Skip to main content
Top
Published in: Lasers in Medical Science 3/2016

01-04-2016 | Original Article

Mitochondrial dependent oxidative stress in cell culture induced by laser radiation at 1265 nm

Authors: Yury V Saenko, Eugenia S. Glushchenko, Igor O. Zolotovskii, Evgeny Sholokhov, Andrey Kurkov

Published in: Lasers in Medical Science | Issue 3/2016

Login to get access

Abstract

Photodynamic therapy is the main technique applied for surface carcinoma treatment. This technique employs singlet oxygen generated via a laser excited photosensitizer as a main damaging agent. However, prolonged sensitivity to intensive light, relatively low tissue penetration by activating light the cost of photosensitizer (PS) administration can limit photodynamic therapy applications. Early was reported singlet oxygen generation without photosensitizer induced by a laser irradiation at the wavelength of 1250–1270 nm. Here, we study the dynamics of oxidative stress, DNA damage, changes of mitochondrial potential, and mitochondrial mass induced by a laser at 1265 nm have been studied in HCT-116 and CHO-K cells. Laser irradiation of HCT-116 and CHO-K cells has induced a dose-dependent cell death via increasing intracellular reactive oxygen species (ROS) concentration, increase of DNA damage, decrease of mitochondrial potential, and reduced glutathione. It has been shown that, along with singlet oxygen generation, the increase of the intracellular ROS concentration induced by mitochondrial damage contributes to the damaging effect of the laser irradiation at 1265 nm.
Literature
1.
go back to reference Agostinis P, Berg K, Cengel KA, Foster NH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281CrossRefPubMedPubMedCentral Agostinis P, Berg K, Cengel KA, Foster NH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281CrossRefPubMedPubMedCentral
2.
go back to reference Sokolovski SG, Zolotovskaya SA, Goltsov A, Pourreyron C, South AP, Rafailov EU (2013) Infrared laser pulse triggers increased singlet oxygen production in tumor cells. Sci Rep 3:3484CrossRefPubMedPubMedCentral Sokolovski SG, Zolotovskaya SA, Goltsov A, Pourreyron C, South AP, Rafailov EU (2013) Infrared laser pulse triggers increased singlet oxygen production in tumor cells. Sci Rep 3:3484CrossRefPubMedPubMedCentral
3.
go back to reference Long C, Kearns DR (1973) Selection rules for the intermolecular enhancement of spin forbidden transitions in molecular oxygen. J Chem Phys 59:5729–5736CrossRef Long C, Kearns DR (1973) Selection rules for the intermolecular enhancement of spin forbidden transitions in molecular oxygen. J Chem Phys 59:5729–5736CrossRef
4.
go back to reference Anquez F, El Yazidi-Belkoura I, Randoux S, Suret P, Courtade E (2012) Cancerous cell death from sensitizer free photoactivation of singlet oxygen. Photochem Photobiol 88:167–174CrossRefPubMed Anquez F, El Yazidi-Belkoura I, Randoux S, Suret P, Courtade E (2012) Cancerous cell death from sensitizer free photoactivation of singlet oxygen. Photochem Photobiol 88:167–174CrossRefPubMed
5.
go back to reference Yusupov AS, Yoncharov SE, Zalevskii JD, Paramonov VM, Kurkov AS (2010) Raman fiber laser for the drug-free photodynamic therapy. Laser Phys 20(2):357–359CrossRef Yusupov AS, Yoncharov SE, Zalevskii JD, Paramonov VM, Kurkov AS (2010) Raman fiber laser for the drug-free photodynamic therapy. Laser Phys 20(2):357–359CrossRef
6.
go back to reference Oliveira CS, Turchiello R, Kowaltowski AJ, Indig GL, Baptista MS (2011) Major determinants of photoinduced cell death: subcellular localization versus photosensitization efficiency. Free Radic Biol Med 51(4):824–833CrossRefPubMed Oliveira CS, Turchiello R, Kowaltowski AJ, Indig GL, Baptista MS (2011) Major determinants of photoinduced cell death: subcellular localization versus photosensitization efficiency. Free Radic Biol Med 51(4):824–833CrossRefPubMed
7.
go back to reference Michaeli A, Feitelson J (1994) Reactivity of singlet oxygen toward amino acids and peptides. Photochem Photobiol 59(3):284–289CrossRefPubMed Michaeli A, Feitelson J (1994) Reactivity of singlet oxygen toward amino acids and peptides. Photochem Photobiol 59(3):284–289CrossRefPubMed
8.
