Skip to main content
Top
Published in: Emergency Radiology 3/2023

14-03-2023 | Artificial Intelligence | Original Article

Artificial intelligence CAD tools in trauma imaging: a scoping review from the American Society of Emergency Radiology (ASER) AI/ML Expert Panel

Authors: David Dreizin, Pedro V. Staziaki, Garvit D. Khatri, Nicholas M. Beckmann, Zhaoyong Feng, Yuanyuan Liang, Zachary S. Delproposto, Maximiliano Klug, J. Stephen Spann, Nathan Sarkar, Yunting Fu

Published in: Emergency Radiology | Issue 3/2023

Login to get access

Abstract

Background

AI/ML CAD tools can potentially improve outcomes in the high-stakes, high-volume model of trauma radiology. No prior scoping review has been undertaken to comprehensively assess tools in this subspecialty.

Purpose

To map the evolution and current state of trauma radiology CAD tools along key dimensions of technology readiness.

Methods

Following a search of databases, abstract screening, and full-text document review, CAD tool maturity was charted using elements of data curation, performance validation, outcomes research, explainability, user acceptance, and funding patterns. Descriptive statistics were used to illustrate key trends.

Results

A total of 4052 records were screened, and 233 full-text articles were selected for content analysis. Twenty-one papers described FDA-approved commercial tools, and 212 reported algorithm prototypes. Works ranged from foundational research to multi-reader multi-case trials with heterogeneous external data. Scalable convolutional neural network–based implementations increased steeply after 2016 and were used in all commercial products; however, options for explainability were narrow. Of FDA-approved tools, 9/10 performed detection tasks. Dataset sizes ranged from < 100 to > 500,000 patients, and commercialization coincided with public dataset availability. Cross-sectional torso datasets were uniformly small. Data curation methods with ground truth labeling by independent readers were uncommon. No papers assessed user acceptance, and no method included human–computer interaction. The USA and China had the highest research output and frequency of research funding.

