Skip to main content
Top
Published in: Emergency Radiology 3/2023

13-03-2023 | Artificial Intelligence | Original Article

A survey of ASER members on artificial intelligence in emergency radiology: trends, perceptions, and expectations

Authors: Anjali Agrawal, Garvit D. Khatri, Bharti Khurana, Aaron D. Sodickson, Yuanyuan Liang, David Dreizin

Published in: Emergency Radiology | Issue 3/2023

Login to get access

Abstract

Purpose

There is a growing body of diagnostic performance studies for emergency radiology-related artificial intelligence/machine learning (AI/ML) tools; however, little is known about user preferences, concerns, experiences, expectations, and the degree of penetration of AI tools in emergency radiology. Our aim is to conduct a survey of the current trends, perceptions, and expectations regarding AI among American Society of Emergency Radiology (ASER) members.

Methods

An anonymous and voluntary online survey questionnaire was e-mailed to all ASER members, followed by two reminder e-mails. A descriptive analysis of the data was conducted, and results summarized.

Results

A total of 113 members responded (response rate 12%). The majority were attending radiologists (90%) with greater than 10 years’ experience (80%) and from an academic practice (65%). Most (55%) reported use of commercial AI CAD tools in their practice. Workflow prioritization based on pathology detection, injury or disease severity grading and classification, quantitative visualization, and auto-population of structured reports were identified as high-value tasks. Respondents overwhelmingly indicated a need for explainable and verifiable tools (87%) and the need for transparency in the development process (80%). Most respondents did not feel that AI would reduce the need for emergency radiologists in the next two decades (72%) or diminish interest in fellowship programs (58%). Negative perceptions pertained to potential for automation bias (23%), over-diagnosis (16%), poor generalizability (15%), negative impact on training (11%), and impediments to workflow (10%).

