Skip to main content
Top
Published in: Lasers in Medical Science 2/2012

01-03-2012 | Original Article

Optical absorption and scattering of bovine cornea, lens, and retina in the near-infrared region

Authors: Brian G. Yust, Lawrence C. Mimun, Dhiraj K. Sardar

Published in: Lasers in Medical Science | Issue 2/2012

Login to get access

Abstract

The optical properties of bovine ocular tissues have been determined at laser wavelengths in the near-infrared (NIR) region. The inverse adding doubling (IAD), Kubelka–Munk (KM), and inverse Monte Carlo (IMC) methods were applied to the measured values of the total diffuse transmission, total diffuse reflection, and collimated transmission to determine the optical absorption and scattering coefficients of the bovine cornea, lens and retina from 750 to 1,000 nm using a CW Ti:sapphire laser. The optical properties obtained from these three methods have been compared and are discussed.
Literature
1.
go back to reference Hammer M, Roggan A, Schweitzer D, Muller G (1995) Optical properties of ocular tissues, an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation. Phys Med Biol 40:963–978PubMedCrossRef Hammer M, Roggan A, Schweitzer D, Muller G (1995) Optical properties of ocular tissues, an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation. Phys Med Biol 40:963–978PubMedCrossRef
2.
go back to reference Sardar DK, Swanland GY, Yow RY, Thomas RJ, Tsin ATC (2007) Optical properties of ocular tissues in the near infrared region. Lasers Med Sci 22:46–52PubMedCrossRef Sardar DK, Swanland GY, Yow RY, Thomas RJ, Tsin ATC (2007) Optical properties of ocular tissues in the near infrared region. Lasers Med Sci 22:46–52PubMedCrossRef
3.
go back to reference van den Berg TJ, Spekreijse H (1997) Near infrared light absorption in the human eye media. Vis Res 37:249–253PubMedCrossRef van den Berg TJ, Spekreijse H (1997) Near infrared light absorption in the human eye media. Vis Res 37:249–253PubMedCrossRef
4.
go back to reference Vos JJ, Munnik AA, Boogaard J (1965) Absolute spectral reflectance of the fundus oculi. J Opt Soc Am 55:573–574CrossRef Vos JJ, Munnik AA, Boogaard J (1965) Absolute spectral reflectance of the fundus oculi. J Opt Soc Am 55:573–574CrossRef
5.
go back to reference Maher EF (1978) Transmission and absorption coefficients for ocular media of the rhesus monkey. USAF School of Aerospace Med Brooks AF Base, TX, Report SAM-TR-78-32 Maher EF (1978) Transmission and absorption coefficients for ocular media of the rhesus monkey. USAF School of Aerospace Med Brooks AF Base, TX, Report SAM-TR-78-32
6.
go back to reference Bashkatov AN, Genina EA, Kochubey VI, Gavrilova AA, Kapralov SV, Grishaev VA, Tuchin VV (2007) Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm: prognosis for gastroenterology. Med Laser Appl 22:95–104CrossRef Bashkatov AN, Genina EA, Kochubey VI, Gavrilova AA, Kapralov SV, Grishaev VA, Tuchin VV (2007) Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm: prognosis for gastroenterology. Med Laser Appl 22:95–104CrossRef
7.
go back to reference Gebhart SC, Lin WC, Mahadevan-Jansen A (2006) In-Vitro determination of normal and neoplastic human brain tissue optical properties using inverse-adding doubling. Phys Med Biol 51:2011–2027PubMedCrossRef Gebhart SC, Lin WC, Mahadevan-Jansen A (2006) In-Vitro determination of normal and neoplastic human brain tissue optical properties using inverse-adding doubling. Phys Med Biol 51:2011–2027PubMedCrossRef
8.
go back to reference Yaroslavsky AN, Schulze PC, Yaroslavsky IV, Schober R, Ulrich F, Schwarzmaier HJ (2002) Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near-infrared spectral range. Phys Med Biol 47:2059–2073PubMedCrossRef Yaroslavsky AN, Schulze PC, Yaroslavsky IV, Schober R, Ulrich F, Schwarzmaier HJ (2002) Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near-infrared spectral range. Phys Med Biol 47:2059–2073PubMedCrossRef
9.
go back to reference Chandrasekhar S (1960) Radiative transfer. Dover, New York Chandrasekhar S (1960) Radiative transfer. Dover, New York
10.
go back to reference Prahl SA, Van Gemert MJC, Welch AJ (1993) Determining the optical properties of turbid media by using the adding-doubling method. Appl Opt 32:559–568PubMedCrossRef Prahl SA, Van Gemert MJC, Welch AJ (1993) Determining the optical properties of turbid media by using the adding-doubling method. Appl Opt 32:559–568PubMedCrossRef
11.
go back to reference Kubelka P (1948) New contributions for the optics of intensely light-scattering materials. J Opt Soc Am 38:448–457PubMedCrossRef Kubelka P (1948) New contributions for the optics of intensely light-scattering materials. J Opt Soc Am 38:448–457PubMedCrossRef
12.
