Skip to main content
Top
Published in: European Journal of Clinical Microbiology & Infectious Diseases 4/2004

01-04-2004 | Review

Antifungal Agents: In Vitro Susceptibility Testing, Pharmacodynamics, and Prospects for Combination Therapy

Authors: A. H. Groll, H. Kolve

Published in: European Journal of Clinical Microbiology & Infectious Diseases | Issue 4/2004

Login to get access

Abstract

As invasive fungal infections in immunocompromised patients become increasingly important, the field of antifungal chemotherapy continues to evolve rapidly. New agents have entered the clinical arena, providing physicians with a variety of choices for treatment of most infections. Standardized methods for testing the in vitro susceptibility of fungi have become available, and concentration-effect relationships are increasingly explored. Finally, the availability of an entirely new class of antifungal agents is opening new opportunities for combination therapy of infections that are notoriously difficult to treat and carry a dismal prognosis. However, the ongoing progress in these key areas has also made antifungal chemotherapy considerably more complex and susceptible to misconceptions. Continuing efforts in the laboratory and well designed collaborative clinical trials are needed more than ever to turn opportunities into lasting benefit for patients at risk for or suffering from life-threatening invasive mycoses.
Literature
1.
go back to reference Groll AH, Walsh TJ (2001) Uncommon opportunistic fungi: new nosocomial threats. Clin Microbiol Infect 7 (Suppl 2):8–24CrossRef Groll AH, Walsh TJ (2001) Uncommon opportunistic fungi: new nosocomial threats. Clin Microbiol Infect 7 (Suppl 2):8–24CrossRef
2.
go back to reference Schneider E, Hajjeh RA, Spiegel RA, Jibson RW, Harp EL, Marshall GA, Gunn RA, McNeil MM, Pinner RW, Baron RC, Burger RC, Hutwagner LC, Crump C, Kaufman L, Reef SE, Feldman GM, Pappagianis D, Werner SB (1997) A coccidioidomycosis outbreak following the Northridge, Calif., earthquake. JAMA 277:904–908CrossRefPubMed Schneider E, Hajjeh RA, Spiegel RA, Jibson RW, Harp EL, Marshall GA, Gunn RA, McNeil MM, Pinner RW, Baron RC, Burger RC, Hutwagner LC, Crump C, Kaufman L, Reef SE, Feldman GM, Pappagianis D, Werner SB (1997) A coccidioidomycosis outbreak following the Northridge, Calif., earthquake. JAMA 277:904–908CrossRefPubMed
3.
go back to reference Centers for Disease Control (2001) Update: outbreak of acute febrile respiratory illness among college students – Acapulco, Mexico, March 2001. Morb Mortal Wkly Rep 50:359–360 Centers for Disease Control (2001) Update: outbreak of acute febrile respiratory illness among college students – Acapulco, Mexico, March 2001. Morb Mortal Wkly Rep 50:359–360
4.
go back to reference Groll, AH, Piscitelli SC, Walsh TJ (1998) Clinical pharmacology of systemic antifungal agents: a comprehensive review of agents in clinical use, current investigational compounds, and putative targets for antifungal drug development. Adv Pharmacol 44:343–500PubMed Groll, AH, Piscitelli SC, Walsh TJ (1998) Clinical pharmacology of systemic antifungal agents: a comprehensive review of agents in clinical use, current investigational compounds, and putative targets for antifungal drug development. Adv Pharmacol 44:343–500PubMed
5.
go back to reference Berenguer J, Buck M, Witebsky F, Stock F, Pizzo PA, Walsh TJ (1993) Lysis-centrifugation blood cultures in the detection of tissue-proven invasive candidiasis. Disseminated versus single-organ infection. Diagn Microbiol Infect Dis 17:103–109CrossRefPubMed Berenguer J, Buck M, Witebsky F, Stock F, Pizzo PA, Walsh TJ (1993) Lysis-centrifugation blood cultures in the detection of tissue-proven invasive candidiasis. Disseminated versus single-organ infection. Diagn Microbiol Infect Dis 17:103–109CrossRefPubMed
6.
go back to reference Hebart H, Loffler J, Meisner C et al (2000) Early detection of Aspergillus infection after allogeneic stem cell transplantation by polymerase chain reaction screening. J Infect Dis 181:1713–1719PubMed Hebart H, Loffler J, Meisner C et al (2000) Early detection of Aspergillus infection after allogeneic stem cell transplantation by polymerase chain reaction screening. J Infect Dis 181:1713–1719PubMed
7.