Conclusion

ASER member respondents are in general optimistic about the impact of AI in the practice of emergency radiology and its impact on the popularity of emergency radiology as a subspecialty. The majority expect to see transparent and explainable AI models with the radiologist as the decision-maker.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fujita H (2020) AI-based computer-aided diagnosis (AI-CAD): the latest review to read first. Radiol Phys Technol 13(1):6–19PubMedCrossRef Fujita H (2020) AI-based computer-aided diagnosis (AI-CAD): the latest review to read first. Radiol Phys Technol 13(1):6–19PubMedCrossRef
2.
go back to reference Zhou SK, Greenspan H, Davatzikos C, Duncan JS, Van Ginneken B, Madabhushi A, Prince JL, Rueckert D, Summers RM (2021) A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises. Proc IEEE 109(5):820–838CrossRef Zhou SK, Greenspan H, Davatzikos C, Duncan JS, Van Ginneken B, Madabhushi A, Prince JL, Rueckert D, Summers RM (2021) A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises. Proc IEEE 109(5):820–838CrossRef
3.
go back to reference West E, Mutasa S, Zhu Z, Ha R (2019) Global trend in artificial intelligence–based publications in radiology from 2000 to 2018. Am J Roentgenol 213(6):1204–1206CrossRef West E, Mutasa S, Zhu Z, Ha R (2019) Global trend in artificial intelligence–based publications in radiology from 2000 to 2018. Am J Roentgenol 213(6):1204–1206CrossRef
4.
go back to reference Ebrahimian S, Kalra MK, Agarwal S, Bizzo BC, Elkholy M, Wald C, Allen B, Dreyer KJ (2022) FDA-regulated AI algorithms: trends, strengths, and gaps of validation studies. Acad Radiol 29(4):559–566PubMedCrossRef Ebrahimian S, Kalra MK, Agarwal S, Bizzo BC, Elkholy M, Wald C, Allen B, Dreyer KJ (2022) FDA-regulated AI algorithms: trends, strengths, and gaps of validation studies. Acad Radiol 29(4):559–566PubMedCrossRef
5.
go back to reference Banaste N, Caurier B, Bratan F, Bergerot J-F, Thomson V, Millet I (2018) Whole-body CT in patients with multiple traumas: factors leading to missed injury. Radiology 289(2):374–383PubMedCrossRef Banaste N, Caurier B, Bratan F, Bergerot J-F, Thomson V, Millet I (2018) Whole-body CT in patients with multiple traumas: factors leading to missed injury. Radiology 289(2):374–383PubMedCrossRef
6.
go back to reference Hanna TN, Zygmont ME, Peterson R, Theriot D, Shekhani H, Johnson J-O, Krupinski EA (2018) The effects of fatigue from overnight shifts on radiology search patterns and diagnostic performance. J Am Coll Radiol 15(12):1709–1716PubMedPubMedCentralCrossRef Hanna TN, Zygmont ME, Peterson R, Theriot D, Shekhani H, Johnson J-O, Krupinski EA (2018) The effects of fatigue from overnight shifts on radiology search patterns and diagnostic performance. J Am Coll Radiol 15(12):1709–1716PubMedPubMedCentralCrossRef
8.
go back to reference Glover M IV, Almeida RR, Schaefer PW, Lev MH, Mehan WA Jr (2017) Quantifying the impact of noninterpretive tasks on radiology report turn-around times. J Am Coll Radiol 14(11):1498–1503PubMedCrossRef Glover M IV, Almeida RR, Schaefer PW, Lev MH, Mehan WA Jr (2017) Quantifying the impact of noninterpretive tasks on radiology report turn-around times. J Am Coll Radiol 14(11):1498–1503PubMedCrossRef
9.
go back to reference Chong ST, Robinson JD, Davis MA, Bruno MA, Roberge EA, Reddy S, Pyatt RS Jr, Friedberg EB (2019) Emergency radiology: current challenges and preparing for continued growth. J Am Coll Radiol 16(10):1447–1455PubMedCrossRef Chong ST, Robinson JD, Davis MA, Bruno MA, Roberge EA, Reddy S, Pyatt RS Jr, Friedberg EB (2019) Emergency radiology: current challenges and preparing for continued growth. J Am Coll Radiol 16(10):1447–1455PubMedCrossRef
10.
go back to reference Hanna TN, Shekhani H, Lamoureux C, Mar H, Nicola R, Sliker C, Johnson J-O (2017) Emergency radiology practice patterns: shifts, schedules, and job satisfaction. J Am Coll Radiol 14(3):345–352PubMedCrossRef Hanna TN, Shekhani H, Lamoureux C, Mar H, Nicola R, Sliker C, Johnson J-O (2017) Emergency radiology practice patterns: shifts, schedules, and job satisfaction. J Am Coll Radiol 14(3):345–352PubMedCrossRef