Conclusions

Trauma imaging CAD tools are likely to improve patient care but are currently in an early stage of maturity, with few FDA-approved products for a limited number of uses. The scarcity of high-quality annotated data remains a major barrier.
Appendix
Available only for authorised users
Literature
1.
go back to reference Castro DC, Walker I, Glocker B (2020) Causality matters in medical imaging. Nat Commun 11(1):1–10CrossRef Castro DC, Walker I, Glocker B (2020) Causality matters in medical imaging. Nat Commun 11(1):1–10CrossRef
2.
go back to reference Willemink MJ, Koszek WA, Hardell C, Wu J, Fleischmann D, Harvey H, Folio LR, Summers RM, Rubin DL, Lungren MP (2020) Preparing medical imaging data for machine learning. Radiology 295(1):4–15PubMedCrossRef Willemink MJ, Koszek WA, Hardell C, Wu J, Fleischmann D, Harvey H, Folio LR, Summers RM, Rubin DL, Lungren MP (2020) Preparing medical imaging data for machine learning. Radiology 295(1):4–15PubMedCrossRef
3.
go back to reference Waite S, Scott J, Gale B, Fuchs T, Kolla S, Reede D (2017) Interpretive error in radiology. Am J Roentgenol 208(4):739–749CrossRef Waite S, Scott J, Gale B, Fuchs T, Kolla S, Reede D (2017) Interpretive error in radiology. Am J Roentgenol 208(4):739–749CrossRef
4.
go back to reference Chung JH, Strigel RM, Chew AR, Albrecht E, Gunn ML (2009) Overnight resident interpretation of torso CT at a level 1 trauma center: an analysis and review of the literature. Acad Radiol 16(9):1155–1160PubMedCrossRef Chung JH, Strigel RM, Chew AR, Albrecht E, Gunn ML (2009) Overnight resident interpretation of torso CT at a level 1 trauma center: an analysis and review of the literature. Acad Radiol 16(9):1155–1160PubMedCrossRef
5.
go back to reference Bruno MA, Duncan JR, Bierhals AJ, Tappouni R (2018) Overnight resident versus 24-hour attending radiologist coverage in academic medical centers. Radiology 289(3):809–813PubMedCrossRef Bruno MA, Duncan JR, Bierhals AJ, Tappouni R (2018) Overnight resident versus 24-hour attending radiologist coverage in academic medical centers. Radiology 289(3):809–813PubMedCrossRef
6.
go back to reference Banaste N, Caurier B, Bratan F, Bergerot J-F, Thomson V, Millet I (2018) Whole-body CT in patients with multiple traumas: factors leading to missed injury. Radiology 289(2):374–383PubMedCrossRef Banaste N, Caurier B, Bratan F, Bergerot J-F, Thomson V, Millet I (2018) Whole-body CT in patients with multiple traumas: factors leading to missed injury. Radiology 289(2):374–383PubMedCrossRef
7.
go back to reference Glover M IV, Almeida RR, Schaefer PW, Lev MH, Mehan WA Jr (2017) Quantifying the impact of noninterpretive tasks on radiology report turn-around times. J Am Coll Radiol 14(11):1498–1503PubMedCrossRef Glover M IV, Almeida RR, Schaefer PW, Lev MH, Mehan WA Jr (2017) Quantifying the impact of noninterpretive tasks on radiology report turn-around times. J Am Coll Radiol 14(11):1498–1503PubMedCrossRef
8.
go back to reference Hunter TB, Taljanovic MS, Krupinski E, Ovitt T, Stubbs AY (2007) Academic radiologists’ on-call and late-evening duties. J Am Coll Radiol 4(10):716–719PubMedCrossRef Hunter TB, Taljanovic MS, Krupinski E, Ovitt T, Stubbs AY (2007) Academic radiologists’ on-call and late-evening duties. J Am Coll Radiol 4(10):716–719PubMedCrossRef
9.
go back to reference Hanna TN, Loehfelm T, Khosa F, Rohatgi S, Johnson J-O (2016) Overnight shift work: factors contributing to diagnostic discrepancies. Emerg Radiol 23(1):41–47PubMedCrossRef Hanna TN, Loehfelm T, Khosa F, Rohatgi S, Johnson J-O (2016) Overnight shift work: factors contributing to diagnostic discrepancies. Emerg Radiol 23(1):41–47PubMedCrossRef
10.
go back to reference Barquist ES, Pizano LR, Feuer W, Pappas PA, McKenney KA, LeBlang SD, Henry RP, Rivas LA, Cohn SM (2004) Inter-and intrarater reliability in computed axial tomographic grading of splenic injury: why so many grading scales? J Trauma Acute Care Surg 56(2):334–338CrossRef Barquist ES, Pizano LR, Feuer W, Pappas PA, McKenney KA, LeBlang SD, Henry RP, Rivas LA, Cohn SM (2004) Inter-and intrarater reliability in computed axial tomographic grading of splenic injury: why so many grading scales? J Trauma Acute Care Surg 56(2):334–338CrossRef
11.
go back to reference Clark R, Hird K, Misur P, Ramsay D, Mendelson R (2011) CT grading scales for splenic injury: why can’t we agree? J Med Imaging Radiat Oncol 55(2):163–169PubMedCrossRef Clark R, Hird K, Misur P, Ramsay D, Mendelson R (2011) CT grading scales for splenic injury: why can’t we agree? J Med Imaging Radiat Oncol 55(2):163–169PubMedCrossRef
13.
go back to reference Furey AJ, O’Toole RV, Nascone JW, Sciadini MF, Copeland CE, Turen C (2009) Classification of pelvic fractures: analysis of inter-and intraobserver variability using the Young-Burgess and Tile classification systems. Orthopedics (Online) 32(6):401 Furey AJ, O’Toole RV, Nascone JW, Sciadini MF, Copeland CE, Turen C (2009) Classification of pelvic fractures: analysis of inter-and intraobserver variability using the Young-Burgess and Tile classification systems. Orthopedics (Online) 32(6):401
14.
go back to reference Liu J, Varghese B, Taravat F, Eibschutz LS, Gholamrezanezhad A (2022) An extra set of intelligent eyes: application of artificial intelligence in imaging of abdominopelvic pathologies in emergency radiology. Diagnostics 12(6):1351PubMedPubMedCentralCrossRef Liu J, Varghese B, Taravat F, Eibschutz LS, Gholamrezanezhad A (2022) An extra set of intelligent eyes: application of artificial intelligence in imaging of abdominopelvic pathologies in emergency radiology. Diagnostics 12(6):1351PubMedPubMedCentralCrossRef
15.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84–90CrossRef Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84–90CrossRef
16.
go back to reference He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition p. 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition p. 770–778
17.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-Net: Convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A (eds) Medical image computing and computer-assisted intervention – MICCAI 2015. MICCAI 2015. Lecture notes in computer science(), vol 9351. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_28CrossRef Ronneberger O, Fischer P, Brox T (2015) U-Net: Convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A (eds) Medical image computing and computer-assisted intervention – MICCAI 2015. MICCAI 2015. Lecture notes in computer science(), vol 9351. Springer, Cham. https://​doi.​org/​10.​1007/​978-3-319-24574-4_​28CrossRef