go back to reference Maertens J, Verhaegen J, Lagrou K et al (2001) Screening for circulating galactomannan as a noninvasive diagnostic tool for invasive aspergillosis in prolonged neutropenic patients and stem cell transplantation recipients: a prospective validation. Blood 97:1604–1610PubMed Maertens J, Verhaegen J, Lagrou K et al (2001) Screening for circulating galactomannan as a noninvasive diagnostic tool for invasive aspergillosis in prolonged neutropenic patients and stem cell transplantation recipients: a prospective validation. Blood 97:1604–1610PubMed
8.
go back to reference Caillot D, Casasnovas O, Bernard A et al (1997) Improved management of invasive pulmonary aspergillosis in neutropenic patients using early thoracic computed tomography scan and surgery. J Clin Oncol 15:139–147PubMed Caillot D, Casasnovas O, Bernard A et al (1997) Improved management of invasive pulmonary aspergillosis in neutropenic patients using early thoracic computed tomography scan and surgery. J Clin Oncol 15:139–147PubMed
9.
go back to reference Caillot D, Couaillier JF, Bernard A, Casasnovas O, Denning DW, Mannone L, Lopez J, Couillault G, Piard F, Vagner O, Guy H (2001) Increasing volume and changing characteristics of invasive pulmonary aspergillosis on sequential thoracic computed tomography scans in patients with neutropenia. J Clin Oncol 19:253–259PubMed Caillot D, Couaillier JF, Bernard A, Casasnovas O, Denning DW, Mannone L, Lopez J, Couillault G, Piard F, Vagner O, Guy H (2001) Increasing volume and changing characteristics of invasive pulmonary aspergillosis on sequential thoracic computed tomography scans in patients with neutropenia. J Clin Oncol 19:253–259PubMed
10.
go back to reference Walsh TJ, Roden M, Roilides E, Groll AH (2000) Concepts in design of comparative clinical trials of antifungal therapy in neutropenic patients. Int J Antimicrob Agents 16:151–156CrossRefPubMed Walsh TJ, Roden M, Roilides E, Groll AH (2000) Concepts in design of comparative clinical trials of antifungal therapy in neutropenic patients. Int J Antimicrob Agents 16:151–156CrossRefPubMed
11.
go back to reference Rex JR, Walsh TJ, Nettleman M et al (2001) Need for alternative trial designs and evaluation strategies for therapeutic studies of invasive mycoses. Clin Infect Dis 35:95–106CrossRef Rex JR, Walsh TJ, Nettleman M et al (2001) Need for alternative trial designs and evaluation strategies for therapeutic studies of invasive mycoses. Clin Infect Dis 35:95–106CrossRef
12.
go back to reference Ascioglu S, Rex JH, de Pauw B, Bennett JE, Bille J, Crokaert F et al (2002) Defining opportunistic invasive fungal infections in immunocompromised patients with cancer and hematopoietic stem cell transplants: an international consensus. Clin Infect Dis 34:7–14PubMed Ascioglu S, Rex JH, de Pauw B, Bennett JE, Bille J, Crokaert F et al (2002) Defining opportunistic invasive fungal infections in immunocompromised patients with cancer and hematopoietic stem cell transplants: an international consensus. Clin Infect Dis 34:7–14PubMed
13.
go back to reference Rex JH, Pfaller MA, Galgiani JN, Bartlett MS, Espinel-Ingroff A, Ghannoum MA, Lancaster M, Odds FC, Rinaldi MG, Walsh TJ, Barry AL (1997) Development of interpretive breakpoints for antifungal susceptibility testing: conceptual framework and analysis of in vitro-in vivo correlation data for fluconazole, itraconazole, and Candida infections. Clin Infect Dis 24:235–247PubMed Rex JH, Pfaller MA, Galgiani JN, Bartlett MS, Espinel-Ingroff A, Ghannoum MA, Lancaster M, Odds FC, Rinaldi MG, Walsh TJ, Barry AL (1997) Development of interpretive breakpoints for antifungal susceptibility testing: conceptual framework and analysis of in vitro-in vivo correlation data for fluconazole, itraconazole, and Candida infections. Clin Infect Dis 24:235–247PubMed
14.
go back to reference Groll AH, Piscitelli SC, Walsh TJ (2001) Antifungal pharmacodynamics: concentration-effect relationships in vitro and in vivo. Pharmacotherapy 21 (Suppl):133–148 Groll AH, Piscitelli SC, Walsh TJ (2001) Antifungal pharmacodynamics: concentration-effect relationships in vitro and in vivo. Pharmacotherapy 21 (Suppl):133–148
15.
go back to reference Andes D (2003) In vivo pharmacodynamics of antifungal drugs in treatment of candidiasis. Antimicrob Agents Chemother 47:1179–1186CrossRefPubMed Andes D (2003) In vivo pharmacodynamics of antifungal drugs in treatment of candidiasis. Antimicrob Agents Chemother 47:1179–1186CrossRefPubMed
16.