11.
go back to reference Kalyanpur A, Weinberg J, Neklesa V, Brink JA, Forman HP (2003) Emergency radiology coverage: technical and clinical feasibility of an international teleradiology model. Emerg Radiol 10(3):115–118PubMedCrossRef Kalyanpur A, Weinberg J, Neklesa V, Brink JA, Forman HP (2003) Emergency radiology coverage: technical and clinical feasibility of an international teleradiology model. Emerg Radiol 10(3):115–118PubMedCrossRef
12.
go back to reference Kalyanpur A (2020) Teleradiology and artificial intelligence–birds of the same feather. Acad Radiol 27(1):123–126PubMedCrossRef Kalyanpur A (2020) Teleradiology and artificial intelligence–birds of the same feather. Acad Radiol 27(1):123–126PubMedCrossRef
13.
go back to reference Agrawal A (2022) Emergency teleradiology-past, present, and is there a future? Front Radiol 2:866643 Agrawal A (2022) Emergency teleradiology-past, present, and is there a future? Front Radiol 2:866643
14.
go back to reference Soun J, Chow D, Nagamine M, Takhtawala R, Filippi C, Yu W, Chang P (2021) Artificial intelligence and acute stroke imaging. Am J Neuroradiol 42(1):2–11PubMedPubMedCentralCrossRef Soun J, Chow D, Nagamine M, Takhtawala R, Filippi C, Yu W, Chang P (2021) Artificial intelligence and acute stroke imaging. Am J Neuroradiol 42(1):2–11PubMedPubMedCentralCrossRef
15.
go back to reference Soffer S, Klang E, Shimon O, Barash Y, Cahan N, Greenspana H, Konen E (2021) Deep learning for pulmonary embolism detection on computed tomography pulmonary angiogram: a systematic review and meta-analysis. Sci Rep 11(1):1–8CrossRef Soffer S, Klang E, Shimon O, Barash Y, Cahan N, Greenspana H, Konen E (2021) Deep learning for pulmonary embolism detection on computed tomography pulmonary angiogram: a systematic review and meta-analysis. Sci Rep 11(1):1–8CrossRef
17.
go back to reference Gipson J, Tang V, Seah J, Kavnoudias H, Zia A, Lee R, Mitra B, Clements W (2022) Diagnostic accuracy of a commercially available deep-learning algorithm in supine chest radiographs following trauma. Br J Radiol 95:20210979PubMedCrossRef Gipson J, Tang V, Seah J, Kavnoudias H, Zia A, Lee R, Mitra B, Clements W (2022) Diagnostic accuracy of a commercially available deep-learning algorithm in supine chest radiographs following trauma. Br J Radiol 95:20210979PubMedCrossRef
18.
go back to reference Guermazi A, Tannoury C, Kompel AJ, Murakami AM, Ducarouge A, Gillibert A, Li X, Tournier A, Lahoud Y, Jarraya M (2022) Improving radiographic fracture recognition performance and efficiency using artificial intelligence. Radiology 302(3):627–636PubMedCrossRef Guermazi A, Tannoury C, Kompel AJ, Murakami AM, Ducarouge A, Gillibert A, Li X, Tournier A, Lahoud Y, Jarraya M (2022) Improving radiographic fracture recognition performance and efficiency using artificial intelligence. Radiology 302(3):627–636PubMedCrossRef
19.
go back to reference Seah JC, Tang CH, Buchlak QD, Holt XG, Wardman JB, Aimoldin A, Esmaili N, Ahmad H, Pham H, Lambert JF (2021) Effect of a comprehensive deep-learning model on the accuracy of chest X-ray interpretation by radiologists: a retrospective, multireader multicase study. Lancet Digit Health 3(8):e496–e506PubMedCrossRef Seah JC, Tang CH, Buchlak QD, Holt XG, Wardman JB, Aimoldin A, Esmaili N, Ahmad H, Pham H, Lambert JF (2021) Effect of a comprehensive deep-learning model on the accuracy of chest X-ray interpretation by radiologists: a retrospective, multireader multicase study. Lancet Digit Health 3(8):e496–e506PubMedCrossRef
20.
go back to reference Kau T, Ziurlys M, Taschwer M, Kloss-Brandstätter A, Grabner G, Deutschmann H (2022) FDA-approved deep learning software application versus radiologists with different levels of expertise: detection of intracranial hemorrhage in a retrospective single-center study. Neuroradiology 64(5):981–990PubMedCrossRef Kau T, Ziurlys M, Taschwer M, Kloss-Brandstätter A, Grabner G, Deutschmann H (2022) FDA-approved deep learning software application versus radiologists with different levels of expertise: detection of intracranial hemorrhage in a retrospective single-center study. Neuroradiology 64(5):981–990PubMedCrossRef