18.
go back to reference Zhou SK, Greenspan H, Davatzikos C, Duncan JS, Van Ginneken B, Madabhushi A, Prince JL, Rueckert D, Summers RM (2021) A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises. Proc IEEE 109(5):820–838CrossRef Zhou SK, Greenspan H, Davatzikos C, Duncan JS, Van Ginneken B, Madabhushi A, Prince JL, Rueckert D, Summers RM (2021) A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises. Proc IEEE 109(5):820–838CrossRef
19.
go back to reference Fujita H (2020) AI-based computer-aided diagnosis (AI-CAD): the latest review to read first. Radiol Phys Technol 13(1):6–19PubMedCrossRef Fujita H (2020) AI-based computer-aided diagnosis (AI-CAD): the latest review to read first. Radiol Phys Technol 13(1):6–19PubMedCrossRef
20.
go back to reference West E, Mutasa S, Zhu Z, Ha R (2019) Global trend in artificial intelligence–based publications in radiology from 2000 to 2018. Am J Roentgenol 213(6):1204–1206CrossRef West E, Mutasa S, Zhu Z, Ha R (2019) Global trend in artificial intelligence–based publications in radiology from 2000 to 2018. Am J Roentgenol 213(6):1204–1206CrossRef
22.
go back to reference Ebrahimian S, Kalra MK, Agarwal S, Bizzo BC, Elkholy M, Wald C, Allen B, Dreyer KJ (2022) FDA-regulated AI algorithms: trends, strengths, and gaps of validation studies. Acad Radiol 29(4):559–566PubMedCrossRef Ebrahimian S, Kalra MK, Agarwal S, Bizzo BC, Elkholy M, Wald C, Allen B, Dreyer KJ (2022) FDA-regulated AI algorithms: trends, strengths, and gaps of validation studies. Acad Radiol 29(4):559–566PubMedCrossRef
23.
go back to reference Sammer MB, Sher AC, Towbin AJ (2022) Ensuring adequate development and appropriate use of artificial intelligence in pediatric medical imaging. Am J Roentgenol 218(1):182–183CrossRef Sammer MB, Sher AC, Towbin AJ (2022) Ensuring adequate development and appropriate use of artificial intelligence in pediatric medical imaging. Am J Roentgenol 218(1):182–183CrossRef
25.
go back to reference Benjamens S, Dhunnoo P, Meskó B (2020) The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med 3(1):1–8CrossRef Benjamens S, Dhunnoo P, Meskó B (2020) The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med 3(1):1–8CrossRef
26.
go back to reference He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K (2019) The practical implementation of artificial intelligence technologies in medicine. Nat Med 25(1):30–36PubMedPubMedCentralCrossRef He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K (2019) The practical implementation of artificial intelligence technologies in medicine. Nat Med 25(1):30–36PubMedPubMedCentralCrossRef
28.
go back to reference Dreizin D, Munera F (2015) Multidetector CT for penetrating torso trauma: state of the art. Radiology 277(2):338–355PubMedCrossRef Dreizin D, Munera F (2015) Multidetector CT for penetrating torso trauma: state of the art. Radiology 277(2):338–355PubMedCrossRef
29.
go back to reference Varoquaux G, Cheplygina V (2022) Machine learning for medical imaging: methodological failures and recommendations for the future. NPJ Digit Med 5(1):1–8CrossRef Varoquaux G, Cheplygina V (2022) Machine learning for medical imaging: methodological failures and recommendations for the future. NPJ Digit Med 5(1):1–8CrossRef
30.
go back to reference Weikert T, Cyriac J, Yang S, Nesic I, Parmar V, Stieltjes B (2020) A practical guide to artificial intelligence–based image analysis in radiology. Invest Radiol 55(1):1–7PubMedCrossRef Weikert T, Cyriac J, Yang S, Nesic I, Parmar V, Stieltjes B (2020) A practical guide to artificial intelligence–based image analysis in radiology. Invest Radiol 55(1):1–7PubMedCrossRef
31.
go back to reference Arksey H, O’Malley L (2005) Scoping studies: towards a methodological framework. Int J Soc Res Methodol 8(1):19–32CrossRef Arksey H, O’Malley L (2005) Scoping studies: towards a methodological framework. Int J Soc Res Methodol 8(1):19–32CrossRef
32.
go back to reference Pham MT, Rajić A, Greig JD, Sargeant JM, Papadopoulos A, McEwen SA (2014) A scoping review of scoping reviews: advancing the approach and enhancing the consistency. Res Synth Meth 5(4):371–385CrossRef Pham MT, Rajić A, Greig JD, Sargeant JM, Papadopoulos A, McEwen SA (2014) A scoping review of scoping reviews: advancing the approach and enhancing the consistency. Res Synth Meth 5(4):371–385CrossRef
33.
go back to reference Langlotz CP, Allen B, Erickson BJ, Kalpathy-Cramer J, Bigelow K, Cook TS, Flanders AE, Lungren MP, Mendelson DS, Rudie JD (2019) A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology 291(3):781PubMedCrossRef Langlotz CP, Allen B, Erickson BJ, Kalpathy-Cramer J, Bigelow K, Cook TS, Flanders AE, Lungren MP, Mendelson DS, Rudie JD (2019) A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology 291(3):781PubMedCrossRef
34.
go back to reference Allen B Jr, Seltzer SE, Langlotz CP, Dreyer KP, Summers RM, Petrick N, Marinac-Dabic D, Cruz M, Alkasab TK, Hanisch RJ (2019) A road map for translational research on artificial intelligence in medical imaging: from the 2018 National Institutes of Health/RSNA/ACR/The Academy Workshop. J Am Coll Radiol 16(9):1179–1189PubMedCrossRef Allen B Jr, Seltzer SE, Langlotz CP, Dreyer KP, Summers RM, Petrick N, Marinac-Dabic D, Cruz M, Alkasab TK, Hanisch RJ (2019) A road map for translational research on artificial intelligence in medical imaging: from the 2018 National Institutes of Health/RSNA/ACR/The Academy Workshop. J Am Coll Radiol 16(9):1179–1189PubMedCrossRef
35.
go back to reference Majkowska A, Mittal S, Steiner DF, Reicher JJ, McKinney SM, Duggan GE, Eswaran K, Cameron Chen P-H, Liu Y, Kalidindi SR (2020) Chest radiograph interpretation with deep learning models: assessment with radiologist-adjudicated reference standards and population-adjusted evaluation. Radiology 294(2):421–431PubMedCrossRef Majkowska A, Mittal S, Steiner DF, Reicher JJ, McKinney SM, Duggan GE, Eswaran K, Cameron Chen P-H, Liu Y, Kalidindi SR (2020) Chest radiograph interpretation with deep learning models: assessment with radiologist-adjudicated reference standards and population-adjusted evaluation. Radiology 294(2):421–431PubMedCrossRef
36.
