Skip to main content
Top
Published in: Lasers in Medical Science 3-4/2005

01-12-2005 | Original Article

Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix

Authors: Liat Abramovitch-Gottlib, Talia Gross, Doron Naveh, Shimona Geresh, Salman Rosenwaks, Ilana Bar, Razi Vago

Published in: Lasers in Medical Science | Issue 3-4/2005

Login to get access

Abstract

Mesenchymal stem cells (MSCs) seeded on three-dimensional (3D) coralline (Porites lutea) biomatrices were irradiated with low-level laser irradiation (LLLI). The consequent phenotype modulation and development of MSCs towards ossified tissue was studied in this combined 3D biomatrix/LLLI system and in a control group, which was similarly grown, but was not treated by LLLI. The irradiated and non irradiated MSC were tested at 1–7, 10, 14, 21, 28 days of culturing via analysis of cellular distribution on matrices (trypan blue), calcium incorporation to newly formed tissue (alizarin red), bone nodule formation (von Kossa), fat aggregates formation (oil red O), alkaline phosphatase (ALP) activity, scanning electron microscopy (SEM) and electron dispersive spectrometry (EDS). The results obtained from the irradiated samples showed enhanced tissue formation, appearance of phosphorous peaks and calcium and phosphate incorporation to newly formed tissue. Moreover, in irradiated samples ALP activity was significantly enhanced in early stages and notably reduced in late stages of culturing. These findings of cell and tissue parameters up to 28 days of culture revealed higher ossification levels in irradiated samples compared with the control group. We suggest that both the surface properties of the 3D crystalline biomatrices and the LLLI have biostimulatory effects on the conversion of MSCs into bone-forming cells and on the induction of ex-vivo ossification.
Literature
1.
go back to reference Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74CrossRefPubMed Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74CrossRefPubMed
2.
go back to reference Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefPubMed Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147CrossRefPubMed
3.
go back to reference Long MW (2001) Osteogenesis and bone-marrow-derived cells. Blood Cell Mol Dis. 27:677–690CrossRef Long MW (2001) Osteogenesis and bone-marrow-derived cells. Blood Cell Mol Dis. 27:677–690CrossRef
4.
go back to reference Caplan AI, Bruder S (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st Century. Trends Mol Med. 7:259–264CrossRefPubMed Caplan AI, Bruder S (2001) Mesenchymal stem cells: building blocks for molecular medicine in the 21st Century. Trends Mol Med. 7:259–264CrossRefPubMed
5.
go back to reference Sukhikh GT, Malaitsev VV, Bogdanova IM, Dubrovina IV (2002) Mesenchymal stem cells. Bull Exp Biol Med.133:103–9CrossRef Sukhikh GT, Malaitsev VV, Bogdanova IM, Dubrovina IV (2002) Mesenchymal stem cells. Bull Exp Biol Med.133:103–9CrossRef
6.
go back to reference Sikavitsas VI, Temenoff JS, Mikos AG (2001) Biomaterial and bone mechanotransduction. Biomaterials. 22:2581–2593CrossRefPubMed Sikavitsas VI, Temenoff JS, Mikos AG (2001) Biomaterial and bone mechanotransduction. Biomaterials. 22:2581–2593CrossRefPubMed
8.
go back to reference Kuznetsov SA, Krebsbach PH, Satomura K, Kerr J, Riminucci M, Benayahu D, Robey PG (1997) Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Biomed Mater Res 12:1335–1347 Kuznetsov SA, Krebsbach PH, Satomura K, Kerr J, Riminucci M, Benayahu D, Robey PG (1997) Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Biomed Mater Res 12:1335–1347
9.
go back to reference Dennis JE, Caplan AI (2004) Bone marrow mesenchymal stem cells. In: Sell S (eds) Stem cells handbook. Humana Press Inc, Totowa, NJ, pp 107–117 Dennis JE, Caplan AI (2004) Bone marrow mesenchymal stem cells. In: Sell S (eds) Stem cells handbook. Humana Press Inc, Totowa, NJ, pp 107–117
10.
go back to reference Dennis JE, Charbord P (2002) Origin and differentiation of human and murine stroma. Stem Cells 20:205–214CrossRefPubMed Dennis JE, Charbord P (2002) Origin and differentiation of human and murine stroma. Stem Cells 20:205–214CrossRefPubMed
11.
