Skip to main content
Top
Published in: Lasers in Medical Science 6/2012

01-11-2012 | Original Article

Comparing an optical parametric oscillator (OPO) as a viable alternative for mid-infrared tissue ablation with a free electron laser (FEL)

Authors: Mark A. Mackanos, Dmitrii M. Simanovskii, Christopher H. Contag, John A. Kozub, E. Duco Jansen

Published in: Lasers in Medical Science | Issue 6/2012

Login to get access

Abstract

Beneficial medical laser ablation removes material efficiently with minimal collateral damage. A Mark-III free electron laser (FEL), at a wavelength of 6.45 μm has demonstrated minimal damage and high ablation yield in ocular and neural tissues. While this wavelength has shown promise for surgical applications, further advances are limited by the high overhead for FEL use. Alternative mid-infrared sources are needed for further development. We compared the FEL with a 5-μs pulse duration with a Q-switched ZGP-OPO with a 100-ns pulse duration at mid-infrared wavelengths. There were no differences in the ablation threshold of water and mouse dermis with these two sources in spite of the difference in their pulse structures. There was a significant difference in crater depth between the ZGP:OPO and the FEL. At 6.1 μm, the OPO craters are eight times the depth of the FEL craters. The OPO craters at 6.45 and 6.73 μm were six and five times the depth of the FEL craters, respectively. Bright-field (pump-probe) images showed the classic ablation mechanism from formation of a plume through collapse and recoil. The crater formation, ejection, and collapse phases occurred on a faster time-scale with the OPO than with the FEL. This research showed that a ZGP-OPO laser could be a viable alternative to FEL for clinical applications.
Literature
1.
go back to reference Berger JW (1998) Erbium-YAG laser ablation: the myth of 1-micron penetration. Arch Ophthalmol 116:830–831PubMedCrossRef Berger JW (1998) Erbium-YAG laser ablation: the myth of 1-micron penetration. Arch Ophthalmol 116:830–831PubMedCrossRef
2.
go back to reference Berger JW, D'Amico DJ (1997) Modeling of erbium:YAG laser-mediated explosive photovaporization: implications for vitreoretinal surgery. Ophthalmic Surg Lasers 28:133–139PubMed Berger JW, D'Amico DJ (1997) Modeling of erbium:YAG laser-mediated explosive photovaporization: implications for vitreoretinal surgery. Ophthalmic Surg Lasers 28:133–139PubMed
3.
go back to reference Binder S, Stolba U, Kellner L, Krebs I (2000) Erbium:YAG laser vitrectomy: clinical results. Am J Ophthalmol 130:82–86PubMedCrossRef Binder S, Stolba U, Kellner L, Krebs I (2000) Erbium:YAG laser vitrectomy: clinical results. Am J Ophthalmol 130:82–86PubMedCrossRef
4.
go back to reference Brazitikos PD, D'Amico DJ, Bernal MT, Walsh AW (1995) Erbium:YAG laser surgery of the vitreous and retina. Ophthalmology 102:278–290PubMed Brazitikos PD, D'Amico DJ, Bernal MT, Walsh AW (1995) Erbium:YAG laser surgery of the vitreous and retina. Ophthalmology 102:278–290PubMed
5.
go back to reference Payne BP, Nishioka NS, Mikic BB, Venugopalan V (1998) Comparison of pulsed CO2 laser ablation at 10.6 mu m and 9.5 mu m. Lasers Surg Med 23:1–6PubMedCrossRef Payne BP, Nishioka NS, Mikic BB, Venugopalan V (1998) Comparison of pulsed CO2 laser ablation at 10.6 mu m and 9.5 mu m. Lasers Surg Med 23:1–6PubMedCrossRef
6.
go back to reference Venugopalan V, Nishioka NS, Mikic BB (1996) Thermodynamic response of soft biological tissues to pulsed infrared-laser irradiation. Biophys J 71:3530–3530CrossRef Venugopalan V, Nishioka NS, Mikic BB (1996) Thermodynamic response of soft biological tissues to pulsed infrared-laser irradiation. Biophys J 71:3530–3530CrossRef