go back to reference Seah JC, Tang CH, Buchlak QD, Holt XG, Wardman JB, Aimoldin A, Esmaili N, Ahmad H, Pham H, Lambert JF (2021) Effect of a comprehensive deep-learning model on the accuracy of chest x-ray interpretation by radiologists: a retrospective, multireader multicase study. Lancet Digit Health 3(8):e496–e506PubMedCrossRef Seah JC, Tang CH, Buchlak QD, Holt XG, Wardman JB, Aimoldin A, Esmaili N, Ahmad H, Pham H, Lambert JF (2021) Effect of a comprehensive deep-learning model on the accuracy of chest x-ray interpretation by radiologists: a retrospective, multireader multicase study. Lancet Digit Health 3(8):e496–e506PubMedCrossRef
37.
go back to reference Jones RM, Sharma A, Hotchkiss R, Sperling JW, Hamburger J, Ledig C, O’Toole R, Gardner M, Venkatesh S, Roberts MM (2020) Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs. NPJ Digit Med 3(1):1–6CrossRef Jones RM, Sharma A, Hotchkiss R, Sperling JW, Hamburger J, Ledig C, O’Toole R, Gardner M, Venkatesh S, Roberts MM (2020) Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs. NPJ Digit Med 3(1):1–6CrossRef
38.
go back to reference Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, Mahajan V, Rao P, Warier P (2018) Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 392(10162):2388–2396PubMedCrossRef Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, Mahajan V, Rao P, Warier P (2018) Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 392(10162):2388–2396PubMedCrossRef
39.
go back to reference Dreizin D, Zhou Y, Chen T, Li G, Yuille AL, McLenithan A, Morrison JJ (2020) Deep learning-based quantitative visualization and measurement of extraperitoneal hematoma volumes in patients with pelvic fractures: potential role in personalized forecasting and decision support. J Trauma Acute Care Surg 88(3):425PubMedPubMedCentralCrossRef Dreizin D, Zhou Y, Chen T, Li G, Yuille AL, McLenithan A, Morrison JJ (2020) Deep learning-based quantitative visualization and measurement of extraperitoneal hematoma volumes in patients with pelvic fractures: potential role in personalized forecasting and decision support. J Trauma Acute Care Surg 88(3):425PubMedPubMedCentralCrossRef
40.
go back to reference Harris RJ, Kim S, Lohr J, Towey S, Velichkovich Z, Kabachenko T, Driscoll I, Baker B (2019) Classification of aortic dissection and rupture on post-contrast CT images using a convolutional neural network. J Digit Imaging 32(6):939–946PubMedPubMedCentralCrossRef Harris RJ, Kim S, Lohr J, Towey S, Velichkovich Z, Kabachenko T, Driscoll I, Baker B (2019) Classification of aortic dissection and rupture on post-contrast CT images using a convolutional neural network. J Digit Imaging 32(6):939–946PubMedPubMedCentralCrossRef
41.
go back to reference Ginat DT (2020) Analysis of head CT scans flagged by deep learning software for acute intracranial hemorrhage. Neuroradiology 62(3):335–340PubMedCrossRef Ginat DT (2020) Analysis of head CT scans flagged by deep learning software for acute intracranial hemorrhage. Neuroradiology 62(3):335–340PubMedCrossRef
42.
go back to reference Ginat D (2021) Implementation of machine learning software on the radiology worklist decreases scan view delay for the detection of intracranial hemorrhage on CT. Brain Sci 11(7):832PubMedPubMedCentralCrossRef Ginat D (2021) Implementation of machine learning software on the radiology worklist decreases scan view delay for the detection of intracranial hemorrhage on CT. Brain Sci 11(7):832PubMedPubMedCentralCrossRef
43.
go back to reference Kundisch A, Hönning A, Mutze S, Kreissl L, Spohn F, Lemcke J, Sitz M, Sparenberg P, Goelz L (2021) Deep learning algorithm in detecting intracranial hemorrhages on emergency computed tomographies. PLoS ONE 16(11):e0260560PubMedPubMedCentralCrossRef Kundisch A, Hönning A, Mutze S, Kreissl L, Spohn F, Lemcke J, Sitz M, Sparenberg P, Goelz L (2021) Deep learning algorithm in detecting intracranial hemorrhages on emergency computed tomographies. PLoS ONE 16(11):e0260560PubMedPubMedCentralCrossRef
44.
45.
go back to reference Kau T, Ziurlys M, Taschwer M, Kloss-Brandstätter A, Grabner G, Deutschmann H (2022) FDA-approved deep learning software application versus radiologists with different levels of expertise: detection of intracranial hemorrhage in a retrospective single-center study. Neuroradiology 64(5):981–990PubMedCrossRef Kau T, Ziurlys M, Taschwer M, Kloss-Brandstätter A, Grabner G, Deutschmann H (2022) FDA-approved deep learning software application versus radiologists with different levels of expertise: detection of intracranial hemorrhage in a retrospective single-center study. Neuroradiology 64(5):981–990PubMedCrossRef
46.
go back to reference Voter AF, Meram E, Garrett JW, John-Paul JY (2021) Diagnostic accuracy and failure mode analysis of a deep learning algorithm for the detection of intracranial hemorrhage. J Am Coll Radiol 18(8):1143–1152PubMedPubMedCentralCrossRef Voter AF, Meram E, Garrett JW, John-Paul JY (2021) Diagnostic accuracy and failure mode analysis of a deep learning algorithm for the detection of intracranial hemorrhage. J Am Coll Radiol 18(8):1143–1152PubMedPubMedCentralCrossRef
47.
go back to reference Wismüller A, Stockmaster L (2020) A prospective randomized clinical trial for measuring radiology study reporting time on artificial intelligence-based detection of intracranial hemorrhage in emergent care head CT. In: Proc. SPIE 11317, Medical Imaging 2020: Biomedical applications in molecular, structural, and functional imaging, 113170M. https://doi.org/10.1117/12.2552400CrossRef Wismüller A, Stockmaster L (2020) A prospective randomized clinical trial for measuring radiology study reporting time on artificial intelligence-based detection of intracranial hemorrhage in emergent care head CT. In: Proc. SPIE 11317, Medical Imaging 2020: Biomedical applications in molecular, structural, and functional imaging, 113170M. https://​doi.​org/​10.​1117/​12.​2552400CrossRef
48.
go back to reference Heit J, Coelho H, Lima F, Granja M, Aghaebrahim A, Hanel R, Kwok K, Haerian H, Cereda C, Venkatasubramanian C (2021) Automated cerebral hemorrhage detection using RAPID. Am J Neuroradiol 42(2):273–278PubMedPubMedCentralCrossRef Heit J, Coelho H, Lima F, Granja M, Aghaebrahim A, Hanel R, Kwok K, Haerian H, Cereda C, Venkatasubramanian C (2021) Automated cerebral hemorrhage detection using RAPID. Am J Neuroradiol 42(2):273–278PubMedPubMedCentralCrossRef
49.
