Fakler B (2000) Gating of Ca2+-activated K+ channels controls fast inhibitory synaptic transmission at auditory outer hair cells. Neuron 26:595–601CrossRefPubMed
go back to reference Relkin EM, Sterns A, Azeredo W, Prieve BA, Woods CI (2005) Physiological mechanisms of onset adaptation and contralateral suppression of DPOAEs in the rat. J. Assoc. Res. Otolaryngol. 6:119–135CrossRefPubMed Relkin EM, Sterns A, Azeredo W, Prieve BA, Woods CI (2005) Physiological mechanisms of onset adaptation and contralateral suppression of DPOAEs in the rat. J. Assoc. Res. Otolaryngol. 6:119–135CrossRefPubMed
go back to reference Robertson D, Gummer M (1985) Physiological and morphological characterization of efferent neurones in the guinea pig cochlea. Hear. Res. 20:63–77CrossRefPubMed Robertson D, Gummer M (1985) Physiological and morphological characterization of efferent neurones in the guinea pig cochlea. Hear. Res. 20:63–77CrossRefPubMed
go back to reference Robles L, Delano PH (2008) Efferent system. In: Dallos P, Oertel D (eds) The senses: a comprehensive reference. Academic, New York Robles L, Delano PH (2008) Efferent system. In: Dallos P, Oertel D (eds) The senses: a comprehensive reference. Academic, New York
go back to reference Shera CA (2003) Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. J. Acoust. Soc. Am. 114:244–262CrossRefPubMed Shera CA (2003) Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. J. Acoust. Soc. Am. 114:244–262CrossRefPubMed
go back to reference Siegel JH, Kim DO (1982) Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity. Hear. Res. 6:171–182CrossRefPubMed Siegel JH, Kim DO (1982) Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity. Hear. Res. 6:171–182CrossRefPubMed
go back to reference Smurzynski J, Lisowska G, Grzanka A, Namysloski G 2002. Dynamic changes in spontaneous otoacoustic emissions produced by contralateral broadband noise. Biophysics of the Cochlea, Proc Int Symp, Titisee, Germany Smurzynski J, Lisowska G, Grzanka A, Namysloski G 2002. Dynamic changes in spontaneous otoacoustic emissions produced by contralateral broadband noise. Biophysics of the Cochlea, Proc Int Symp, Titisee, Germany
go back to reference Sridhar TS, Liberman MC, Brown MC, Sewell WF (1995) A novel cholinergic "slow effect" of efferent stimulation on cochlear potentials in the guinea pig. J. Neurosci. 15:3667–3678PubMed Sridhar TS, Liberman MC, Brown MC, Sewell WF (1995) A novel cholinergic "slow effect" of efferent stimulation on cochlear potentials in the guinea pig. J. Neurosci. 15:3667–3678PubMed
go back to reference Sun XM (2008a) Contralateral suppression of distortion product otoacoustic emissions and the middle-ear muscle reflex in human ears. Hear. Res. 237:66–75CrossRef Sun XM (2008a) Contralateral suppression of distortion product otoacoustic emissions and the middle-ear muscle reflex in human ears. Hear. Res. 237:66–75CrossRef
go back to reference Sun XM (2008b) Distortion product otoacoustic emission fine structure is responsible for variability of distortion product otoacoustic emission contralateral suppression. J. Acoust. Soc. Am. 123:4310–4320CrossRef Sun XM (2008b) Distortion product otoacoustic emission fine structure is responsible for variability of distortion product otoacoustic emission contralateral suppression. J. Acoust. Soc. Am. 123:4310–4320CrossRef
go back to reference Velenovsky DS, Glattke TJ (2002) The effect of noise bandwidth on the contralateral suppression of transient evoked otoacoustic emissions. Hear. Res. 164:39–48CrossRefPubMed Velenovsky DS, Glattke TJ (2002) The effect of noise bandwidth on the contralateral suppression of transient evoked otoacoustic emissions. Hear. Res. 164:39–48CrossRefPubMed
go back to reference Veuillet E, Collet L, Duclaux R (1991) Effect of contralateral acoustic stimulation on active cochlear micromechanical properties in human subjects: dependence on stimulus variables. J. Neurophysiol. 65:724–735PubMed Veuillet E, Collet L, Duclaux R (1991) Effect of contralateral acoustic stimulation on active cochlear micromechanical properties in human subjects: dependence on stimulus variables. J. Neurophysiol. 65:724–735PubMed
go back to reference Whitehead ML, Martin GK, Lonsbury-Martin BL (1991) Effects of the crossed acoustic reflex on distortion-product otoacoustic emissions in awake rabbits. Hear. Res. 51:55–72CrossRefPubMed Whitehead ML, Martin GK, Lonsbury-Martin BL (1991) Effects of the crossed acoustic reflex on distortion-product otoacoustic emissions in awake rabbits. Hear. Res. 51:55–72CrossRefPubMed
go back to reference Wiederhold ML, Kiang NY (1970) Effects of electric stimulation of the crossed olivocochlear bundle on single auditory-nerve fibers in the cat. J. Acoust. Soc. Am. 48:950–965CrossRefPubMed Wiederhold ML, Kiang NY (1970) Effects of electric stimulation of the crossed olivocochlear bundle on single auditory-nerve fibers in the cat. J. Acoust. Soc. Am. 48:950–965CrossRefPubMed
go back to reference Williams DM, Brown AM (1997) The effect of contralateral broad-band noise on acoustic distortion products from the human ear. Hear. Res. 104:127–146CrossRefPubMed Williams DM, Brown AM (1997) The effect of contralateral broad-band noise on acoustic distortion products from the human ear. Hear. Res. 104:127–146CrossRefPubMed
go back to reference Yoshida N, Liberman MC, Brown MC, Ssewell WF (2001) Fast, but not slow, effects of olivocochlear activation are resistant to apamin. J. Neurophysiol. 85:84–88PubMed Yoshida N, Liberman MC, Brown MC, Ssewell WF (2001) Fast, but not slow, effects of olivocochlear activation are resistant to apamin. J. Neurophysiol. 85:84–88PubMed
go back to reference Zyl AV, S wanepoel DW, Hall JW 3rd (2009) Effect of prolonged contralateral acoustic stimulation on transient evoked otoacoustic emissions. Hear. Res. 254:77–81CrossRefPubMed Zyl AV, S wanepoel DW, Hall JW 3rd (2009) Effect of prolonged contralateral acoustic stimulation on transient evoked otoacoustic emissions. Hear. Res. 254:77–81CrossRefPubMed
Metadata
Title
The Effect of Contralateral Acoustic Stimulation on Spontaneous Otoacoustic Emissions
Authors
Wei Zhao
Sumitrajit Dhar
Publication date
01-03-2010
Publisher
Springer-Verlag
Published in
Journal of the Association for Research in Otolaryngology / Issue 1/2010
Print ISSN: 1525-3961
Electronic ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-009-0189-4

Other articles of this Issue 1/2010

Journal of the Association for Research in Otolaryngology 1/2010 Go to the issue