go back to reference Woods GL (1995) In vitro testing of antimicrobial agents. Infect Dis Clin North Am 9:463–481PubMed Woods GL (1995) In vitro testing of antimicrobial agents. Infect Dis Clin North Am 9:463–481PubMed
17.
go back to reference National Committee for Clinical Laboratory Standards (1997) Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard M27-A. NCCLS, Wayne, PA National Committee for Clinical Laboratory Standards (1997) Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard M27-A. NCCLS, Wayne, PA
18.
go back to reference Cuenca-Estrella M, Lee-Yang W, Ciblak MA, Arthington-Skaggs BA, Mellado E, Warnock DW, Rodriguez-Tudela JL (2002) Comparative evaluation of NCCLS M27-A and EUCAST broth microdilution procedures for antifungal susceptibility testing of Candida species. Antimicrob Agents Chemother 46:3644–3647CrossRefPubMed Cuenca-Estrella M, Lee-Yang W, Ciblak MA, Arthington-Skaggs BA, Mellado E, Warnock DW, Rodriguez-Tudela JL (2002) Comparative evaluation of NCCLS M27-A and EUCAST broth microdilution procedures for antifungal susceptibility testing of Candida species. Antimicrob Agents Chemother 46:3644–3647CrossRefPubMed
19.
go back to reference National Committee for Clinical Laboratory Standards (2000) Reference method for broth dilution antifungal susceptibility testing of conidium-forming filamentous fungi. Approved standard M38-A. NCCLS, Wayne, PA National Committee for Clinical Laboratory Standards (2000) Reference method for broth dilution antifungal susceptibility testing of conidium-forming filamentous fungi. Approved standard M38-A. NCCLS, Wayne, PA
20.
go back to reference Rex JH, Pfaller MA (2002) Has antifungal susceptibility testing come of age? Clin Infect Dis 35:982–989CrossRefPubMed Rex JH, Pfaller MA (2002) Has antifungal susceptibility testing come of age? Clin Infect Dis 35:982–989CrossRefPubMed
21.
go back to reference Perea S, Patterson TF (2002). Antifungal resistance in pathogenic fungi. Clin Infect Dis 35:1073–1080CrossRefPubMed Perea S, Patterson TF (2002). Antifungal resistance in pathogenic fungi. Clin Infect Dis 35:1073–1080CrossRefPubMed
22.
go back to reference Vanden Bossche H, Dromer F, Improvisi I, Lozano-Chiu M, Rex JH, Sanglard D (1998) Antifungal drug resistance in pathogenic fungi. Med Mycol 36 (Suppl 1):119–128CrossRef Vanden Bossche H, Dromer F, Improvisi I, Lozano-Chiu M, Rex JH, Sanglard D (1998) Antifungal drug resistance in pathogenic fungi. Med Mycol 36 (Suppl 1):119–128CrossRef
23.
go back to reference Lopez-Ribot JL, McAtee RK, Lee LN, Kirkpatrick WR, White TC, Sanglard D, Patterson TF (1998) Distinct patterns of gene expression associated with development of fluconazole resistance in serial Candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob Agents Chemother 42:2932–2937PubMed Lopez-Ribot JL, McAtee RK, Lee LN, Kirkpatrick WR, White TC, Sanglard D, Patterson TF (1998) Distinct patterns of gene expression associated with development of fluconazole resistance in serial Candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob Agents Chemother 42:2932–2937PubMed
24.
go back to reference White TC, Marr KA, Bowden RA (1998) Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11:382–402PubMed White TC, Marr KA, Bowden RA (1998) Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11:382–402PubMed
25.
go back to reference Dannaoui E, Borel E, Monier MF, Piens MA, Picot S, Persat F (2001) Acquired itraconazole resistance in Aspergillus fumigatus. J Antimicrob Chemother 47:333–340CrossRefPubMed Dannaoui E, Borel E, Monier MF, Piens MA, Picot S, Persat F (2001) Acquired itraconazole resistance in Aspergillus fumigatus. J Antimicrob Chemother 47:333–340CrossRefPubMed
26.
go back to reference Hof H (2001) Critical annotations to the use of azole antifungals for plant protection. Antimicrob Agents Chemother 45:2987–2990CrossRefPubMed Hof H (2001) Critical annotations to the use of azole antifungals for plant protection. Antimicrob Agents Chemother 45:2987–2990CrossRefPubMed
27.