go back to reference Silva DC, Czarnecki K, Ryan MD (1999) Visible and resonance Raman spectra of low valent iron porphyrins. Inorg Chim Acta 287(1):21–26CrossRef Silva DC, Czarnecki K, Ryan MD (1999) Visible and resonance Raman spectra of low valent iron porphyrins. Inorg Chim Acta 287(1):21–26CrossRef
9.
go back to reference Schwaighofer A, Steininger C, Hildenbrandt DM (2013) Time-resolved surface-enhanced IR-absorption spectroscopy of direct electron transfer to cytochrome c oxidase from R. sphaeroides. Biophys J 105(12):2706–2713CrossRefPubMedPubMedCentral Schwaighofer A, Steininger C, Hildenbrandt DM (2013) Time-resolved surface-enhanced IR-absorption spectroscopy of direct electron transfer to cytochrome c oxidase from R. sphaeroides. Biophys J 105(12):2706–2713CrossRefPubMedPubMedCentral
10.
go back to reference Ritter M, Anderka O, Ludwig B, Mäntele W, Hellwig P (2003) Electrochemical and FTIR spectroscopic characterization of the cytochrome bc1 complex from Paracoccus denitrificans: evidence for protonation reactions coupled to quinone binding. Biochemistry 42(42):12391–12399CrossRefPubMed Ritter M, Anderka O, Ludwig B, Mäntele W, Hellwig P (2003) Electrochemical and FTIR spectroscopic characterization of the cytochrome bc1 complex from Paracoccus denitrificans: evidence for protonation reactions coupled to quinone binding. Biochemistry 42(42):12391–12399CrossRefPubMed
12.
go back to reference Mik EG, Johannes T, Zuurbier CJ, Heinen A, Houben-Weerts JH, Balestra GM, Stap J, Beek JF, Ince C (2008) In vivo mitochondrial oxygen tension measured by a delayed fluorescence lifetime technique. Biophys J 95(8):3977–3990CrossRefPubMedPubMedCentral Mik EG, Johannes T, Zuurbier CJ, Heinen A, Houben-Weerts JH, Balestra GM, Stap J, Beek JF, Ince C (2008) In vivo mitochondrial oxygen tension measured by a delayed fluorescence lifetime technique. Biophys J 95(8):3977–3990CrossRefPubMedPubMedCentral
13.
go back to reference Gayeski TE, Honig CR (1991) Intracellular PO2 in individual cardiac myocytes in dogs, cats, rabbits, ferrets, and rats. Am J Physiol 260:H522–H531PubMed Gayeski TE, Honig CR (1991) Intracellular PO2 in individual cardiac myocytes in dogs, cats, rabbits, ferrets, and rats. Am J Physiol 260:H522–H531PubMed
14.
go back to reference Kurkov AS, Dianov EM (2004) Moderate-power cw fibre lasers. Quantum Electron 34(10):881–900CrossRef Kurkov AS, Dianov EM (2004) Moderate-power cw fibre lasers. Quantum Electron 34(10):881–900CrossRef
15.
go back to reference Agrawal GP (2001) Applications of nonlinear fiber optics. Academic, New York Agrawal GP (2001) Applications of nonlinear fiber optics. Academic, New York
16.
go back to reference Mascotti K, McCullough J, Burger SR (2000) HPC viability measurement: trypan blue versus acridine orange and propidium iodide. Transfusion 40:693–696CrossRefPubMed Mascotti K, McCullough J, Burger SR (2000) HPC viability measurement: trypan blue versus acridine orange and propidium iodide. Transfusion 40:693–696CrossRefPubMed
17.
go back to reference Oyama Y, Hayashi A, Ueha T, Maekawa K (1994) Characterization of 2′,7′-dichlorofluorescin fluorescence in dissociated mammalian brain neurons: estimation on intracellular content of hydrogen peroxide. Brain Res 635(1–2):113–117CrossRefPubMed Oyama Y, Hayashi A, Ueha T, Maekawa K (1994) Characterization of 2′,7′-dichlorofluorescin fluorescence in dissociated mammalian brain neurons: estimation on intracellular content of hydrogen peroxide. Brain Res 635(1–2):113–117CrossRefPubMed
18.
go back to reference Gan Z, Audi SH, Bongard RD, Gauthier KM, Merker MP (2011) Quantifying mitochondrial and plasma membrane potentials in intact pulmonary arterial endothelial cells based on extracellular disposition of rhodamine dyes. Am J Physiol Lung Cell Mol Physiol 300(5):L762–L772CrossRefPubMedPubMedCentral Gan Z, Audi SH, Bongard RD, Gauthier KM, Merker MP (2011) Quantifying mitochondrial and plasma membrane potentials in intact pulmonary arterial endothelial cells based on extracellular disposition of rhodamine dyes. Am J Physiol Lung Cell Mol Physiol 300(5):L762–L772CrossRefPubMedPubMedCentral
19.