go back to reference Gipson J, Tang V, Seah J, Kavnoudias H, Zia A, Lee R, Mitra B, Clements W (2022) Diagnostic accuracy of a commercially available deep-learning algorithm in supine chest radiographs following trauma. Br J Radiol 95:20210979PubMedCrossRef Gipson J, Tang V, Seah J, Kavnoudias H, Zia A, Lee R, Mitra B, Clements W (2022) Diagnostic accuracy of a commercially available deep-learning algorithm in supine chest radiographs following trauma. Br J Radiol 95:20210979PubMedCrossRef
50.
51.
go back to reference Voter A, Larson M, Garrett J, Yu J-P (2021) Diagnostic accuracy and failure mode analysis of a deep learning algorithm for the detection of cervical spine fractures. Am J Neuroradiol 42(8):1550–1556PubMedPubMedCentralCrossRef Voter A, Larson M, Garrett J, Yu J-P (2021) Diagnostic accuracy and failure mode analysis of a deep learning algorithm for the detection of cervical spine fractures. Am J Neuroradiol 42(8):1550–1556PubMedPubMedCentralCrossRef
52.
go back to reference Weikert T, Noordtzij LA, Bremerich J, Stieltjes B, Parmar V, Cyriac J, Sommer G, Sauter AW (2020) Assessment of a deep learning algorithm for the detection of rib fractures on whole-body trauma computed tomography. Korean J Radiol 21(7):891PubMedCrossRef Weikert T, Noordtzij LA, Bremerich J, Stieltjes B, Parmar V, Cyriac J, Sommer G, Sauter AW (2020) Assessment of a deep learning algorithm for the detection of rib fractures on whole-body trauma computed tomography. Korean J Radiol 21(7):891PubMedCrossRef
53.
go back to reference Hayashi D, Kompel AJ, Ventre J, Ducarouge A, Nguyen T, Regnard N-E, Guermazi A (n.d.) Automated detection of acute appendicular skeletal fractures in pediatric patients using deep learning. Skelet Radiol 2022:1–11 Hayashi D, Kompel AJ, Ventre J, Ducarouge A, Nguyen T, Regnard N-E, Guermazi A (n.d.) Automated detection of acute appendicular skeletal fractures in pediatric patients using deep learning. Skelet Radiol 2022:1–11
55.
go back to reference Duron L, Ducarouge A, Gillibert A, Lainé J, Allouche C, Cherel N, Zhang Z, Nitche N, Lacave E, Pourchot A (2021) Assessment of an AI aid in detection of adult appendicular skeletal fractures by emergency physicians and radiologists: a multicenter cross-sectional diagnostic study. Radiology 300(1):120–129PubMedCrossRef Duron L, Ducarouge A, Gillibert A, Lainé J, Allouche C, Cherel N, Zhang Z, Nitche N, Lacave E, Pourchot A (2021) Assessment of an AI aid in detection of adult appendicular skeletal fractures by emergency physicians and radiologists: a multicenter cross-sectional diagnostic study. Radiology 300(1):120–129PubMedCrossRef
56.
go back to reference Dupuis M, Delbos L, Veil R, Adamsbaum C (2022) External validation of a commercially available deep learning algorithm for fracture detection in children. Diagn Interv Imaging 103(3):151–159PubMedCrossRef Dupuis M, Delbos L, Veil R, Adamsbaum C (2022) External validation of a commercially available deep learning algorithm for fracture detection in children. Diagn Interv Imaging 103(3):151–159PubMedCrossRef
57.
go back to reference Rueckel J, Sperl JI, Kaestle S, Hoppe BF, Fink N, Rudolph J, Schwarze V, Geyer T, Strobl FF, Ricke J (2021) Reduction of missed thoracic findings in emergency whole-body computed tomography using artificial intelligence assistance. Quant Imaging Med Surg 11:2486–2498PubMedPubMedCentralCrossRef Rueckel J, Sperl JI, Kaestle S, Hoppe BF, Fink N, Rudolph J, Schwarze V, Geyer T, Strobl FF, Ricke J (2021) Reduction of missed thoracic findings in emergency whole-body computed tomography using artificial intelligence assistance. Quant Imaging Med Surg 11:2486–2498PubMedPubMedCentralCrossRef
58.
go back to reference Genant HK, Li J, Wu CY, Shepherd JA (2000) Vertebral fractures in osteoporosis: a new method for clinical assessment. J Clin Densitom 3(3):281–290PubMedCrossRef Genant HK, Li J, Wu CY, Shepherd JA (2000) Vertebral fractures in osteoporosis: a new method for clinical assessment. J Clin Densitom 3(3):281–290PubMedCrossRef
61.
go back to reference Remedios SW, Roy S, Bermudez C, Patel MB, Butman JA, Landman BA, Pham DL (2020) Distributed deep learning across multisite datasets for generalized CT hemorrhage segmentation. Med Phys 47(1):89–98PubMedCrossRef Remedios SW, Roy S, Bermudez C, Patel MB, Butman JA, Landman BA, Pham DL (2020) Distributed deep learning across multisite datasets for generalized CT hemorrhage segmentation. Med Phys 47(1):89–98PubMedCrossRef
62.
go back to reference Mutasa S, Varada S, Goel A, Wong TT, Rasiej MJ (2020) Advanced deep learning techniques applied to automated femoral neck fracture detection and classification. J Digit Imaging 33(5):1209–1217PubMedPubMedCentralCrossRef Mutasa S, Varada S, Goel A, Wong TT, Rasiej MJ (2020) Advanced deep learning techniques applied to automated femoral neck fracture detection and classification. J Digit Imaging 33(5):1209–1217PubMedPubMedCentralCrossRef
63.
go back to reference Zhou Y, Dreizin D, Wang Y, Liu F, Shen W, Yuille AL (2021) External attention assisted multi-phase splenic vascular injury segmentation with limited data. IEEE Trans Med Imaging 41(6):1346–1357CrossRef Zhou Y, Dreizin D, Wang Y, Liu F, Shen W, Yuille AL (2021) External attention assisted multi-phase splenic vascular injury segmentation with limited data. IEEE Trans Med Imaging 41(6):1346–1357CrossRef
64.
go back to reference Lind A, Akbarian E, Olsson S, Nåsell H, Sköldenberg O, Razavian AS, Gordon M (2021) Artificial intelligence for the classification of fractures around the knee in adults according to the 2018 AO/OTA classification system. PLoS ONE 16(4):e0248809PubMedPubMedCentralCrossRef Lind A, Akbarian E, Olsson S, Nåsell H, Sköldenberg O, Razavian AS, Gordon M (2021) Artificial intelligence for the classification of fractures around the knee in adults according to the 2018 AO/OTA classification system. PLoS ONE 16(4):e0248809PubMedPubMedCentralCrossRef
65.
go back to reference Jin L, Yang J, Kuang K, Ni B, Gao Y, Sun Y, Gao P, Ma W, Tan M, Kang H (2020) Deep-learning-assisted detection and segmentation of rib fractures from CT scans: Development and validation of FracNet. EBioMedicine 62:103106PubMedPubMedCentralCrossRef Jin L, Yang J, Kuang K, Ni B, Gao Y, Sun Y, Gao P, Ma W, Tan M, Kang H (2020) Deep-learning-assisted detection and segmentation of rib fractures from CT scans: Development and validation of FracNet. EBioMedicine 62:103106PubMedPubMedCentralCrossRef
66.