21.
go back to reference Duron L, Ducarouge A, Gillibert A, Lainé J, Allouche C, Cherel N, Zhang Z, Nitche N, Lacave E, Pourchot A (2021) Assessment of an AI aid in detection of adult appendicular skeletal fractures by emergency physicians and radiologists: a multicenter cross-sectional diagnostic study. Radiology 300(1):120–129PubMedCrossRef Duron L, Ducarouge A, Gillibert A, Lainé J, Allouche C, Cherel N, Zhang Z, Nitche N, Lacave E, Pourchot A (2021) Assessment of an AI aid in detection of adult appendicular skeletal fractures by emergency physicians and radiologists: a multicenter cross-sectional diagnostic study. Radiology 300(1):120–129PubMedCrossRef
22.
go back to reference Wismüller A, Stockmaster L (2020) A prospective randomized clinical trial for measuring radiology study reporting time on Artificial Intelligence-based detection of intracranial hemorrhage in emergent care head CT. In: Proc. SPIE 11317, Medical Imaging 2020: Biomedical Applications in Molecular, Structural, and Functional Imaging, p 113170M. https://doi.org/10.1117/12.2552400 Wismüller A, Stockmaster L (2020) A prospective randomized clinical trial for measuring radiology study reporting time on Artificial Intelligence-based detection of intracranial hemorrhage in emergent care head CT. In: Proc. SPIE 11317, Medical Imaging 2020: Biomedical Applications in Molecular, Structural, and Functional Imaging, p 113170M. https://​doi.​org/​10.​1117/​12.​2552400
23.
go back to reference Huisman M, Ranschaert E, Parker W, Mastrodicasa D, Koci M, Pinto de Santos D, Coppola F, Morozov S, Zins M, Bohyn C (2021) An international survey on AI in radiology in 1,041 radiologists and radiology residents part 1: fear of replacement, knowledge, and attitude. Eur Radiol 31(9):7058–7066PubMedPubMedCentralCrossRef Huisman M, Ranschaert E, Parker W, Mastrodicasa D, Koci M, Pinto de Santos D, Coppola F, Morozov S, Zins M, Bohyn C (2021) An international survey on AI in radiology in 1,041 radiologists and radiology residents part 1: fear of replacement, knowledge, and attitude. Eur Radiol 31(9):7058–7066PubMedPubMedCentralCrossRef
24.
go back to reference Huisman M, Ranschaert E, Parker W, Mastrodicasa D, Koci M, Pinto de Santos D, Coppola F, Morozov S, Zins M, Bohyn C (2021) An international survey on AI in radiology in 1041 radiologists and radiology residents part 2: expectations, hurdles to implementation, and education. Eur Radiol 31(11):8797–8806PubMedPubMedCentralCrossRef Huisman M, Ranschaert E, Parker W, Mastrodicasa D, Koci M, Pinto de Santos D, Coppola F, Morozov S, Zins M, Bohyn C (2021) An international survey on AI in radiology in 1041 radiologists and radiology residents part 2: expectations, hurdles to implementation, and education. Eur Radiol 31(11):8797–8806PubMedPubMedCentralCrossRef
25.
go back to reference van Hoek J, Huber A, Leichtle A, Härmä K, Hilt D, von Tengg-Kobligk H, Heverhagen J, Poellinger A (2019) A survey on the future of radiology among radiologists, medical students and surgeons: students and surgeons tend to be more skeptical about artificial intelligence and radiologists may fear that other disciplines take over. Eur J Radiol 121:108742PubMedCrossRef van Hoek J, Huber A, Leichtle A, Härmä K, Hilt D, von Tengg-Kobligk H, Heverhagen J, Poellinger A (2019) A survey on the future of radiology among radiologists, medical students and surgeons: students and surgeons tend to be more skeptical about artificial intelligence and radiologists may fear that other disciplines take over. Eur J Radiol 121:108742PubMedCrossRef
26.
go back to reference Jalal S, Parker W, Ferguson D, Nicolaou S (2021) Exploring the role of artificial intelligence in an emergency and trauma radiology department. Can Assoc Radiol J 72(1):167–174PubMedCrossRef Jalal S, Parker W, Ferguson D, Nicolaou S (2021) Exploring the role of artificial intelligence in an emergency and trauma radiology department. Can Assoc Radiol J 72(1):167–174PubMedCrossRef