7.
go back to reference Walsh JT, Deutsch TF (1989) Pulsed CO2-laser ablation of tissue – effect of mechanical properties. IEEE Trans Biomed Eng 36:1195–1201PubMedCrossRef Walsh JT, Deutsch TF (1989) Pulsed CO2-laser ablation of tissue – effect of mechanical properties. IEEE Trans Biomed Eng 36:1195–1201PubMedCrossRef
8.
go back to reference Walsh JT Jr, Flotte TJ, Anderson RR, Deutsch TF (1988) Pulsed CO2 laser tissue ablation: effect of tissue type and pulse duration on thermal damage. Lasers Surg Med 8(2):108–118PubMedCrossRef Walsh JT Jr, Flotte TJ, Anderson RR, Deutsch TF (1988) Pulsed CO2 laser tissue ablation: effect of tissue type and pulse duration on thermal damage. Lasers Surg Med 8(2):108–118PubMedCrossRef
9.
go back to reference Wang XG, Ishizaki NT, Matsumoto K (2005) Healing process of skin after CO2 laser ablation at low irradiance: a comparison of continuous-wave and pulsed mode. Photomed Laser Surg 23:20–26PubMedCrossRef Wang XG, Ishizaki NT, Matsumoto K (2005) Healing process of skin after CO2 laser ablation at low irradiance: a comparison of continuous-wave and pulsed mode. Photomed Laser Surg 23:20–26PubMedCrossRef
10.
go back to reference Wolbarsht ML (1984) Laser surgery: CO2 or HF. IEEE J Quantum Electron 20:1427–1432CrossRef Wolbarsht ML (1984) Laser surgery: CO2 or HF. IEEE J Quantum Electron 20:1427–1432CrossRef
11.
go back to reference Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103:577–644PubMedCrossRef Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103:577–644PubMedCrossRef
12.
go back to reference Edwards G, Logan R, Copeland M, Reinisch L, Davidson J, Johnson B, Maciunas R, Mendenhall M, Ossoff R, Tribble J, et al (1994) Tissue ablation by a free-electron laser tuned to the amide II band. Nature 371:416–419PubMedCrossRef Edwards G, Logan R, Copeland M, Reinisch L, Davidson J, Johnson B, Maciunas R, Mendenhall M, Ossoff R, Tribble J, et al (1994) Tissue ablation by a free-electron laser tuned to the amide II band. Nature 371:416–419PubMedCrossRef
13.
go back to reference Edwards GS, Hutson MS, Hauger S (2002) Heat diffusion and chemical kinetics in Mark-III FEL tissue ablation. Proc SPIE 4633:184–193CrossRef Edwards GS, Hutson MS, Hauger S (2002) Heat diffusion and chemical kinetics in Mark-III FEL tissue ablation. Proc SPIE 4633:184–193CrossRef
14.
go back to reference Edwards G, Hutson MS, Hauger S, Kozub JA, Shen J-H, Shieh C, Topadze K, Joos K (2002) Comparison of OPA and Mark-III FEL for tissue ablation at 6.45 μm. Proc SPIE 4633:194–201CrossRef Edwards G, Hutson MS, Hauger S, Kozub JA, Shen J-H, Shieh C, Topadze K, Joos K (2002) Comparison of OPA and Mark-III FEL for tissue ablation at 6.45 μm. Proc SPIE 4633:194–201CrossRef
15.
go back to reference Edwards GS, Austin RH, Carroll FE, Copeland ML, Couprie ME, Gabella WE, Haglund RF, Hooper BA, Hutson MS, Jansen ED, et al (2003) Free electron laser based biophysical and biomedical instrumentation. Rev Sci Instrum 74:3207–3245CrossRef Edwards GS, Austin RH, Carroll FE, Copeland ML, Couprie ME, Gabella WE, Haglund RF, Hooper BA, Hutson MS, Jansen ED, et al (2003) Free electron laser based biophysical and biomedical instrumentation. Rev Sci Instrum 74:3207–3245CrossRef
16.
go back to reference Ellis DL, Weisberg NK, Chen JS, Stricklin GP, Reinisch L (1999) Free electron laser wavelength specificity for cutaneous contraction. Lasers Surg Med 25:1–7PubMedCrossRef Ellis DL, Weisberg NK, Chen JS, Stricklin GP, Reinisch L (1999) Free electron laser wavelength specificity for cutaneous contraction. Lasers Surg Med 25:1–7PubMedCrossRef