go back to reference Vanden Bossche H, Engelen M, Rochette F. (2003) Antifungal agents of use in animal health – chemical, biochemical and pharmacological aspects. J Vet Pharmacol Ther 26:5–29CrossRefPubMed Vanden Bossche H, Engelen M, Rochette F. (2003) Antifungal agents of use in animal health – chemical, biochemical and pharmacological aspects. J Vet Pharmacol Ther 26:5–29CrossRefPubMed
28.
go back to reference Morschhauser J (2002) The genetic basis of fluconazole resistance development in Candida albicans. Biochim Biophys Acta 1587:240–248PubMed Morschhauser J (2002) The genetic basis of fluconazole resistance development in Candida albicans. Biochim Biophys Acta 1587:240–248PubMed
29.
go back to reference Sanglard D, Odds FC (2002) Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2:73–85CrossRefPubMed Sanglard D, Odds FC (2002) Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2:73–85CrossRefPubMed
30.
go back to reference Kontoyiannis DP, Lewis RE (2002) Antifungal drug resistance of pathogenic fungi. Lancet 359:1135–1144CrossRefPubMed Kontoyiannis DP, Lewis RE (2002) Antifungal drug resistance of pathogenic fungi. Lancet 359:1135–1144CrossRefPubMed
31.
go back to reference Kurtz MB, Abruzzo G, Flattery A, Bartizal K, Marrinan JA, Li W, Milligan J, Nollstadt K, Douglas CM (1996) Characterization of echinocandin-resistant mutants of Candida albicans: genetic, biochemical, and virulence studies. Infect Immun 64:3244–3251PubMed Kurtz MB, Abruzzo G, Flattery A, Bartizal K, Marrinan JA, Li W, Milligan J, Nollstadt K, Douglas CM (1996) Characterization of echinocandin-resistant mutants of Candida albicans: genetic, biochemical, and virulence studies. Infect Immun 64:3244–3251PubMed
32.
go back to reference Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26:1–10PubMed Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26:1–10PubMed
33.
go back to reference Janknegt R, de Marie S, Bakker-Woudenberg IA, Crommelin DJ (1992) Liposomal and lipid formulations of amphotericin B. Clinical pharmacokinetics. Clin Pharmacokinet 23:279–291PubMed Janknegt R, de Marie S, Bakker-Woudenberg IA, Crommelin DJ (1992) Liposomal and lipid formulations of amphotericin B. Clinical pharmacokinetics. Clin Pharmacokinet 23:279–291PubMed
34.
go back to reference Hiemenz JW, Walsh TJ (1996) Lipid formulations of amphotericin B: recent progress and future directions. Clin Infect Dis 22 (Suppl 2):133–144PubMed Hiemenz JW, Walsh TJ (1996) Lipid formulations of amphotericin B: recent progress and future directions. Clin Infect Dis 22 (Suppl 2):133–144PubMed
35.
go back to reference Wong-Beringer A, Jacobs RA, Guglielmo BJ (1998) Lipid formulations of amphotericin B: clinical efficacy and toxicities. Clin Infect Dis 27:603–618PubMed Wong-Beringer A, Jacobs RA, Guglielmo BJ (1998) Lipid formulations of amphotericin B: clinical efficacy and toxicities. Clin Infect Dis 27:603–618PubMed
36.
go back to reference Chiou C, Groll AH, Walsh TJ (2000) New drugs and novel targets for treatment of invasive fungal infections in patients with cancer. Oncologist 5:120–135CrossRefPubMed Chiou C, Groll AH, Walsh TJ (2000) New drugs and novel targets for treatment of invasive fungal infections in patients with cancer. Oncologist 5:120–135CrossRefPubMed
37.
go back to reference Brajtburg J, Powderly WG, Kobayashi GS, Medoff G (1999) Amphotericin B: current understanding of mechanisms of action. Antimicrob Agents Chemother 34:183–188 Brajtburg J, Powderly WG, Kobayashi GS, Medoff G (1999) Amphotericin B: current understanding of mechanisms of action. Antimicrob Agents Chemother 34:183–188
38.
go back to reference Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ (2002) Plasma protein binding of amphotericin B and pharmacokinetics of bound versus unbound amphotericin B after administration of intravenous liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate. Antimicrob Agents Chemother 46:834–840CrossRefPubMed Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ (2002) Plasma protein binding of amphotericin B and pharmacokinetics of bound versus unbound amphotericin B after administration of intravenous liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate. Antimicrob Agents Chemother 46:834–840CrossRefPubMed
39.
go back to reference Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ (2002) Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans. Antimicrob Agents Chemother 46:828–833CrossRefPubMed Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ (2002) Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans. Antimicrob Agents Chemother 46:828–833CrossRefPubMed
40.