28.
go back to reference Jacques T, Fournier L, Zins M, Adamsbaum C, Chaumoitre K, Feydy A, Millet I, Montaudon M, Beregi J-P, Bartoli J-M (2021) Proposals for the use of artificial intelligence in emergency radiology. Diagn Interv Imaging 102(2):63–68PubMedCrossRef Jacques T, Fournier L, Zins M, Adamsbaum C, Chaumoitre K, Feydy A, Millet I, Montaudon M, Beregi J-P, Bartoli J-M (2021) Proposals for the use of artificial intelligence in emergency radiology. Diagn Interv Imaging 102(2):63–68PubMedCrossRef
29.
go back to reference Lakhani P, Prater AB, Hutson RK, Andriole KP, Dreyer KJ, Morey J, Prevedello LM, Clark TJ, Geis JR, Itri JN (2018) Machine learning in radiology: applications beyond image interpretation. J Am Coll Radiol 15(2):350–359PubMedCrossRef Lakhani P, Prater AB, Hutson RK, Andriole KP, Dreyer KJ, Morey J, Prevedello LM, Clark TJ, Geis JR, Itri JN (2018) Machine learning in radiology: applications beyond image interpretation. J Am Coll Radiol 15(2):350–359PubMedCrossRef
30.
go back to reference Noguerol TM, Paulano-Godino F, Martín-Valdivia MT, Menias CO, Luna A (2019) Strengths, weaknesses, opportunities, and threats analysis of artificial intelligence and machine learning applications in radiology. J Am Coll Radiol 16(9):1239–1247CrossRef Noguerol TM, Paulano-Godino F, Martín-Valdivia MT, Menias CO, Luna A (2019) Strengths, weaknesses, opportunities, and threats analysis of artificial intelligence and machine learning applications in radiology. J Am Coll Radiol 16(9):1239–1247CrossRef
31.
go back to reference Goldberg JE, Rosenkrantz AB (2019) Artificial intelligence and radiology: a social media perspective. Curr Probl Diagn Radiol 48(4):308–311PubMedCrossRef Goldberg JE, Rosenkrantz AB (2019) Artificial intelligence and radiology: a social media perspective. Curr Probl Diagn Radiol 48(4):308–311PubMedCrossRef
32.
go back to reference Langlotz CP, Allen B, Erickson BJ, Kalpathy-Cramer J, Bigelow K, Cook TS, Flanders AE, Lungren MP, Mendelson DS, Rudie JD (2019) A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology 291(3):781PubMedCrossRef Langlotz CP, Allen B, Erickson BJ, Kalpathy-Cramer J, Bigelow K, Cook TS, Flanders AE, Lungren MP, Mendelson DS, Rudie JD (2019) A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology 291(3):781PubMedCrossRef
33.
go back to reference Allen B Jr, Seltzer SE, Langlotz CP, Dreyer KP, Summers RM, Petrick N, Marinac-Dabic D, Cruz M, Alkasab TK, Hanisch RJ (2019) A road map for translational research on artificial intelligence in medical imaging: from the 2018 National Institutes of Health/RSNA/ACR/The Academy Workshop. J Am Coll Radiol 16(9):1179–1189PubMedCrossRef Allen B Jr, Seltzer SE, Langlotz CP, Dreyer KP, Summers RM, Petrick N, Marinac-Dabic D, Cruz M, Alkasab TK, Hanisch RJ (2019) A road map for translational research on artificial intelligence in medical imaging: from the 2018 National Institutes of Health/RSNA/ACR/The Academy Workshop. J Am Coll Radiol 16(9):1179–1189PubMedCrossRef
34.
go back to reference Park SH, Han K (2018) Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 286(3):800–809PubMedCrossRef Park SH, Han K (2018) Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 286(3):800–809PubMedCrossRef
35.
go back to reference Chen H, Gomez C, Huang C-M, Unberath M (2022) Explainable medical imaging AI needs human-centered design: guidelines and evidence from a systematic review. npj Digit Med 5(1):1–15CrossRef Chen H, Gomez C, Huang C-M, Unberath M (2022) Explainable medical imaging AI needs human-centered design: guidelines and evidence from a systematic review. npj Digit Med 5(1):1–15CrossRef
36.
37.
go back to reference Jones RM, Sharma A, Hotchkiss R, Sperling JW, Hamburger J, Ledig C, O’Toole R, Gardner M, Venkatesh S, Roberts MM (2020) Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs. NPJ Digit Med 3(1):1–6CrossRef Jones RM, Sharma A, Hotchkiss R, Sperling JW, Hamburger J, Ledig C, O’Toole R, Gardner M, Venkatesh S, Roberts MM (2020) Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs. NPJ Digit Med 3(1):1–6CrossRef