17.
go back to reference Joos KM, Edwards GS, Shen J-H (1996) Free electron laser (FEL) laser-tissue interaction with human cornea and optic nerve. Proc SPIE 2673:89–92CrossRef Joos KM, Edwards GS, Shen J-H (1996) Free electron laser (FEL) laser-tissue interaction with human cornea and optic nerve. Proc SPIE 2673:89–92CrossRef
18.
go back to reference Robbins J, Reinisch L, Ellis D (2003) Wound healing of 6.45-mu-m free electron laser skin incisions with heat-conducting templates. J Biomed Opt 8:594–600PubMedCrossRef Robbins J, Reinisch L, Ellis D (2003) Wound healing of 6.45-mu-m free electron laser skin incisions with heat-conducting templates. J Biomed Opt 8:594–600PubMedCrossRef
19.
go back to reference Jansen ED, Copeland M, Edwards GS, Gabella W, Joos K, Mackanos MA, Shen JH, Uhlhorn SR (2003) Applications: case studies: medical: therapeutic applications: free-electron laser. In: Webb CE, Jones JDC (eds) Handbook of laser technology and applications, vol. 3: applications. Institute of Physics Publishing, London Jansen ED, Copeland M, Edwards GS, Gabella W, Joos K, Mackanos MA, Shen JH, Uhlhorn SR (2003) Applications: case studies: medical: therapeutic applications: free-electron laser. In: Webb CE, Jones JDC (eds) Handbook of laser technology and applications, vol. 3: applications. Institute of Physics Publishing, London
20.
go back to reference Joos KM, Mawn L, Shen JH, Jansen ED, Casagrande VA (2002) Acute optic nerve sheath fenestration in humans using the free electron laser (FEL): a case report. Proc SPIE 4611:81–85CrossRef Joos KM, Mawn L, Shen JH, Jansen ED, Casagrande VA (2002) Acute optic nerve sheath fenestration in humans using the free electron laser (FEL): a case report. Proc SPIE 4611:81–85CrossRef
21.
go back to reference Joos KM, Shen JH, Shetlar DJ, Casagrande VA (2000) Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL). Lasers Surg Med 27:191–205PubMedCrossRef Joos KM, Shen JH, Shetlar DJ, Casagrande VA (2000) Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL). Lasers Surg Med 27:191–205PubMedCrossRef
22.
go back to reference Reinisch L, Mendenhall M, Charous S, Ossoff RH (1994) Computer-assisted surgical techniques using the Vanderbilt free electron laser. Laryngoscope 104:1323–1329PubMedCrossRef Reinisch L, Mendenhall M, Charous S, Ossoff RH (1994) Computer-assisted surgical techniques using the Vanderbilt free electron laser. Laryngoscope 104:1323–1329PubMedCrossRef
23.
go back to reference Mackanos MA, Kozub JA, Hachey DL, Joos KM, Ellis DL, Jansen ED (2005) The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: biological effects. Phys Med Biol 50:1885–1899PubMedCrossRef Mackanos MA, Kozub JA, Hachey DL, Joos KM, Ellis DL, Jansen ED (2005) The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: biological effects. Phys Med Biol 50:1885–1899PubMedCrossRef
24.
go back to reference Mackanos MA, Kozub JA, Jansen ED (2005) The effect of free electron laser pulse structure on mid-infrared soft-tissue ablation: ablation metrics. Phys Med Biol 50:1871–1883PubMedCrossRef Mackanos MA, Kozub JA, Jansen ED (2005) The effect of free electron laser pulse structure on mid-infrared soft-tissue ablation: ablation metrics. Phys Med Biol 50:1871–1883PubMedCrossRef
25.
go back to reference Catella GC, Eckardt RC, Shori RK, Stenger TT, Dew RW (2002) IR laser/OPO systems for biomedical and chemical sensing. IEEE, LEOS 2:504–505 Catella GC, Eckardt RC, Shori RK, Stenger TT, Dew RW (2002) IR laser/OPO systems for biomedical and chemical sensing. IEEE, LEOS 2:504–505