go back to reference Zhou Q-Q, Hu Z-C, Tang W, Xia Z-Y, Wang J, Zhang R, Li X, Chen C-Y, Zhang B, Lu L (2022) Precise anatomical localization and classification of rib fractures on CT using a convolutional neural network. Clin Imaging 81:24–32PubMedCrossRef Zhou Q-Q, Hu Z-C, Tang W, Xia Z-Y, Wang J, Zhang R, Li X, Chen C-Y, Zhang B, Lu L (2022) Precise anatomical localization and classification of rib fractures on CT using a convolutional neural network. Clin Imaging 81:24–32PubMedCrossRef
67.
go back to reference Olczak J, Emilson F, Razavian A, Antonsson T, Stark A, Gordon M (2020) Ankle fracture classification using deep learning: automating detailed AO Foundation/Orthopedic Trauma Association (AO/OTA) 2018 malleolar fracture identification reaches a high degree of correct classification. Acta Orthop 92(1):102–108PubMedPubMedCentralCrossRef Olczak J, Emilson F, Razavian A, Antonsson T, Stark A, Gordon M (2020) Ankle fracture classification using deep learning: automating detailed AO Foundation/Orthopedic Trauma Association (AO/OTA) 2018 malleolar fracture identification reaches a high degree of correct classification. Acta Orthop 92(1):102–108PubMedPubMedCentralCrossRef
68.
go back to reference Huang Y-J, Liu W, Wang X, Fang Q, Wang R, Wang Y, Chen H, Chen H, Meng D, Wang L (2020) Rectifying supporting regions with mixed and active supervision for rib fracture recognition. IEEE Trans Med Imaging 39(12):3843–3854PubMedCrossRef Huang Y-J, Liu W, Wang X, Fang Q, Wang R, Wang Y, Chen H, Chen H, Meng D, Wang L (2020) Rectifying supporting regions with mixed and active supervision for rib fracture recognition. IEEE Trans Med Imaging 39(12):3843–3854PubMedCrossRef
70.
go back to reference Zapaishchykova A, Dreizin D, Li Z, Wu JY, Faghihroohi S, Unberath M (2021) An interpretable approach to automated severity scoring in pelvic trauma. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021, vol 12903. Lecture Notes in Computer Science(), Springer, Cham. https://doi.org/10.1007/978-3-030-87199-4_40CrossRef Zapaishchykova A, Dreizin D, Li Z, Wu JY, Faghihroohi S, Unberath M (2021) An interpretable approach to automated severity scoring in pelvic trauma. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021, vol 12903. Lecture Notes in Computer Science(), Springer, Cham. https://​doi.​org/​10.​1007/​978-3-030-87199-4_​40CrossRef
71.
go back to reference Diaz-Pinto A, Alle S, Ihsani A, Asad M, Nath V, Pérez-García F, Mehta P, Li W, Roth HR, Vercauteren T (2022) Monai label: a framework for ai-assisted interactive labeling of 3d medical images. arXiv preprint arXiv:220312362 Diaz-Pinto A, Alle S, Ihsani A, Asad M, Nath V, Pérez-García F, Mehta P, Li W, Roth HR, Vercauteren T (2022) Monai label: a framework for ai-assisted interactive labeling of 3d medical images. arXiv preprint arXiv:220312362
72.
go back to reference Diaz-Pinto A, Mehta P, Alle S, Asad M, Brown R, Nath V, Ihsani A, Antonelli M, Palkovics D, Pinter C (2022) DeepEdit: deep editable learning for interactive segmentation of 3D medical images. MICCAI Workshop on Data Augmentation, Labelling, and Imperfections: Springer, p. 11–21 Diaz-Pinto A, Mehta P, Alle S, Asad M, Brown R, Nath V, Ihsani A, Antonelli M, Palkovics D, Pinter C (2022) DeepEdit: deep editable learning for interactive segmentation of 3D medical images. MICCAI Workshop on Data Augmentation, Labelling, and Imperfections: Springer, p. 11–21
73.
go back to reference Burns JE, Yao J, Muñoz H, Summers RM (2016) Automated detection, localization, and classification of traumatic vertebral body fractures in the thoracic and lumbar spine at CT. Radiology 278(1):64PubMedCrossRef Burns JE, Yao J, Muñoz H, Summers RM (2016) Automated detection, localization, and classification of traumatic vertebral body fractures in the thoracic and lumbar spine at CT. Radiology 278(1):64PubMedCrossRef
74.
go back to reference Bandyopadhyay O, Biswas A, Bhattacharya BB (2016) Long-bone fracture detection in digital X-ray images based on digital-geometric techniques. Comput Methods Programs Biomed 123:2–14PubMedCrossRef Bandyopadhyay O, Biswas A, Bhattacharya BB (2016) Long-bone fracture detection in digital X-ray images based on digital-geometric techniques. Comput Methods Programs Biomed 123:2–14PubMedCrossRef
75.
go back to reference Sun L, Kong Q, Huang Y, Yang J, Wang S, Zou R, Yin Y, Peng J (2020) Automatic segmentation and measurement on knee computerized tomography images for patellar dislocation diagnosis. Comput Math Methods Med 2020 Sun L, Kong Q, Huang Y, Yang J, Wang S, Zou R, Yin Y, Peng J (2020) Automatic segmentation and measurement on knee computerized tomography images for patellar dislocation diagnosis. Comput Math Methods Med 2020
76.
go back to reference Seo JW, Lim SH, Jeong JG, Kim YJ, Kim KG, Jeon JY (2021) A deep learning algorithm for automated measurement of vertebral body compression from X-ray images. Sci Rep 11(1):1–10CrossRef Seo JW, Lim SH, Jeong JG, Kim YJ, Kim KG, Jeon JY (2021) A deep learning algorithm for automated measurement of vertebral body compression from X-ray images. Sci Rep 11(1):1–10CrossRef
77.
go back to reference Baum T, Bauer JS, Klinder T, Dobritz M, Rummeny EJ, Noël PB, Lorenz C (2014) Automatic detection of osteoporotic vertebral fractures in routine thoracic and abdominal MDCT. Eur Radiol 24(4):872–880PubMedCrossRef Baum T, Bauer JS, Klinder T, Dobritz M, Rummeny EJ, Noël PB, Lorenz C (2014) Automatic detection of osteoporotic vertebral fractures in routine thoracic and abdominal MDCT. Eur Radiol 24(4):872–880PubMedCrossRef
78.
go back to reference Xia X, Zhang X, Huang Z, Ren Q, Li H, Li Y, Liang K, Wang H, Han K, Meng X (2021) Automated detection of 3D midline shift in spontaneous supratentorial intracerebral haemorrhage with non-contrast computed tomography using deep convolutional neural networks. Am J Transl Res 13(10):11513PubMedPubMedCentral Xia X, Zhang X, Huang Z, Ren Q, Li H, Li Y, Liang K, Wang H, Han K, Meng X (2021) Automated detection of 3D midline shift in spontaneous supratentorial intracerebral haemorrhage with non-contrast computed tomography using deep convolutional neural networks. Am J Transl Res 13(10):11513PubMedPubMedCentral
79.
go back to reference Guo J, Mu Y, Xue D, Li H, Chen J, Yan H, Xu H, Wang W (2021) Automatic analysis system of calcaneus radiograph: Rotation-invariant landmark detection for calcaneal angle measurement, fracture identification and fracture region segmentation. Comput Methods Programs Biomed 206:106124PubMedCrossRef Guo J, Mu Y, Xue D, Li H, Chen J, Yan H, Xu H, Wang W (2021) Automatic analysis system of calcaneus radiograph: Rotation-invariant landmark detection for calcaneal angle measurement, fracture identification and fracture region segmentation. Comput Methods Programs Biomed 206:106124PubMedCrossRef