38.
go back to reference Dupuis M, Delbos L, Veil R, Adamsbaum C (2022) External validation of a commercially available deep learning algorithm for fracture detection in children. Diagn Interv Imaging 103(3):151–159PubMedCrossRef Dupuis M, Delbos L, Veil R, Adamsbaum C (2022) External validation of a commercially available deep learning algorithm for fracture detection in children. Diagn Interv Imaging 103(3):151–159PubMedCrossRef
39.
go back to reference Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, Mahajan V, Rao P, Warier P (2018) Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 392(10162):2388–2396PubMedCrossRef Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, Mahajan V, Rao P, Warier P (2018) Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 392(10162):2388–2396PubMedCrossRef
40.
go back to reference Ginat DT (2020) Analysis of head CT scans flagged by deep learning software for acute intracranial hemorrhage. Neuroradiology 62(3):335–340PubMedCrossRef Ginat DT (2020) Analysis of head CT scans flagged by deep learning software for acute intracranial hemorrhage. Neuroradiology 62(3):335–340PubMedCrossRef
41.
go back to reference Voter A, Larson M, Garrett J, Yu J-P (2021) Diagnostic accuracy and failure mode analysis of a deep learning algorithm for the detection of cervical spine fractures. Am J Neuroradiol 42(8):1550–1556PubMedPubMedCentralCrossRef Voter A, Larson M, Garrett J, Yu J-P (2021) Diagnostic accuracy and failure mode analysis of a deep learning algorithm for the detection of cervical spine fractures. Am J Neuroradiol 42(8):1550–1556PubMedPubMedCentralCrossRef
42.
go back to reference Voter AF, Meram E, Garrett JW, John-Paul JY (2021) Diagnostic accuracy and failure mode analysis of a deep learning algorithm for the detection of intracranial hemorrhage. J Am Coll Radiol 18(8):1143–1152PubMedPubMedCentralCrossRef Voter AF, Meram E, Garrett JW, John-Paul JY (2021) Diagnostic accuracy and failure mode analysis of a deep learning algorithm for the detection of intracranial hemorrhage. J Am Coll Radiol 18(8):1143–1152PubMedPubMedCentralCrossRef
43.
go back to reference Arrieta AB, Díaz-Rodríguez N, Del Ser J, Bennetot A, Tabik S, Barbado A, Garcia S, Gil-Lopez S, Molina D, Benjamins R (2020) Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf Fusion 58:82–115CrossRef Arrieta AB, Díaz-Rodríguez N, Del Ser J, Bennetot A, Tabik S, Barbado A, Garcia S, Gil-Lopez S, Molina D, Benjamins R (2020) Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf Fusion 58:82–115CrossRef
44.
go back to reference Lavin A, Gilligan-Lee CM, Visnjic A, Ganju S, Newman D, Ganguly S, Lange D, Baydin AG, Sharma A, Gibson A (2022) Technology readiness levels for machine learning systems. Nat Commun 13(1):1–19CrossRef Lavin A, Gilligan-Lee CM, Visnjic A, Ganju S, Newman D, Ganguly S, Lange D, Baydin AG, Sharma A, Gibson A (2022) Technology readiness levels for machine learning systems. Nat Commun 13(1):1–19CrossRef
45.
go back to reference Lee S, Summers RM (2021) Clinical artificial intelligence applications in radiology: chest and abdomen. Radiol Clin 59(6):987–1002CrossRef Lee S, Summers RM (2021) Clinical artificial intelligence applications in radiology: chest and abdomen. Radiol Clin 59(6):987–1002CrossRef
46.
go back to reference Dreizin D, Zhou Y, Fu S, Wang Y, Li G, Champ K, Siegel E, Wang Z, Chen T, Yuille AL (2020) A Multiscale Deep Learning Method for Quantitative Visualization of Traumatic Hemoperitoneum at CT: Assessment of Feasibility and Comparison with Subjective Categorical Estimation. Radiol Artif Intell 2(6):e190220 Dreizin D, Zhou Y, Fu S, Wang Y, Li G, Champ K, Siegel E, Wang Z, Chen T, Yuille AL (2020) A Multiscale Deep Learning Method for Quantitative Visualization of Traumatic Hemoperitoneum at CT: Assessment of Feasibility and Comparison with Subjective Categorical Estimation. Radiol Artif Intell 2(6):e190220
47.