go back to reference Cheng SL, Zhang SF, Nelson TL, Warlow PM, Civitelli R (1994) Stimulation of human osteoblast differentiation and function by ipriflavone and its metabolites. Calcif Tissue Int 55:356–362CrossRefPubMed Cheng SL, Zhang SF, Nelson TL, Warlow PM, Civitelli R (1994) Stimulation of human osteoblast differentiation and function by ipriflavone and its metabolites. Calcif Tissue Int 55:356–362CrossRefPubMed
12.
go back to reference Ter Brugge PJ, Jansen JA (2002) In vitro osteogenic differentiation of rat bone marrow cells subcultured with and without dexamethasone. Tissue Eng 8:321–331CrossRefPubMed Ter Brugge PJ, Jansen JA (2002) In vitro osteogenic differentiation of rat bone marrow cells subcultured with and without dexamethasone. Tissue Eng 8:321–331CrossRefPubMed
13.
go back to reference Mester E, Nagylucskay S, Tisza S, Mester A (1978) Stimulation of wound healing by means of laser rays. Acta Chir Acad Sci Hung 19:163–170PubMed Mester E, Nagylucskay S, Tisza S, Mester A (1978) Stimulation of wound healing by means of laser rays. Acta Chir Acad Sci Hung 19:163–170PubMed
14.
go back to reference Kana JS, Hutschenreiter G, Haina D, Waidelich W (1981) Effect of low-power density laser radiation on healing of open skin wound in rats. Arch Surg 116:293–296PubMed Kana JS, Hutschenreiter G, Haina D, Waidelich W (1981) Effect of low-power density laser radiation on healing of open skin wound in rats. Arch Surg 116:293–296PubMed
15.
go back to reference Mester E, Mester AF, Mester A (1985) The biomedical effects of laser application. Lasers Surg Med 5:31–39PubMed Mester E, Mester AF, Mester A (1985) The biomedical effects of laser application. Lasers Surg Med 5:31–39PubMed
16.
go back to reference Boulton M, Marshall J (1986) He-Ne laser stimulation of human fibroblast proliferation and attachment in vitro. Lasers Life Sci 1:123–134 Boulton M, Marshall J (1986) He-Ne laser stimulation of human fibroblast proliferation and attachment in vitro. Lasers Life Sci 1:123–134
17.
go back to reference Van Breugel H, Bar PRD (1992) Power density and exposure time of He-Ne laser irradiation are more important than total energy dose in photo-biomodulation of human fibroblasts in vitro. Lasers Surg Med 12:528–537PubMed Van Breugel H, Bar PRD (1992) Power density and exposure time of He-Ne laser irradiation are more important than total energy dose in photo-biomodulation of human fibroblasts in vitro. Lasers Surg Med 12:528–537PubMed
18.
go back to reference Balboni GC, Brandi ML, Zonefrati R, Repice F (1986) Effects of He-Ne/I.R. lasers irradiation on two lines of normal human fibroblasts in vitro. Arch Ital Embriol 91:179–188 Balboni GC, Brandi ML, Zonefrati R, Repice F (1986) Effects of He-Ne/I.R. lasers irradiation on two lines of normal human fibroblasts in vitro. Arch Ital Embriol 91:179–188
19.
go back to reference Schultz RJ, Krishnamurthy S, Thelmo W, Rodriguez JE, Harvey G (1985) Effects of varying intensities of laser energy on articular cartilage. Lasers Surg Med 5:557–588 Schultz RJ, Krishnamurthy S, Thelmo W, Rodriguez JE, Harvey G (1985) Effects of varying intensities of laser energy on articular cartilage. Lasers Surg Med 5:557–588
20.
go back to reference Abergel RP, Meeker CA, Lam TS, Dwyer RM, Lesavoy MA, Uitto J (1984) Control of connective tissue metabolism by laser: recent developments and future prospects. J Am Acad Dermatol 11:1142–1150PubMed Abergel RP, Meeker CA, Lam TS, Dwyer RM, Lesavoy MA, Uitto J (1984) Control of connective tissue metabolism by laser: recent developments and future prospects. J Am Acad Dermatol 11:1142–1150PubMed
21.