80.
go back to reference Monchka BA, Kimelman D, Lix LM, Leslie WD (2021) Feasibility of a generalized convolutional neural network for automated identification of vertebral compression fractures: the Manitoba Bone Mineral Density Registry. Bone 150:116017PubMedCrossRef Monchka BA, Kimelman D, Lix LM, Leslie WD (2021) Feasibility of a generalized convolutional neural network for automated identification of vertebral compression fractures: the Manitoba Bone Mineral Density Registry. Bone 150:116017PubMedCrossRef
81.
go back to reference Rajpurkar P, Irvin J, Bagul A, Ding D, Duan T, Mehta H, Yang B, Zhu K, Laird D, Ball RL (2017) Mura: Large dataset for abnormality detection in musculoskeletal radiographs. arXiv preprint arXiv:171206957 Rajpurkar P, Irvin J, Bagul A, Ding D, Duan T, Mehta H, Yang B, Zhu K, Laird D, Ball RL (2017) Mura: Large dataset for abnormality detection in musculoskeletal radiographs. arXiv preprint arXiv:171206957
82.
go back to reference Wang Y, Wang K, Peng X, Shi L, Sun J, Zheng S, Shan F, Shi W, Liu L (2021) DeepSDM: Boundary-aware pneumothorax segmentation in chest X-ray images. Neurocomputing 454:201–211CrossRef Wang Y, Wang K, Peng X, Shi L, Sun J, Zheng S, Shan F, Shi W, Liu L (2021) DeepSDM: Boundary-aware pneumothorax segmentation in chest X-ray images. Neurocomputing 454:201–211CrossRef
83.
go back to reference Flanders AE, Prevedello LM, Shih G, Halabi SS, Kalpathy-Cramer J, Ball R, Mongan JT, Stein A, Kitamura FC, Lungren MP (2020) Construction of a machine learning dataset through collaboration: the RSNA 2019 brain CT hemorrhage challenge. Radiology: Artif Intell 2(3):e190211 Flanders AE, Prevedello LM, Shih G, Halabi SS, Kalpathy-Cramer J, Ball R, Mongan JT, Stein A, Kitamura FC, Lungren MP (2020) Construction of a machine learning dataset through collaboration: the RSNA 2019 brain CT hemorrhage challenge. Radiology: Artif Intell 2(3):e190211
84.
go back to reference Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM (2017) Chestx-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. Proceedings of the IEEE conference on computer vision and pattern recognition, p. 2097–2106 Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM (2017) Chestx-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. Proceedings of the IEEE conference on computer vision and pattern recognition, p. 2097–2106
85.
go back to reference Choi JW, Cho YJ, Ha JY, Lee YY, Koh SY, Seo JY, Choi YH, Cheon J-E, Phi JH, Kim I (2022) Deep learning-assisted diagnosis of pediatric skull fractures on plain radiographs. Korean J Radiol 23(3):343PubMedPubMedCentralCrossRef Choi JW, Cho YJ, Ha JY, Lee YY, Koh SY, Seo JY, Choi YH, Cheon J-E, Phi JH, Kim I (2022) Deep learning-assisted diagnosis of pediatric skull fractures on plain radiographs. Korean J Radiol 23(3):343PubMedPubMedCentralCrossRef
86.
go back to reference Oakden-Rayner L, Gale W, Bonham TA, Lungren MP, Carneiro G, Bradley AP, Palmer LJ (2022) Validation and algorithmic audit of a deep learning system for the detection of proximal femoral fractures in patients in the emergency department: a diagnostic accuracy study. Lancet Digit Health 4(5):e351–e358PubMedCrossRef Oakden-Rayner L, Gale W, Bonham TA, Lungren MP, Carneiro G, Bradley AP, Palmer LJ (2022) Validation and algorithmic audit of a deep learning system for the detection of proximal femoral fractures in patients in the emergency department: a diagnostic accuracy study. Lancet Digit Health 4(5):e351–e358PubMedCrossRef
87.
go back to reference Jiménez-Sánchez A, Kazi A, Albarqouni S, Kirchhoff C, Biberthaler P, Navab N, Kirchhoff S, Mateus D (2020) Precise proximal femur fracture classification for interactive training and surgical planning. Int J Comput Assist Radiol Surg 15(5):847–857PubMedCrossRef Jiménez-Sánchez A, Kazi A, Albarqouni S, Kirchhoff C, Biberthaler P, Navab N, Kirchhoff S, Mateus D (2020) Precise proximal femur fracture classification for interactive training and surgical planning. Int J Comput Assist Radiol Surg 15(5):847–857PubMedCrossRef
88.
go back to reference Derkatch S, Kirby C, Kimelman D, Jozani MJ, Davidson JM, Leslie WD (2019) Identification of vertebral fractures by convolutional neural networks to predict nonvertebral and hip fractures: a registry-based cohort study of dual X-ray absorptiometry. Radiology 293(2):405–411PubMedCrossRef Derkatch S, Kirby C, Kimelman D, Jozani MJ, Davidson JM, Leslie WD (2019) Identification of vertebral fractures by convolutional neural networks to predict nonvertebral and hip fractures: a registry-based cohort study of dual X-ray absorptiometry. Radiology 293(2):405–411PubMedCrossRef
89.
go back to reference Cai W, Lee J-G, Fikry K, Yoshida H, Novelline R, de Moya M (2012) MDCT quantification is the dominant parameter in decision-making regarding chest tube drainage for stable patients with traumatic pneumothorax. Comput Med Imaging Graph 36(5):375–386PubMedPubMedCentralCrossRef Cai W, Lee J-G, Fikry K, Yoshida H, Novelline R, de Moya M (2012) MDCT quantification is the dominant parameter in decision-making regarding chest tube drainage for stable patients with traumatic pneumothorax. Comput Med Imaging Graph 36(5):375–386PubMedPubMedCentralCrossRef
91.
go back to reference Dreizin D, Goldmann F, LeBedis C, Boscak A, Dattwyler M, Bodanapally U, Li G, Anderson S, Maier A, Unberath M (2021) An automated deep learning method for tile AO/OTA pelvic fracture severity grading from trauma whole-body CT. J Digit Imaging 34(1):53–65PubMedPubMedCentralCrossRef Dreizin D, Goldmann F, LeBedis C, Boscak A, Dattwyler M, Bodanapally U, Li G, Anderson S, Maier A, Unberath M (2021) An automated deep learning method for tile AO/OTA pelvic fracture severity grading from trauma whole-body CT. J Digit Imaging 34(1):53–65PubMedPubMedCentralCrossRef
92.
go back to reference Dreizin D, Chen T, Liang Y, Zhou Y, Paes F, Wang Y, Yuille AL, Roth P, Champ K, Li G (2021) Added value of deep learning-based liver parenchymal CT volumetry for predicting major arterial injury after blunt hepatic trauma: a decision tree analysis. Abdom Radiol 46(6):2556–2566CrossRef Dreizin D, Chen T, Liang Y, Zhou Y, Paes F, Wang Y, Yuille AL, Roth P, Champ K, Li G (2021) Added value of deep learning-based liver parenchymal CT volumetry for predicting major arterial injury after blunt hepatic trauma: a decision tree analysis. Abdom Radiol 46(6):2556–2566CrossRef