go back to reference Bekersky I, Fielding RM, Dressler DE, Kline S, Buell DN, Walsh TJ (2001) Pharmacokinetics, excretion, and mass balance of 14C after administration of 14C-cholesterol-labeled AmBisome to healthy volunteers. J Clin Pharmacol 41:963–971CrossRefPubMed Bekersky I, Fielding RM, Dressler DE, Kline S, Buell DN, Walsh TJ (2001) Pharmacokinetics, excretion, and mass balance of 14C after administration of 14C-cholesterol-labeled AmBisome to healthy volunteers. J Clin Pharmacol 41:963–971CrossRefPubMed
41.
go back to reference Klepser ME, Wolfe EJ, Jones RN, et al (1997) Antifungal pharmacodynamic characteristics of fluconazole and amphotericin B tested against Candida albicans. Antimicrob Agents Chemother 41:1392–1395PubMed Klepser ME, Wolfe EJ, Jones RN, et al (1997) Antifungal pharmacodynamic characteristics of fluconazole and amphotericin B tested against Candida albicans. Antimicrob Agents Chemother 41:1392–1395PubMed
42.
go back to reference Klepser ME, Wolfe EJ, Pfaller MA (1998) Antifungal pharmacodynamic characteristics of fluconazole and amphotericin B against Cryptococcus neoformans. J Antimicrob Chemother 41:397–401CrossRefPubMed Klepser ME, Wolfe EJ, Pfaller MA (1998) Antifungal pharmacodynamic characteristics of fluconazole and amphotericin B against Cryptococcus neoformans. J Antimicrob Chemother 41:397–401CrossRefPubMed
43.
go back to reference Walsh TJ (1989) Trichosporonosis. Infect Dis Clin North Amer 3:43–52 Walsh TJ (1989) Trichosporonosis. Infect Dis Clin North Amer 3:43–52
44.
go back to reference Walsh TJ, Melcher G, Rinaldi M, Lecciones J, McGough D, Lee J, Callender D, Rubin M, Pizzo PA (1990) Trichosporon beigelii: an emerging pathogen resistant to amphotericin B. J Clin Microbiol 28:1616–1622 Walsh TJ, Melcher G, Rinaldi M, Lecciones J, McGough D, Lee J, Callender D, Rubin M, Pizzo PA (1990) Trichosporon beigelii: an emerging pathogen resistant to amphotericin B. J Clin Microbiol 28:1616–1622
45.
go back to reference Walsh TJ, Lee JW, Melcher GP, Navarro E, Bacher J, Callender D, Reed KD, Wu T, Lopez-Berestein G, Pizzo PA (1992) Experimental disseminated trichosporonosis in persistently granulocytopenic rabbits: implications for pathogenesis, diagnosis, and treatment of an emerging opportunistic infection. J Infect Dis 166:121–133PubMed Walsh TJ, Lee JW, Melcher GP, Navarro E, Bacher J, Callender D, Reed KD, Wu T, Lopez-Berestein G, Pizzo PA (1992) Experimental disseminated trichosporonosis in persistently granulocytopenic rabbits: implications for pathogenesis, diagnosis, and treatment of an emerging opportunistic infection. J Infect Dis 166:121–133PubMed
46.
go back to reference Turnidge JD, Gudmundsson S, Vogelman B, Craig WA (1994) The postantibiotic effect of antifungal agents against common pathogenic yeasts. J Antimicrob Chemother 34:83–92PubMed Turnidge JD, Gudmundsson S, Vogelman B, Craig WA (1994) The postantibiotic effect of antifungal agents against common pathogenic yeasts. J Antimicrob Chemother 34:83–92PubMed
47.
go back to reference Ernst E, Klepser ME, Pfaller MA (2000) Postantifungal effects of echinocandin, azole, and polyene antifungal agents Candida albicans and Cryptococcus neoformans. Antimicrob Agents Chemother 44:1108–1111CrossRefPubMed Ernst E, Klepser ME, Pfaller MA (2000) Postantifungal effects of echinocandin, azole, and polyene antifungal agents Candida albicans and Cryptococcus neoformans. Antimicrob Agents Chemother 44:1108–1111CrossRefPubMed
48.
go back to reference Andes D, Stamsted T, Conklin R (2001) Pharmacodynamics of amphotericin B in a neutropenic-mouse disseminated-candidiasis model. Antimicrob Agents Chemother 45:922–926CrossRefPubMed Andes D, Stamsted T, Conklin R (2001) Pharmacodynamics of amphotericin B in a neutropenic-mouse disseminated-candidiasis model. Antimicrob Agents Chemother 45:922–926CrossRefPubMed
49.