go back to reference Bosarta M, Jucci A, Olliaro P, Quacci D, Sacchi S (1984) In vitro fibroblast and dermis fibroblast activation by laser irradiation at low energy. Dermatologica 168:157–162PubMed Bosarta M, Jucci A, Olliaro P, Quacci D, Sacchi S (1984) In vitro fibroblast and dermis fibroblast activation by laser irradiation at low energy. Dermatologica 168:157–162PubMed
22.
go back to reference Lam TS, Abergel RP, Meeker CA, Castel JC, Dwyer RM, Uitto J (1986) Laser stimulation of collagen synthesis in human skin fibroblast cultures. Lasers Life Sci 1:61–77 Lam TS, Abergel RP, Meeker CA, Castel JC, Dwyer RM, Uitto J (1986) Laser stimulation of collagen synthesis in human skin fibroblast cultures. Lasers Life Sci 1:61–77
23.
go back to reference Honmura A, Yanase M, Obata J, Haruki E (1992) Therapeutic effect of Ga-Al-As diode laser irradiation on experimentally induced inflammation in rats. Lasers Surg Med 12:441–449PubMed Honmura A, Yanase M, Obata J, Haruki E (1992) Therapeutic effect of Ga-Al-As diode laser irradiation on experimentally induced inflammation in rats. Lasers Surg Med 12:441–449PubMed
24.
go back to reference Anders JJ, Borke RC, Woolery SK, Van de Merwe WP (1993) Low power laser irradiation alters the rate of regeneration of the rat facial nerve. Lasers Surg Med 13:72–82PubMed Anders JJ, Borke RC, Woolery SK, Van de Merwe WP (1993) Low power laser irradiation alters the rate of regeneration of the rat facial nerve. Lasers Surg Med 13:72–82PubMed
25.
go back to reference Ozawa Y, Shimizu N, Mishima H, Kariya G, Yamaguchi M, Takiguchi H, Iwasawa T, Abiko Y (1995) Stimulatory effects of low-power laser irradiation on bone formation in vitro. In: Altshuler GB, Blankenau RJ, Wigdor HA (eds) Advanced Laser Dentistry. Proc SPIE 1984. International Society for Optical Engineering, Washington, DC, pp 281–288 Ozawa Y, Shimizu N, Mishima H, Kariya G, Yamaguchi M, Takiguchi H, Iwasawa T, Abiko Y (1995) Stimulatory effects of low-power laser irradiation on bone formation in vitro. In: Altshuler GB, Blankenau RJ, Wigdor HA (eds) Advanced Laser Dentistry. Proc SPIE 1984. International Society for Optical Engineering, Washington, DC, pp 281–288
26.
go back to reference Ozawa Y, Shimizu N, Kariya G, Abiko Y (1998) Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22:347–354CrossRefPubMed Ozawa Y, Shimizu N, Kariya G, Abiko Y (1998) Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22:347–354CrossRefPubMed
27.
go back to reference Yamada K (1991) Biological effects of low power laser irradiation on clonal osteoblastic cells (MC3T3-E1). J Jap Orthop Assoc 65:787–799 Yamada K (1991) Biological effects of low power laser irradiation on clonal osteoblastic cells (MC3T3-E1). J Jap Orthop Assoc 65:787–799
28.
go back to reference Dortbudak O, Haas R, Mailath-Pokorny G (2000) Biostimulation of bone marrow cells with a diode soft laser. Clin Oral Impl Res 11:540–545CrossRef Dortbudak O, Haas R, Mailath-Pokorny G (2000) Biostimulation of bone marrow cells with a diode soft laser. Clin Oral Impl Res 11:540–545CrossRef
29.
go back to reference Yamamoto M, Tamura K, Hiratsuka K, Abiko Y (2001) Stimulation of MCM3 gene expression in osteoblast by low level laser irradiation. Laser Med Sci 16:213–217 Yamamoto M, Tamura K, Hiratsuka K, Abiko Y (2001) Stimulation of MCM3 gene expression in osteoblast by low level laser irradiation. Laser Med Sci 16:213–217
30.
go back to reference Trelles MA, Mayayo E (1987) Bone fracture consolidates faster with low power laser. Lasers Surg Med 7:36–45PubMed Trelles MA, Mayayo E (1987) Bone fracture consolidates faster with low power laser. Lasers Surg Med 7:36–45PubMed
31.