26.
go back to reference Kozub J, Ivanov B, Jayasinghe A, Prasad R, Shen J, Klosner M, Heller D, Mendenhall M, Piston DW, Joos K, Hutson MS (2011) Raman-shifted alexandrite laser for soft tissue ablation in the 6- to 7-μm wavelength range. Biomed Opt Express 2:1275–1281PubMedCrossRef Kozub J, Ivanov B, Jayasinghe A, Prasad R, Shen J, Klosner M, Heller D, Mendenhall M, Piston DW, Joos K, Hutson MS (2011) Raman-shifted alexandrite laser for soft tissue ablation in the 6- to 7-μm wavelength range. Biomed Opt Express 2:1275–1281PubMedCrossRef
27.
go back to reference Mackanos MA, Jansen ED, Soldatov AN, Haglund RF, Ivanov B (2004) Ablation of soft tissue at 6.45 μm using a strontium vapor laser. Proc SPIE 5319:201–208CrossRef Mackanos MA, Jansen ED, Soldatov AN, Haglund RF, Ivanov B (2004) Ablation of soft tissue at 6.45 μm using a strontium vapor laser. Proc SPIE 5319:201–208CrossRef
28.
go back to reference Pan BL, Chen G, Zhong JW, Yao ZX (2003) Emission of laser pulses due to transitions from metastable to metastable levels in strontium vapor. Appl Phys B 76:371–374CrossRef Pan BL, Chen G, Zhong JW, Yao ZX (2003) Emission of laser pulses due to transitions from metastable to metastable levels in strontium vapor. Appl Phys B 76:371–374CrossRef
29.
go back to reference Pan BL, Yao ZX, Chen G (2002) A discharge-excited SrBr2 vapour laser. Chin Phys Lett 19:941–943CrossRef Pan BL, Yao ZX, Chen G (2002) A discharge-excited SrBr2 vapour laser. Chin Phys Lett 19:941–943CrossRef
30.
go back to reference Platonov AV, Soldatov AN, Filonov AG (1978) Pulsed strontium vapor laser. Sov J Quantum Electron 8:120–121CrossRef Platonov AV, Soldatov AN, Filonov AG (1978) Pulsed strontium vapor laser. Sov J Quantum Electron 8:120–121CrossRef
31.
go back to reference Platonov AV, Soldatov AN, Filonov AG (1978) Strontium-vapor pulsed laser. Kvantovaya Elektronika 5:198–201 Platonov AV, Soldatov AN, Filonov AG (1978) Strontium-vapor pulsed laser. Kvantovaya Elektronika 5:198–201
32.
go back to reference Shori RK, Satsudd OM, Prasad NS, Catella G (2000) High energy AgGaSe2 optical parametric oscillator operating in 5.7-7 μm region. In: Optical Society of America. Nonlinear optics: materials, fundamentals, and applications, 2000. Technical digest. Optical Society of America, Washington DC, pp 179–181 Shori RK, Satsudd OM, Prasad NS, Catella G (2000) High energy AgGaSe2 optical parametric oscillator operating in 5.7-7 μm region. In: Optical Society of America. Nonlinear optics: materials, fundamentals, and applications, 2000. Technical digest. Optical Society of America, Washington DC, pp 179–181
33.
go back to reference Vodopyanov KL, Ganikhanov F, Maffetone JP, Zwieback I, Ruderman W (2000) ZnGeP2 optical parametric oscillator with 3.8-12.4 μm tunability. Opt Lett 25:841–843PubMedCrossRef Vodopyanov KL, Ganikhanov F, Maffetone JP, Zwieback I, Ruderman W (2000) ZnGeP2 optical parametric oscillator with 3.8-12.4 μm tunability. Opt Lett 25:841–843PubMedCrossRef
34.
go back to reference Mackanos MA, Simanovskii D, Joos KM, Schwettman HA, Jansen ED (2007) Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL). Lasers Surg Med 39:230–236PubMedCrossRef Mackanos MA, Simanovskii D, Joos KM, Schwettman HA, Jansen ED (2007) Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL). Lasers Surg Med 39:230–236PubMedCrossRef
35.
go back to reference Brau CA (1990) Free electron lasers. Academic Press, Boston Brau CA (1990) Free electron lasers. Academic Press, Boston
36.