go back to reference Chance B, Williams GR, Hollunger G (1963) Inhibition of electron and energy transfer in mitochondria. I. Effects of amytal, thiopental, rotenone, progesterone, and methylene glycol. J Biol Chem 238:418–431PubMed Chance B, Williams GR, Hollunger G (1963) Inhibition of electron and energy transfer in mitochondria. I. Effects of amytal, thiopental, rotenone, progesterone, and methylene glycol. J Biol Chem 238:418–431PubMed
20.
go back to reference Nair S, Singh SV, Krishan A (1991) Flow cytometric monitoring of glutathione content and anthracycline retention in tumor cells. Cytometry 12(4):336–342CrossRefPubMed Nair S, Singh SV, Krishan A (1991) Flow cytometric monitoring of glutathione content and anthracycline retention in tumor cells. Cytometry 12(4):336–342CrossRefPubMed
21.
go back to reference Burgess A, Vigneron S, Brioudes E, Labbé J-C, Lorca T, Castro A (2010) Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proc Natl Acad Sci U S A 107:12564–12569CrossRefPubMedPubMedCentral Burgess A, Vigneron S, Brioudes E, Labbé J-C, Lorca T, Castro A (2010) Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proc Natl Acad Sci U S A 107:12564–12569CrossRefPubMedPubMedCentral
22.
go back to reference Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221CrossRefPubMed Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221CrossRefPubMed
23.
go back to reference Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295:849–868CrossRef Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295:849–868CrossRef
24.
go back to reference Davies MJ (2003) Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun 305(3):761–770CrossRefPubMed Davies MJ (2003) Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun 305(3):761–770CrossRefPubMed
25.
26.
go back to reference Ricchelli F, Sileikytė J, Bernardi P (2011) Shedding light on the mitochondrial permeability transition. Biochim Biophys Acta -Bioenerg 1807(5):482–490CrossRef Ricchelli F, Sileikytė J, Bernardi P (2011) Shedding light on the mitochondrial permeability transition. Biochim Biophys Acta -Bioenerg 1807(5):482–490CrossRef
27.
go back to reference Zorov DB, Juhaszova M, Sollott SJ (2006) Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta 1757(5–6):509–517CrossRefPubMed Zorov DB, Juhaszova M, Sollott SJ (2006) Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta 1757(5–6):509–517CrossRefPubMed
28.
go back to reference Handy DE, Lubos E, Yang Y, Galbraith JD, Kelly N, Zhang Y-Y, Leopold JA, Loscalzo J (2009) Glutathione peroxidase-1 regulates mitochondrial function to modulate redox-dependent cellular responses. J Biol Chem 284(18):11913–11921CrossRefPubMedPubMedCentral Handy DE, Lubos E, Yang Y, Galbraith JD, Kelly N, Zhang Y-Y, Leopold JA, Loscalzo J (2009) Glutathione peroxidase-1 regulates mitochondrial function to modulate redox-dependent cellular responses. J Biol Chem 284(18):11913–11921CrossRefPubMedPubMedCentral
29.
go back to reference Yang Y, Cheng J-Z, Singhal SS, Manjit SM, Pandya U, Awasthi S, Awasthi YC (2001) Role of glutathione S-transferases in protection against lipid peroxidation. J Biol Chem 276(22):19220–19230CrossRefPubMed Yang Y, Cheng J-Z, Singhal SS, Manjit SM, Pandya U, Awasthi S, Awasthi YC (2001) Role of glutathione S-transferases in protection against lipid peroxidation. J Biol Chem 276(22):19220–19230CrossRefPubMed
30.
go back to reference Bobba A, Amadoro G, Valenti D, Corsetti V, Lassandro R, Atlante A (2013) Mitochondrial respiratory chain Complexes I and IV are impaired by β-amyloid via direct interaction and through Complex I-dependent ROS production, respectively. Mitochondrion 13(4):298–311CrossRefPubMed Bobba A, Amadoro G, Valenti D, Corsetti V, Lassandro R, Atlante A (2013) Mitochondrial respiratory chain Complexes I and IV are impaired by β-amyloid via direct interaction and through Complex I-dependent ROS production, respectively. Mitochondrion 13(4):298–311CrossRefPubMed
Metadata
Title
Mitochondrial dependent oxidative stress in cell culture induced by laser radiation at 1265 nm
Authors
Yury V Saenko
Eugenia S. Glushchenko
Igor O. Zolotovskii
Evgeny Sholokhov
Andrey Kurkov
Publication date
01-04-2016
Publisher
Springer London
Published in
Lasers in Medical Science / Issue 3/2016
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-015-1861-z

Other articles of this Issue 3/2016

Lasers in Medical Science 3/2016 Go to the issue