go back to reference Lunger EJ, Rochkind S, Wollman Y, Kogan G, Dekel S (1998) Effect of low power laser irradiation on the mechanical properties of bone fracture healing in rats. Lasers Surg Med 22:97–102CrossRefPubMed Lunger EJ, Rochkind S, Wollman Y, Kogan G, Dekel S (1998) Effect of low power laser irradiation on the mechanical properties of bone fracture healing in rats. Lasers Surg Med 22:97–102CrossRefPubMed
32.
go back to reference Barushka O, Yaakobi T, Oron U (1995) Effect of low-energy laser (He-Ne) irradiation on the process of bone repair in the rat tibia. Bone 16:47–55CrossRefPubMed Barushka O, Yaakobi T, Oron U (1995) Effect of low-energy laser (He-Ne) irradiation on the process of bone repair in the rat tibia. Bone 16:47–55CrossRefPubMed
33.
go back to reference Kawasaki K, Shimizu N (2000) Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med 26:282–291CrossRefPubMed Kawasaki K, Shimizu N (2000) Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med 26:282–291CrossRefPubMed
34.
go back to reference Saito S, Shimizu N (1997) Stimulatory effect of low-power laser irradiation on bone regeneration in mid-palatal suture during expansion in the rat. Am J Orthod Dentfac Orthop 111:525–532 Saito S, Shimizu N (1997) Stimulatory effect of low-power laser irradiation on bone regeneration in mid-palatal suture during expansion in the rat. Am J Orthod Dentfac Orthop 111:525–532
36.
go back to reference Yukna RA, Mayer ET, Brite DU (1984) Longitudinal evaluation of durapatite ceramic as an alloplastic implant in periodontal osseous defects after 3 years. J Periodontol 55:633–663PubMed Yukna RA, Mayer ET, Brite DU (1984) Longitudinal evaluation of durapatite ceramic as an alloplastic implant in periodontal osseous defects after 3 years. J Periodontol 55:633–663PubMed
37.
go back to reference Kattigan BD (1986) Bone regeneration with bone substitutes: an animal study. Springer Verlag, New York, pp 66–75 Kattigan BD (1986) Bone regeneration with bone substitutes: an animal study. Springer Verlag, New York, pp 66–75
38.
go back to reference Daculsi G, Le Geros R, Heughebaert M, Barbieux I (1990) Formation of carbonate-apatite crystals after implantation of calcium-phosphate ceramics. Calcif Tissue Int 46: 20–27PubMed Daculsi G, Le Geros R, Heughebaert M, Barbieux I (1990) Formation of carbonate-apatite crystals after implantation of calcium-phosphate ceramics. Calcif Tissue Int 46: 20–27PubMed
39.
go back to reference Ducheyne P, Oiu Q (1999) Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 20:2287–2303CrossRefPubMed Ducheyne P, Oiu Q (1999) Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 20:2287–2303CrossRefPubMed
40.
go back to reference Schmidt C, Ignatius AA, Claes LE (2001) Proliferation and differentiation parameters of human osteoblasts on titanium and steel surfaces. J Biomed Mater Res 54:209–215CrossRefPubMed Schmidt C, Ignatius AA, Claes LE (2001) Proliferation and differentiation parameters of human osteoblasts on titanium and steel surfaces. J Biomed Mater Res 54:209–215CrossRefPubMed
41.
go back to reference Shea DE, Wang D, Franceschi RT, Moony DJ (2000) Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffolds. Tissue Eng 6:605–617CrossRefPubMed Shea DE, Wang D, Franceschi RT, Moony DJ (2000) Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffolds. Tissue Eng 6:605–617CrossRefPubMed
42.
go back to reference Orban JM, Marra KG, Hollinger JO (2002) Composition options for tissue-engineered bone. Tissue Eng 8:529–539CrossRefPubMed Orban JM, Marra KG, Hollinger JO (2002) Composition options for tissue-engineered bone. Tissue Eng 8:529–539CrossRefPubMed
43.
go back to reference Rizzi SC, Heath DJ, Coombes AGA, Bock N, Textor M, Downes S (2001) Biodegradable polymer/hydroxyapatite composites: Surface analysis and initial attachment of human osteoblasts. J Biomed Mater Res 55:475–486CrossRefPubMed Rizzi SC, Heath DJ, Coombes AGA, Bock N, Textor M, Downes S (2001) Biodegradable polymer/hydroxyapatite composites: Surface analysis and initial attachment of human osteoblasts. J Biomed Mater Res 55:475–486CrossRefPubMed
44.