go back to reference Hoffman HL, Lewis RE, Ernst EJ, et al (2000) In vivo pharmacodynamics of liposomal amphotericin B against Candida albicans in a neutropenic murine lung infection model. Pharmacotherapy 20:357–358 Hoffman HL, Lewis RE, Ernst EJ, et al (2000) In vivo pharmacodynamics of liposomal amphotericin B against Candida albicans in a neutropenic murine lung infection model. Pharmacotherapy 20:357–358
50.
go back to reference Groll AH, Giri N, Petraitis V, et al\ (2000) Comparative efficacy and distribution of lipid formulations of amphotericin B in experimental Candida albicans infection of the central nervous system. J Infect Dis 182:274–282CrossRefPubMed Groll AH, Giri N, Petraitis V, et al\ (2000) Comparative efficacy and distribution of lipid formulations of amphotericin B in experimental Candida albicans infection of the central nervous system. J Infect Dis 182:274–282CrossRefPubMed
51.
go back to reference Walsh TJ, Goodman JL, Pappas P, Bekersky I, Buell DN, Roden M, Barrett J, Anaissie EJ (2001) Safety, tolerance, and pharmacokinetics of high-dose liposomal amphotericin B (AmBisome) in patients infected with Aspergillus species and other filamentous fungi: maximum tolerated dose study. Antimicrob Agents Chemother 45:3487–3496CrossRefPubMed Walsh TJ, Goodman JL, Pappas P, Bekersky I, Buell DN, Roden M, Barrett J, Anaissie EJ (2001) Safety, tolerance, and pharmacokinetics of high-dose liposomal amphotericin B (AmBisome) in patients infected with Aspergillus species and other filamentous fungi: maximum tolerated dose study. Antimicrob Agents Chemother 45:3487–3496CrossRefPubMed
52.
go back to reference Walsh TJ, Jackson AJ, Lee JW, Amantea M, Sein T, Bacher J, Zech L (2000) Dose-dependent pharmacokinetics of amphotericin B lipid complex in rabbits. Antimicrob Agents Chemother 44:2068–2076CrossRefPubMed Walsh TJ, Jackson AJ, Lee JW, Amantea M, Sein T, Bacher J, Zech L (2000) Dose-dependent pharmacokinetics of amphotericin B lipid complex in rabbits. Antimicrob Agents Chemother 44:2068–2076CrossRefPubMed
53.
go back to reference Walsh TJ, Whitcomb T, Piscitelli S, Figg WD, Hill S, Chanock SJ, Jarosinski P, Pizzo PA (1997) Safety, tolerance, and pharmacokinetics of amphotericin B lipid complex in children with hepatosplenic candidiasis. Antimicrob Agents Chemother 41:1944–1948PubMed Walsh TJ, Whitcomb T, Piscitelli S, Figg WD, Hill S, Chanock SJ, Jarosinski P, Pizzo PA (1997) Safety, tolerance, and pharmacokinetics of amphotericin B lipid complex in children with hepatosplenic candidiasis. Antimicrob Agents Chemother 41:1944–1948PubMed
54.
go back to reference Polak A, Scholer HJ (1975) Mode of action of 5-fluorocytosine and mechanisms of resistance. Chemotherapy 21:113–130PubMed Polak A, Scholer HJ (1975) Mode of action of 5-fluorocytosine and mechanisms of resistance. Chemotherapy 21:113–130PubMed
55.
go back to reference Pfaller MA, Messer SA, Coffman S (1997) In vitro susceptibilities of clinical yeast isolates to a new echinocandin derivative, LY303366, and other antifungal agents. Antimicrob Agents Chemother 41:763–766PubMed Pfaller MA, Messer SA, Coffman S (1997) In vitro susceptibilities of clinical yeast isolates to a new echinocandin derivative, LY303366, and other antifungal agents. Antimicrob Agents Chemother 41:763–766PubMed
56.
go back to reference Hoban DJ, Zhanel GG, Karlowsky JA (1999) In vitro susceptibilities of Candida and Cryptococcus neoformans isolates from blood cultures of neutropenic patients. Antimicrob Agents Chemother 43:1463–1464PubMed Hoban DJ, Zhanel GG, Karlowsky JA (1999) In vitro susceptibilities of Candida and Cryptococcus neoformans isolates from blood cultures of neutropenic patients. Antimicrob Agents Chemother 43:1463–1464PubMed
57.
go back to reference Vermes A, Guchelaar HJ, Dankert J (2000) Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother 46:171–179PubMed Vermes A, Guchelaar HJ, Dankert J (2000) Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother 46:171–179PubMed
58.