go back to reference Dreizin D, Zhou Y, Zhang Y, Tirada N, Yuille AL (2020) Performance of a deep learning algorithm for automated segmentation and quantification of traumatic pelvic hematomas on CT. J Digit Imaging 33(1):243–251PubMedCrossRef Dreizin D, Zhou Y, Zhang Y, Tirada N, Yuille AL (2020) Performance of a deep learning algorithm for automated segmentation and quantification of traumatic pelvic hematomas on CT. J Digit Imaging 33(1):243–251PubMedCrossRef
49.
go back to reference Zhou Y, Dreizin D, Wang Y, Liu F, Shen W, Yuille AL (2021) External attention assisted multi-phase splenic vascular injury segmentation with limited data. IEEE Trans Med Imaging 41(6):1346–1357CrossRef Zhou Y, Dreizin D, Wang Y, Liu F, Shen W, Yuille AL (2021) External attention assisted multi-phase splenic vascular injury segmentation with limited data. IEEE Trans Med Imaging 41(6):1346–1357CrossRef
50.
go back to reference Dreizin D, Zhou Y, Chen T, Li G, Yuille AL, McLenithan A, Morrison JJ (2020) Deep learning-based quantitative visualization and measurement of extraperitoneal hematoma volumes in patients with pelvic fractures: potential role in personalized forecasting and decision support. J Trauma Acute Care Surg 88(3):425PubMedPubMedCentralCrossRef Dreizin D, Zhou Y, Chen T, Li G, Yuille AL, McLenithan A, Morrison JJ (2020) Deep learning-based quantitative visualization and measurement of extraperitoneal hematoma volumes in patients with pelvic fractures: potential role in personalized forecasting and decision support. J Trauma Acute Care Surg 88(3):425PubMedPubMedCentralCrossRef
51.
go back to reference Dreizin D, Chen T, Liang Y, Zhou Y, Paes F, Wang Y, Yuille AL, Roth P, Champ K, Li G (2021) Added value of deep learning-based liver parenchymal CT volumetry for predicting major arterial injury after blunt hepatic trauma: a decision tree analysis. Abdom Radiol 46(6):2556–2566CrossRef Dreizin D, Chen T, Liang Y, Zhou Y, Paes F, Wang Y, Yuille AL, Roth P, Champ K, Li G (2021) Added value of deep learning-based liver parenchymal CT volumetry for predicting major arterial injury after blunt hepatic trauma: a decision tree analysis. Abdom Radiol 46(6):2556–2566CrossRef
52.
go back to reference Choi J, Mavrommati K, Li NY, Patil A, Chen K, Hindin DI, Forrester JD (2022) Scalable deep learning algorithm to compute percent pulmonary contusion among patients with rib fractures. J Trauma Acute Care Surg 93(4):461–466PubMedCrossRef Choi J, Mavrommati K, Li NY, Patil A, Chen K, Hindin DI, Forrester JD (2022) Scalable deep learning algorithm to compute percent pulmonary contusion among patients with rib fractures. J Trauma Acute Care Surg 93(4):461–466PubMedCrossRef
53.
go back to reference Röhrich S, Hofmanninger J, Negrin L, Langs G, Prosch H (2021) Radiomics score predicts acute respiratory distress syndrome based on the initial CT scan after trauma. Eur Radiol 31(8):5443–5453PubMedPubMedCentralCrossRef Röhrich S, Hofmanninger J, Negrin L, Langs G, Prosch H (2021) Radiomics score predicts acute respiratory distress syndrome based on the initial CT scan after trauma. Eur Radiol 31(8):5443–5453PubMedPubMedCentralCrossRef
55.
go back to reference Adamson AS, Welch HG (2019) Machine learning and the cancer-diagnosis problem-no gold standard. N Engl J Med 381(24):2285–2287PubMedCrossRef Adamson AS, Welch HG (2019) Machine learning and the cancer-diagnosis problem-no gold standard. N Engl J Med 381(24):2285–2287PubMedCrossRef
56.
go back to reference Banerjee M, Chiew D, Patel KT, Johns I, Chappell D, Linton N, Cole GD, Francis DP, Szram J, Ross J (2021) The impact of artificial intelligence on clinical education: perceptions of postgraduate trainee doctors in London (UK) and recommendations for trainers. BMC Med Educ 21(1):1–10CrossRef Banerjee M, Chiew D, Patel KT, Johns I, Chappell D, Linton N, Cole GD, Francis DP, Szram J, Ross J (2021) The impact of artificial intelligence on clinical education: perceptions of postgraduate trainee doctors in London (UK) and recommendations for trainers. BMC Med Educ 21(1):1–10CrossRef