go back to reference Cancedda R, Dozin B, Giannoni P, Quarto R (2003) Tissue engineering and cell therapy of cartilage and bone. Mat Biol 22:81–91CrossRef Cancedda R, Dozin B, Giannoni P, Quarto R (2003) Tissue engineering and cell therapy of cartilage and bone. Mat Biol 22:81–91CrossRef
45.
go back to reference Demers C, Hamdy R, Corsi K, Chellat F, Tabrizian M, Yahia L (2002) Natural coral as a bone graft substitute: a review. Bio-Med Mater Eng 12:15–35 Demers C, Hamdy R, Corsi K, Chellat F, Tabrizian M, Yahia L (2002) Natural coral as a bone graft substitute: a review. Bio-Med Mater Eng 12:15–35
46.
go back to reference Green D, Walsh D, Mann S, Oreffo ROC (2002) The potential of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrates skeletons. Bone 30:810–815CrossRefPubMed Green D, Walsh D, Mann S, Oreffo ROC (2002) The potential of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrates skeletons. Bone 30:810–815CrossRefPubMed
47.
go back to reference Abramovitch-Gottlib L, Katoshevski D, Vago R (2002) A computerized tank system for studying the effect of temperature on calcification of reef organisms. J Biochem Bioph Meth 50:245–252CrossRef Abramovitch-Gottlib L, Katoshevski D, Vago R (2002) A computerized tank system for studying the effect of temperature on calcification of reef organisms. J Biochem Bioph Meth 50:245–252CrossRef
48.
go back to reference Roudier M, Bouchon C, Rouvillain JL, Amedee J, Bareille R, Rouais F, Fricain JC, Dupuy B, Kien P, Jeandot R, Bassecathalinat B (1995) The resorption of bone-implanted corals varies with porosity but also with the host-reaction. J Biomed Mater Res.29:909–915CrossRef Roudier M, Bouchon C, Rouvillain JL, Amedee J, Bareille R, Rouais F, Fricain JC, Dupuy B, Kien P, Jeandot R, Bassecathalinat B (1995) The resorption of bone-implanted corals varies with porosity but also with the host-reaction. J Biomed Mater Res.29:909–915CrossRef
49.
go back to reference Guillemin G, Patat JL, Fournie J, Chetail M (1987) The use of coral as a bone-graft substitute. J Biomed Mater Res 21:557–567CrossRefPubMed Guillemin G, Patat JL, Fournie J, Chetail M (1987) The use of coral as a bone-graft substitute. J Biomed Mater Res 21:557–567CrossRefPubMed
50.
go back to reference Bou-Abboud NN, Ouhayoum JP (1998) Bone formation with discs or particles of natural coral skeleton plus polyglactin910 mesh: histologic evaluation in rat calvaria. Int J Oral Maxillofac Implants 13:115–120PubMed Bou-Abboud NN, Ouhayoum JP (1998) Bone formation with discs or particles of natural coral skeleton plus polyglactin910 mesh: histologic evaluation in rat calvaria. Int J Oral Maxillofac Implants 13:115–120PubMed
51.
go back to reference Vuola J, Böhling T, Kinnunen J, Hirvensalo E, Asko-Seljavaara S (2000) Natural coral as bone-defect-filling material. J Biomed Mater Res 51:117–122CrossRefPubMed Vuola J, Böhling T, Kinnunen J, Hirvensalo E, Asko-Seljavaara S (2000) Natural coral as bone-defect-filling material. J Biomed Mater Res 51:117–122CrossRefPubMed
52.
go back to reference Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G (2000) Tissue-engineered bone regeneration. Nature Biotech 18:959–963 Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G (2000) Tissue-engineered bone regeneration. Nature Biotech 18:959–963
53.
go back to reference Vago R, Plotquin D, Bunin A, Sinelnikov I, Atar D, Itzhak D (2002) Hard tissue remodeling using biofabricated coralline biomaterials. J Biochem Biophys Meth 50:253–259CrossRefPubMed Vago R, Plotquin D, Bunin A, Sinelnikov I, Atar D, Itzhak D (2002) Hard tissue remodeling using biofabricated coralline biomaterials. J Biochem Biophys Meth 50:253–259CrossRefPubMed
54.