93.
go back to reference Okimatsu S, Maki S, Furuya T, Fujiyoshi T, Kitamura M, Inada T, Aramomi M, Yamauchi T, Miyamoto T, Inoue T (2022) Determining the short-term neurological prognosis for acute cervical spinal cord injury using machine learning. J Clin Neurosci 96:74–79PubMedCrossRef Okimatsu S, Maki S, Furuya T, Fujiyoshi T, Kitamura M, Inada T, Aramomi M, Yamauchi T, Miyamoto T, Inoue T (2022) Determining the short-term neurological prognosis for acute cervical spinal cord injury using machine learning. J Clin Neurosci 96:74–79PubMedCrossRef
94.
go back to reference McCoy D, Dupont S, Gros C, Cohen-Adad J, Huie R, Ferguson A, Duong-Fernandez X, Thomas L, Singh V, Narvid J (2019) Convolutional neural network–based automated segmentation of the spinal cord and contusion injury: deep learning biomarker correlates of motor impairment in acute spinal cord injury. Am J Neuroradiol 40(4):737–744PubMedPubMedCentral McCoy D, Dupont S, Gros C, Cohen-Adad J, Huie R, Ferguson A, Duong-Fernandez X, Thomas L, Singh V, Narvid J (2019) Convolutional neural network–based automated segmentation of the spinal cord and contusion injury: deep learning biomarker correlates of motor impairment in acute spinal cord injury. Am J Neuroradiol 40(4):737–744PubMedPubMedCentral
96.
go back to reference Cai Y, Wu S, Zhao W, Li Z, Wu Z, Ji S (2018) Concussion classification via deep learning using whole-brain white matter fiber strains. PLoS ONE 13(5):e0197992PubMedPubMedCentralCrossRef Cai Y, Wu S, Zhao W, Li Z, Wu Z, Ji S (2018) Concussion classification via deep learning using whole-brain white matter fiber strains. PLoS ONE 13(5):e0197992PubMedPubMedCentralCrossRef
97.
go back to reference Hellyer PJ, Leech R, Ham TE, Bonnelle V, Sharp DJ (2013) Individual prediction of white matter injury following traumatic brain injury. Ann Neurol 73(4):489–499PubMedCrossRef Hellyer PJ, Leech R, Ham TE, Bonnelle V, Sharp DJ (2013) Individual prediction of white matter injury following traumatic brain injury. Ann Neurol 73(4):489–499PubMedCrossRef
100.
go back to reference Yao H, Williamson C, Gryak J, Najarian K (2020) Automated hematoma segmentation and outcome prediction for patients with traumatic brain injury. Artif Intell Med 107:101910PubMedCrossRef Yao H, Williamson C, Gryak J, Najarian K (2020) Automated hematoma segmentation and outcome prediction for patients with traumatic brain injury. Artif Intell Med 107:101910PubMedCrossRef
101.
go back to reference Choi J, Mavrommati K, Li NY, Patil A, Chen K, Hindin DI, Forrester JD (2022) Scalable deep learning algorithm to compute percent pulmonary contusion among patients with rib fractures. J Trauma Acute Care Surg 93(4):461–466PubMedCrossRef Choi J, Mavrommati K, Li NY, Patil A, Chen K, Hindin DI, Forrester JD (2022) Scalable deep learning algorithm to compute percent pulmonary contusion among patients with rib fractures. J Trauma Acute Care Surg 93(4):461–466PubMedCrossRef
102.
go back to reference Röhrich S, Hofmanninger J, Negrin L, Langs G, Prosch H (2021) Radiomics score predicts acute respiratory distress syndrome based on the initial CT scan after trauma. Eur Radiol 31(8):5443–5453PubMedPubMedCentralCrossRef Röhrich S, Hofmanninger J, Negrin L, Langs G, Prosch H (2021) Radiomics score predicts acute respiratory distress syndrome based on the initial CT scan after trauma. Eur Radiol 31(8):5443–5453PubMedPubMedCentralCrossRef
103.
go back to reference Lee S, Summers RM (2021) Clinical artificial intelligence applications in radiology: chest and abdomen. Radiol Clin 59(6):987–1002CrossRef Lee S, Summers RM (2021) Clinical artificial intelligence applications in radiology: chest and abdomen. Radiol Clin 59(6):987–1002CrossRef
104.
go back to reference Dreizin D, Zhou Y, Zhang Y, Tirada N, Yuille AL (2020) Performance of a deep learning algorithm for automated segmentation and quantification of traumatic pelvic hematomas on CT. J Digit Imaging 33(1):243–251PubMedCrossRef Dreizin D, Zhou Y, Zhang Y, Tirada N, Yuille AL (2020) Performance of a deep learning algorithm for automated segmentation and quantification of traumatic pelvic hematomas on CT. J Digit Imaging 33(1):243–251PubMedCrossRef
105.
go back to reference Chen H, Gomez C, Huang C-M, Unberath M (2022) Explainable medical imaging AI needs human-centered design: guidelines and evidence from a systematic review. npj Digit Med 5(1):1–15CrossRef Chen H, Gomez C, Huang C-M, Unberath M (2022) Explainable medical imaging AI needs human-centered design: guidelines and evidence from a systematic review. npj Digit Med 5(1):1–15CrossRef
107.
go back to reference Sounderajah V, Ashrafian H, Aggarwal R, De Fauw J, Denniston AK, Greaves F, Karthikesalingam A, King D, Liu X, Markar SR (2020) Developing specific reporting guidelines for diagnostic accuracy studies assessing AI interventions: the STARD-AI Steering Group. Nat Med 26(6):807–808PubMedCrossRef Sounderajah V, Ashrafian H, Aggarwal R, De Fauw J, Denniston AK, Greaves F, Karthikesalingam A, King D, Liu X, Markar SR (2020) Developing specific reporting guidelines for diagnostic accuracy studies assessing AI interventions: the STARD-AI Steering Group. Nat Med 26(6):807–808PubMedCrossRef
108.
go back to reference Sounderajah V, Ashrafian H, Golub RM, Shetty S, De Fauw J, Hooft L, Moons K, Collins G, Moher D, Bossuyt PM (2021) Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open 11(6):e047709PubMedPubMedCentralCrossRef Sounderajah V, Ashrafian H, Golub RM, Shetty S, De Fauw J, Hooft L, Moons K, Collins G, Moher D, Bossuyt PM (2021) Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open 11(6):e047709PubMedPubMedCentralCrossRef
Metadata
Title
Artificial intelligence CAD tools in trauma imaging: a scoping review from the American Society of Emergency Radiology (ASER) AI/ML Expert Panel
Authors
David Dreizin
Pedro V. Staziaki
Garvit D. Khatri
Nicholas M. Beckmann
Zhaoyong Feng
Yuanyuan Liang
Zachary S. Delproposto
Maximiliano Klug
J. Stephen Spann
Nathan Sarkar
Yunting Fu
Publication date
14-03-2023
Publisher
Springer International Publishing
Published in
Emergency Radiology / Issue 3/2023
Print ISSN: 1070-3004
Electronic ISSN: 1438-1435
DOI
https://doi.org/10.1007/s10140-023-02120-1

Other articles of this Issue 3/2023

Emergency Radiology 3/2023 Go to the issue