57.
go back to reference Seyyed-Kalantari L, Zhang H, McDermott M, Chen IY, Ghassemi M (2021) Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat Med 27(12):2176–2182PubMedPubMedCentralCrossRef Seyyed-Kalantari L, Zhang H, McDermott M, Chen IY, Ghassemi M (2021) Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat Med 27(12):2176–2182PubMedPubMedCentralCrossRef
58.
go back to reference He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K (2019) The practical implementation of artificial intelligence technologies in medicine. Nat Med 25(1):30–36PubMedPubMedCentralCrossRef He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K (2019) The practical implementation of artificial intelligence technologies in medicine. Nat Med 25(1):30–36PubMedPubMedCentralCrossRef
59.
go back to reference Daye D, Wiggins WF, Lungren MP, Alkasab T, Kottler N, Allen B, Roth CJ, Bizzo BC, Durniak K, Brink JA (2022) Implementation of clinical artificial intelligence in radiology: who decides and how? Radiology 305(3):555–563PubMedCrossRef Daye D, Wiggins WF, Lungren MP, Alkasab T, Kottler N, Allen B, Roth CJ, Bizzo BC, Durniak K, Brink JA (2022) Implementation of clinical artificial intelligence in radiology: who decides and how? Radiology 305(3):555–563PubMedCrossRef
60.
go back to reference Lin M (2022) What’s needed to bridge the gap between US FDA Clearance and real-world use of AI algorithms. Acad Radiol 29(4):567–568PubMedCrossRef Lin M (2022) What’s needed to bridge the gap between US FDA Clearance and real-world use of AI algorithms. Acad Radiol 29(4):567–568PubMedCrossRef
61.
go back to reference Bin Dahmash A, Alabdulkareem M, Alfutais A, Kamel AM, Alkholaiwi F, Alshehri S, Al Zahrani Y, Almoaiqel M (2020) Artificial intelligence in radiology: does it impact medical students preference for radiology as their future career? BJR| Open 2:20200037PubMedPubMedCentral Bin Dahmash A, Alabdulkareem M, Alfutais A, Kamel AM, Alkholaiwi F, Alshehri S, Al Zahrani Y, Almoaiqel M (2020) Artificial intelligence in radiology: does it impact medical students preference for radiology as their future career? BJR| Open 2:20200037PubMedPubMedCentral
62.
go back to reference Ellahham S, Ellahham N, Simsekler MCE (2020) Application of artificial intelligence in the health care safety context: opportunities and challenges. Am J Med Qual 35(4):341–348PubMedCrossRef Ellahham S, Ellahham N, Simsekler MCE (2020) Application of artificial intelligence in the health care safety context: opportunities and challenges. Am J Med Qual 35(4):341–348PubMedCrossRef
63.
go back to reference Challen R, Denny J, Pitt M, Gompels L, Edwards T, Tsaneva-Atanasova K (2019) Artificial intelligence, bias and clinical safety. BMJ Qual Saf 28(3):231–237PubMedPubMedCentralCrossRef Challen R, Denny J, Pitt M, Gompels L, Edwards T, Tsaneva-Atanasova K (2019) Artificial intelligence, bias and clinical safety. BMJ Qual Saf 28(3):231–237PubMedPubMedCentralCrossRef
64.
go back to reference Lee CS, Nagy PG, Weaver SJ, Newman-Toker DE (2013) Cognitive and system factors contributing to diagnostic errors in radiology. Am J Roentgenol 201(3):611–617CrossRef Lee CS, Nagy PG, Weaver SJ, Newman-Toker DE (2013) Cognitive and system factors contributing to diagnostic errors in radiology. Am J Roentgenol 201(3):611–617CrossRef
65.
go back to reference Patlas MN, Katz DS, Scaglione M (2019) Errors in emergency and trauma radiology: Springer Patlas MN, Katz DS, Scaglione M (2019) Errors in emergency and trauma radiology: Springer
Metadata
Title
A survey of ASER members on artificial intelligence in emergency radiology: trends, perceptions, and expectations
Authors
Anjali Agrawal
Garvit D. Khatri
Bharti Khurana
Aaron D. Sodickson
Yuanyuan Liang
David Dreizin
Publication date
13-03-2023
Publisher
Springer International Publishing
Published in
Emergency Radiology / Issue 3/2023
Print ISSN: 1070-3004
Electronic ISSN: 1438-1435
DOI
https://doi.org/10.1007/s10140-023-02121-0

Other articles of this Issue 3/2023

Emergency Radiology 3/2023 Go to the issue