go back to reference Barnes DJ, Chalker BE (1990) Calcification and photosynthesis in reef-building corals and algae. In: Dubinsky Z, editor. Ecosystems of the World 25. Amsterdam: Elsevier, pp 109–131 Barnes DJ, Chalker BE (1990) Calcification and photosynthesis in reef-building corals and algae. In: Dubinsky Z, editor. Ecosystems of the World 25. Amsterdam: Elsevier, pp 109–131
55.
go back to reference Dahan D, Vago R, Golan Y (2003) Skeletal architecture and microstructure of the calcifying coral Fungia simplex. Mater Sci Eng C 23:473–477 Dahan D, Vago R, Golan Y (2003) Skeletal architecture and microstructure of the calcifying coral Fungia simplex. Mater Sci Eng C 23:473–477
56.
go back to reference Weiner S, Addadi L (1997) Design strategies in mineralized biological materials. J Mater Chem 7:689–702CrossRef Weiner S, Addadi L (1997) Design strategies in mineralized biological materials. J Mater Chem 7:689–702CrossRef
57.
go back to reference Hu J, Fraser R, Russell JJ, Ben-Nissan B, Vago R (2000) Australian coral as a biomaterial: Characteristics. J Mater Sci Technol 16:591–595 Hu J, Fraser R, Russell JJ, Ben-Nissan B, Vago R (2000) Australian coral as a biomaterial: Characteristics. J Mater Sci Technol 16:591–595
58.
go back to reference Doherty MJ, Schlag G, Schwarz N, Mollan RAS, Nolam PS, Wilson DJ (1994) Biocompatibility of xenogeneic bone, commercially available coral, a bioceramic and tissue sealant for human osteoblasts. Biomaterials 15:601–608CrossRefPubMed Doherty MJ, Schlag G, Schwarz N, Mollan RAS, Nolam PS, Wilson DJ (1994) Biocompatibility of xenogeneic bone, commercially available coral, a bioceramic and tissue sealant for human osteoblasts. Biomaterials 15:601–608CrossRefPubMed
59.
go back to reference Udea Y, Shimizu N (2003) Effects of pulse frequency of low-level laser therapy (LLLT) on bone nodule formation in rat calvarial cells. J Clin Laser Med Surg 21:271–277CrossRefPubMed Udea Y, Shimizu N (2003) Effects of pulse frequency of low-level laser therapy (LLLT) on bone nodule formation in rat calvarial cells. J Clin Laser Med Surg 21:271–277CrossRefPubMed
60.
go back to reference Fricain JC, Bareille R, Ulyss F, Dupuy B, Amedee J (1998) Evaluation of proliferation and protein expression of human bone marrow cells cultured on coral crystallized in the aragonite or calcite form. J Biomed Mater Res 42: 96–102CrossRefPubMed Fricain JC, Bareille R, Ulyss F, Dupuy B, Amedee J (1998) Evaluation of proliferation and protein expression of human bone marrow cells cultured on coral crystallized in the aragonite or calcite form. J Biomed Mater Res 42: 96–102CrossRefPubMed
61.
go back to reference Sauteir JM, Nefussi JR, Boulekbache H, Forest N (1990) In vitro bone formation on coral granules. In vitro. Cell Dev Biol 26:1079–1085 Sauteir JM, Nefussi JR, Boulekbache H, Forest N (1990) In vitro bone formation on coral granules. In vitro. Cell Dev Biol 26:1079–1085
62.
go back to reference Grigoriadis AE, Heersche JNM, Aubin JE (1988) Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell-population - effect of dexamethasone. J Cell Biol 106:2139–2151CrossRefPubMed Grigoriadis AE, Heersche JNM, Aubin JE (1988) Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell-population - effect of dexamethasone. J Cell Biol 106:2139–2151CrossRefPubMed
63.
go back to reference Asahina I, Sampath TK, Hauschka PV (1996) Human osteogenic protein-1 induces chondroblastic, osteoblastic, and/or adipocytic differentiation of clonal murine target cells. Exp Cell Res 222: 38–47CrossRefPubMed Asahina I, Sampath TK, Hauschka PV (1996) Human osteogenic protein-1 induces chondroblastic, osteoblastic, and/or adipocytic differentiation of clonal murine target cells. Exp Cell Res 222: 38–47CrossRefPubMed
64.