go back to reference Wan S, Anderson RR, Parish JA (1981) Analytical modeling for the optical properties of the skin with in vitro and in vivo applications. Photochem Photobiol 34:493–499PubMed Wan S, Anderson RR, Parish JA (1981) Analytical modeling for the optical properties of the skin with in vitro and in vivo applications. Photochem Photobiol 34:493–499PubMed
13.
go back to reference Ertefai S, Profio AE (1985) Spectral transmittance and contrast in breast diaphanography. Med Phys 12:393–400PubMedCrossRef Ertefai S, Profio AE (1985) Spectral transmittance and contrast in breast diaphanography. Med Phys 12:393–400PubMedCrossRef
14.
go back to reference Reynolds L, Johnson CC, Ishimaru A (1978) Diffuse reflectance from a finite blood medium: application to the modeling of fiberoptic catheters. Appl Opt 15:2059–2067CrossRef Reynolds L, Johnson CC, Ishimaru A (1978) Diffuse reflectance from a finite blood medium: application to the modeling of fiberoptic catheters. Appl Opt 15:2059–2067CrossRef
15.
go back to reference Groenhuis RJA, Ferwerda HA, Ten Bosch JJ (1983) Scattering and absorption of turbid materials determined from reflection measurements. 1: theory. Appl Opt 22:2456–2462PubMedCrossRef Groenhuis RJA, Ferwerda HA, Ten Bosch JJ (1983) Scattering and absorption of turbid materials determined from reflection measurements. 1: theory. Appl Opt 22:2456–2462PubMedCrossRef
16.
go back to reference van Gemert MJC, Welch AJ, Star WM, Motamedi M (1987) Tissue optics for a slab geometry in diffusion approximation. Lasers Med Sci 2:295–302CrossRef van Gemert MJC, Welch AJ, Star WM, Motamedi M (1987) Tissue optics for a slab geometry in diffusion approximation. Lasers Med Sci 2:295–302CrossRef
17.
go back to reference Kottler F (1960) Turbid media with plane-parallel surfaces. J Opt Soc Am 50:483–490CrossRef Kottler F (1960) Turbid media with plane-parallel surfaces. J Opt Soc Am 50:483–490CrossRef
18.
go back to reference Hourdakis J, Perris A (1995) A Monte Carlo estimation of tissue optical properties for use in laser dosimetry. Phys Med Biol 40:351–364PubMedCrossRef Hourdakis J, Perris A (1995) A Monte Carlo estimation of tissue optical properties for use in laser dosimetry. Phys Med Biol 40:351–364PubMedCrossRef
19.
go back to reference Jacques SL, Wang L (1995) Monte Carlo modeling of light transport in tissues. In: Welch AJ, van Gemert MJC (eds) Optical-thermal response of laser-irradiated tissue. Plenum, New York Jacques SL, Wang L (1995) Monte Carlo modeling of light transport in tissues. In: Welch AJ, van Gemert MJC (eds) Optical-thermal response of laser-irradiated tissue. Plenum, New York
20.
go back to reference Sardar DK, Mayo ML, Glickman RD (2001) Optical characterization of melanin. J Biomed Opt 6:404–411PubMedCrossRef Sardar DK, Mayo ML, Glickman RD (2001) Optical characterization of melanin. J Biomed Opt 6:404–411PubMedCrossRef
21.
go back to reference Yaroslavsky I et al (1996) Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements. Appl Opt 35:6797–6809PubMedCrossRef Yaroslavsky I et al (1996) Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements. Appl Opt 35:6797–6809PubMedCrossRef
22.
go back to reference Abramoff M, Kwon Y et al (2006) Visual stimulus-induced changes in human near-infrared fundus reflectance. Investig Ophthalmol Vis Sci 47:715–721CrossRef Abramoff M, Kwon Y et al (2006) Visual stimulus-induced changes in human near-infrared fundus reflectance. Investig Ophthalmol Vis Sci 47:715–721CrossRef
23.
go back to reference Tsunoda K, Oguchi Y et al (2004) Mapping cone-and rod-induced retinal responsiveness in macaque retina by optical imaging. Investig Ophthalmol Vis Sci 45:3820–3826CrossRef Tsunoda K, Oguchi Y et al (2004) Mapping cone-and rod-induced retinal responsiveness in macaque retina by optical imaging. Investig Ophthalmol Vis Sci 45:3820–3826CrossRef
24.
go back to reference Hanazono G, Tsunoda K et al (2007) Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins. Investig Ophthalmol Vis Sci 48:2903–2912CrossRef Hanazono G, Tsunoda K et al (2007) Intrinsic signal imaging in macaque retina reveals different types of flash-induced light reflectance changes of different origins. Investig Ophthalmol Vis Sci 48:2903–2912CrossRef
25.
go back to reference Sardar D, Yust B et al (2009) Optical absorption and scattering of bovine cornea, lens and retina in the visible region. Lasers Med Sci 24:839–847PubMedCrossRef Sardar D, Yust B et al (2009) Optical absorption and scattering of bovine cornea, lens and retina in the visible region. Lasers Med Sci 24:839–847PubMedCrossRef
Metadata
Title
Optical absorption and scattering of bovine cornea, lens, and retina in the near-infrared region
Authors
Brian G. Yust
Lawrence C. Mimun
Dhiraj K. Sardar
Publication date
01-03-2012
Publisher
Springer-Verlag
Published in
Lasers in Medical Science / Issue 2/2012
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-011-0927-9

Other articles of this Issue 2/2012

Lasers in Medical Science 2/2012 Go to the issue