go back to reference Brandt ME, Pfaller MA, Hajjeh RA, Hamill RJ, Pappas PG, Reingold AL, Rimland D, Warnock DW (2001) Cryptococcal Disease Active Surveillance Group. Trends in antifungal drug susceptibility of Cryptococcus neoformans isolates in the United States: 1992 to 1994 and 1996 to 1998. Antimicrob Agents Chemother 45:3065–3069CrossRefPubMed Brandt ME, Pfaller MA, Hajjeh RA, Hamill RJ, Pappas PG, Reingold AL, Rimland D, Warnock DW (2001) Cryptococcal Disease Active Surveillance Group. Trends in antifungal drug susceptibility of Cryptococcus neoformans isolates in the United States: 1992 to 1994 and 1996 to 1998. Antimicrob Agents Chemother 45:3065–3069CrossRefPubMed
59.
go back to reference Francis P, Walsh TJ (1992) Evolving role of flucytosine in immunocompromised patients: new insights into safety, pharmacokinetics, and antifungal therapy. Clin Infect Dis 15:1003–1018PubMed Francis P, Walsh TJ (1992) Evolving role of flucytosine in immunocompromised patients: new insights into safety, pharmacokinetics, and antifungal therapy. Clin Infect Dis 15:1003–1018PubMed
60.
go back to reference van der Auwera P, Ceuppens AM, Heymans C, Meunier F (1986) In vitro evaluation of various antifungal agents alone and in combination by using an automatic turbidimetric system combined with viable count determinations. Antimicrob Agents Chemother 29:997–1004PubMed van der Auwera P, Ceuppens AM, Heymans C, Meunier F (1986) In vitro evaluation of various antifungal agents alone and in combination by using an automatic turbidimetric system combined with viable count determinations. Antimicrob Agents Chemother 29:997–1004PubMed
61.
go back to reference Lewis RE, Klepser ME, Pfaller MA (2000) In vitro pharmacodynamic characteristics of flucytosine determined by time-kill methods. Diagn Microbiol Infect Dis 36:101–105CrossRefPubMed Lewis RE, Klepser ME, Pfaller MA (2000) In vitro pharmacodynamic characteristics of flucytosine determined by time-kill methods. Diagn Microbiol Infect Dis 36:101–105CrossRefPubMed
62.
go back to reference Scalarone GM, Mikami Y, Kurita N, Yazawa K, Miyaji M (1992) The postantifungal effect of 5-fluorocytosine on Candida albicans. J Antimicrob Chemother 29:129–136PubMed Scalarone GM, Mikami Y, Kurita N, Yazawa K, Miyaji M (1992) The postantifungal effect of 5-fluorocytosine on Candida albicans. J Antimicrob Chemother 29:129–136PubMed
63.
go back to reference Andes D, van Ogtrop M (2000) In vivo characterization of the pharmacodynamics of flucytosine in a neutropenic murine disseminated candidiasis model. Antimicrob Agents Chemother 44:938–942CrossRefPubMed Andes D, van Ogtrop M (2000) In vivo characterization of the pharmacodynamics of flucytosine in a neutropenic murine disseminated candidiasis model. Antimicrob Agents Chemother 44:938–942CrossRefPubMed
64.
go back to reference Grant SM, Clissold SP (1990) Fluconazole. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in superficial and systemic mycoses. Drugs 39:877–916PubMed Grant SM, Clissold SP (1990) Fluconazole. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in superficial and systemic mycoses. Drugs 39:877–916PubMed
65.
go back to reference Grant SM, Clissold SP (1989) Itraconazole. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in superficial and systemic mycoses. Drugs 37:310–344PubMed Grant SM, Clissold SP (1989) Itraconazole. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in superficial and systemic mycoses. Drugs 37:310–344PubMed
66.
go back to reference Groll AH, Gea-Banacloche JC, Glasmacher A, Just-Nuebling G, Maschmeyer G, Walsh TJ (2003) Clinical pharmacology of antifungal compounds. Infect Dis Clin North Am 17:159–191PubMed Groll AH, Gea-Banacloche JC, Glasmacher A, Just-Nuebling G, Maschmeyer G, Walsh TJ (2003) Clinical pharmacology of antifungal compounds. Infect Dis Clin North Am 17:159–191PubMed
67.
go back to reference Anaissie EJ, Kontoyiannis DP, Huls C, Vartivarian SE, Karl C, Prince RA, Bosso J, Bodey GP (1995) Safety, plasma concentrations, and efficacy of high-dose fluconazole in invasive mold infections. J Infect Dis 172:599–602PubMed Anaissie EJ, Kontoyiannis DP, Huls C, Vartivarian SE, Karl C, Prince RA, Bosso J, Bodey GP (1995) Safety, plasma concentrations, and efficacy of high-dose fluconazole in invasive mold infections. J Infect Dis 172:599–602PubMed
68.