go back to reference Mie M, Ohgushi H, Yanagida Y, Haruyama T, Kobatake E, Aizawa M (2000)Osteogenesis coordinated in C3H10T1/2 cells by adipogenesis-dependent BMP-2 expression system. Tissue Eng 6:9–18CrossRefPubMed Mie M, Ohgushi H, Yanagida Y, Haruyama T, Kobatake E, Aizawa M (2000)Osteogenesis coordinated in C3H10T1/2 cells by adipogenesis-dependent BMP-2 expression system. Tissue Eng 6:9–18CrossRefPubMed
65.
go back to reference Dennis JE, Merriam A, Awadallah A, Yoo JU, Johnstone B, Caplan AI (1999)A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse. J Bone Miner Res 14:700–709PubMed Dennis JE, Merriam A, Awadallah A, Yoo JU, Johnstone B, Caplan AI (1999)A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse. J Bone Miner Res 14:700–709PubMed
66.
go back to reference Chen D, Ji X, Harris MA, Feng JQ, Karsenty G, Celeste AJ, Rosen V, Mundy GR, Harris SE (1998) Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J Cell Biol 142:295–305CrossRefPubMed Chen D, Ji X, Harris MA, Feng JQ, Karsenty G, Celeste AJ, Rosen V, Mundy GR, Harris SE (1998) Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J Cell Biol 142:295–305CrossRefPubMed
67.
go back to reference Thompson DL, Lum KD, Nygaard SC, Kuestner RE, Kelly KA, Gimble JM, Moore EE (1998) The derivation and characterization of stromal cell lines from the bone marrow of p53(-/-) mice: New insights into osteoblast and adipocyte differentiation. J Bone Miner Res 13:195–204PubMed Thompson DL, Lum KD, Nygaard SC, Kuestner RE, Kelly KA, Gimble JM, Moore EE (1998) The derivation and characterization of stromal cell lines from the bone marrow of p53(-/-) mice: New insights into osteoblast and adipocyte differentiation. J Bone Miner Res 13:195–204PubMed
68.
go back to reference Conget PA, Minguell JJ (1999) Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 181:67–73CrossRefPubMed Conget PA, Minguell JJ (1999) Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 181:67–73CrossRefPubMed
69.
go back to reference Harris SE, Harris MA, Mahy P, Wozney J, Feng JQ, Mundy GR (1994) Expression of bone morphogenetic protein messenger-RNA by normal rat and human prostate and prostate-cancer cells. Prostate 24:204–211PubMed Harris SE, Harris MA, Mahy P, Wozney J, Feng JQ, Mundy GR (1994) Expression of bone morphogenetic protein messenger-RNA by normal rat and human prostate and prostate-cancer cells. Prostate 24:204–211PubMed
70.
go back to reference Birnbaum RS, Bowsher RR, Wiren KM (1995) Changes in IGF-I and IGF-II expression and secretion during the proliferation and differentiation of normal rat osteoblasts. J Endocrinol 144:251–259PubMed Birnbaum RS, Bowsher RR, Wiren KM (1995) Changes in IGF-I and IGF-II expression and secretion during the proliferation and differentiation of normal rat osteoblasts. J Endocrinol 144:251–259PubMed
71.
go back to reference Rubinov AN (2003) Physical grounds for biological effect of laser radiation. J Phys D: Appl Phys 36:2317–2330 Rubinov AN (2003) Physical grounds for biological effect of laser radiation. J Phys D: Appl Phys 36:2317–2330
72.
go back to reference Klebanov GI, Kreinina MV, Poltanov EA, Khristoforova TV, Vladimirov YA (2001) Mehanism of therapeutic effect of low-intensity infrared laser radiation. Bull Exp Biol Med 131:239–241CrossRefPubMed Klebanov GI, Kreinina MV, Poltanov EA, Khristoforova TV, Vladimirov YA (2001) Mehanism of therapeutic effect of low-intensity infrared laser radiation. Bull Exp Biol Med 131:239–241CrossRefPubMed
Metadata
Title
Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix
Authors
Liat Abramovitch-Gottlib
Talia Gross
Doron Naveh
Shimona Geresh
Salman Rosenwaks
Ilana Bar
Razi Vago
Publication date
01-12-2005
Publisher
Springer-Verlag
Published in
Lasers in Medical Science / Issue 3-4/2005
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-005-0355-9

Other articles of this Issue 3-4/2005

Lasers in Medical Science 3-4/2005 Go to the issue