go back to reference Kozub JA, Mackanos MA, Mendenhall MH, Jansen ED (2004) Effect of micropulse duration on tissue ablation using a stretched free electron laser pulse train. Proc SPIE 5340:87–95CrossRef Kozub JA, Mackanos MA, Mendenhall MH, Jansen ED (2004) Effect of micropulse duration on tissue ablation using a stretched free electron laser pulse train. Proc SPIE 5340:87–95CrossRef
37.
go back to reference Ganikhanov F, Caughey T, Vodopyanov KL (2001) Narrow-linewidth middle-infrared ZnGeP2 optical parametric oscillator. J Opt Soc Am B 18:818–822CrossRef Ganikhanov F, Caughey T, Vodopyanov KL (2001) Narrow-linewidth middle-infrared ZnGeP2 optical parametric oscillator. J Opt Soc Am B 18:818–822CrossRef
38.
go back to reference Todd MW, Provencal RA, Owano TG, Paldus BA, Kachanov A., Vodopyanov KL, et al (2002) Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 μm) optical parametric oscillator. Appl Phys B 75:367–376CrossRef Todd MW, Provencal RA, Owano TG, Paldus BA, Kachanov A., Vodopyanov KL, et al (2002) Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 μm) optical parametric oscillator. Appl Phys B 75:367–376CrossRef
39.
go back to reference Khosrofian JM, Garetz BA (1983) Measurement of a Gaussian laser-beam diameter through the direct inversion of knife-edge data. Appl Opt 22:3406–3410PubMedCrossRef Khosrofian JM, Garetz BA (1983) Measurement of a Gaussian laser-beam diameter through the direct inversion of knife-edge data. Appl Opt 22:3406–3410PubMedCrossRef
40.
go back to reference Cain C, Noojin G, Manning L (1996) A comparison of various probit methods for analyzing yes/no data on a log scale. United States Air Force Armstrong Laboratory, Occupational Environmental Health Directorate, Optical Radiation Division, Brooks Air Force Base, TX Cain C, Noojin G, Manning L (1996) A comparison of various probit methods for analyzing yes/no data on a log scale. United States Air Force Armstrong Laboratory, Occupational Environmental Health Directorate, Optical Radiation Division, Brooks Air Force Base, TX
41.
go back to reference Nahen K, Vogel A (2002) Plume dynamics and shielding by the ablation plume during Er:YAG laser ablation. J Biomed Opt 7:165–178PubMedCrossRef Nahen K, Vogel A (2002) Plume dynamics and shielding by the ablation plume during Er:YAG laser ablation. J Biomed Opt 7:165–178PubMedCrossRef
42.
go back to reference Le Drogoff B, Vidal F, Laville S, Chaker M, Johnston T, Barthélemy O, Margot J, Sabsabi M (2005) Laser-ablated volume and depth as a function of pulse duration in aluminum targets. Appl Opt 44:278–281PubMedCrossRef Le Drogoff B, Vidal F, Laville S, Chaker M, Johnston T, Barthélemy O, Margot J, Sabsabi M (2005) Laser-ablated volume and depth as a function of pulse duration in aluminum targets. Appl Opt 44:278–281PubMedCrossRef
43.
go back to reference Chichkov BN, Momma C, Nolte S, von Alvensleben F, Tunnermann A (1996) Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A 63:109–115CrossRef Chichkov BN, Momma C, Nolte S, von Alvensleben F, Tunnermann A (1996) Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A 63:109–115CrossRef
Metadata
Title
Comparing an optical parametric oscillator (OPO) as a viable alternative for mid-infrared tissue ablation with a free electron laser (FEL)
Authors
Mark A. Mackanos
Dmitrii M. Simanovskii
Christopher H. Contag
John A. Kozub
E. Duco Jansen
Publication date
01-11-2012
Publisher
Springer-Verlag
Published in
Lasers in Medical Science / Issue 6/2012
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-011-1048-1

Other articles of this Issue 6/2012

Lasers in Medical Science 6/2012 Go to the issue