go back to reference Hoffman HL, Ernst EJ, Klepser ME (2000) Novel triazole antifungal agents. Expert Opin Investig Drugs 9:593–605PubMed Hoffman HL, Ernst EJ, Klepser ME (2000) Novel triazole antifungal agents. Expert Opin Investig Drugs 9:593–605PubMed
69.
go back to reference Sohnle PG, Hahn BL, Erdmann MD (1996) Effect of fluconazole on viability of Candida albicans over extended periods of time. Antimicrob Agents Chemother 40:2622–2625PubMed Sohnle PG, Hahn BL, Erdmann MD (1996) Effect of fluconazole on viability of Candida albicans over extended periods of time. Antimicrob Agents Chemother 40:2622–2625PubMed
70.
go back to reference Walsh TJ, Aoki S, Mechinaud F, Bacher J, Lee J, Rubin M, Pizzo PA (1990) Effects of preventive, early, and late antifungal chemotherapy with fluconazole in different granulocytopenic models of experimental disseminated candidiasis. J Infect Dis 161:755–760PubMed Walsh TJ, Aoki S, Mechinaud F, Bacher J, Lee J, Rubin M, Pizzo PA (1990) Effects of preventive, early, and late antifungal chemotherapy with fluconazole in different granulocytopenic models of experimental disseminated candidiasis. J Infect Dis 161:755–760PubMed
71.
go back to reference Anaissie EJ, Darouiche RO, Abi-Said D et al (1996) Management of invasive Candida infections: results of a prospective, randomized, multicenter study of fluconazole versus amphotericin B and review of the literature. Clin Infect Dis 23:964–972PubMed Anaissie EJ, Darouiche RO, Abi-Said D et al (1996) Management of invasive Candida infections: results of a prospective, randomized, multicenter study of fluconazole versus amphotericin B and review of the literature. Clin Infect Dis 23:964–972PubMed
72.
go back to reference Anaissie EJ, Vartivarian SE, Abi-Said D et al (1996) Fluconazole versus amphotericin B in the treatment of hematogenous candidiasis: a matched cohort study. Am J Med 101:170–176PubMed Anaissie EJ, Vartivarian SE, Abi-Said D et al (1996) Fluconazole versus amphotericin B in the treatment of hematogenous candidiasis: a matched cohort study. Am J Med 101:170–176PubMed
73.
go back to reference Minguez F, Chiu ML, Lima JE, Nique R, Prieto J (1994) Activity of fluconazole: postantifungal effect, effects of low concentrations and of pretreatment on the susceptibility of Candida albicans to leucocytes. J Antimicrob Chemother 34:93–100 Minguez F, Chiu ML, Lima JE, Nique R, Prieto J (1994) Activity of fluconazole: postantifungal effect, effects of low concentrations and of pretreatment on the susceptibility of Candida albicans to leucocytes. J Antimicrob Chemother 34:93–100
74.
go back to reference Lewis RE, Lund BC, Klepser ME, Ernst EJ, Pfaller MA (1998) Assessment of antifungal activities of fluconazole and amphotericin B administered alone and in combination against Candida albicans by using a dynamic in vitro mycotic infection model. Antimicrob Agents Chemother 42:1382–1386PubMed Lewis RE, Lund BC, Klepser ME, Ernst EJ, Pfaller MA (1998) Assessment of antifungal activities of fluconazole and amphotericin B administered alone and in combination against Candida albicans by using a dynamic in vitro mycotic infection model. Antimicrob Agents Chemother 42:1382–1386PubMed
75.
go back to reference Louie A, Drusano GL, Banerjee P, Liu QF, Liu W, Kaw P, Shayegani M, Taber H, Miller MH (1998) Pharmacodynamics of fluconazole in a murine model of systemic candidiasis. Antimicrob Agents Chemother 42:1105–1109PubMed Louie A, Drusano GL, Banerjee P, Liu QF, Liu W, Kaw P, Shayegani M, Taber H, Miller MH (1998) Pharmacodynamics of fluconazole in a murine model of systemic candidiasis. Antimicrob Agents Chemother 42:1105–1109PubMed
76.
go back to reference Andes D, van Ogtrop M (1999) Characterization and quantitation of the pharmacodynamics of fluconazole in a neutropenic murine disseminated candidiasis infection model. Antimicrob Agents Chemother 43:2116–2120PubMed Andes D, van Ogtrop M (1999) Characterization and quantitation of the pharmacodynamics of fluconazole in a neutropenic murine disseminated candidiasis infection model. Antimicrob Agents Chemother 43:2116–2120PubMed
77.
go back to reference Manavathu EK, Cutright JL, Chandrasekar PH (1998) Organism-dependent fungicidal activities of azoles. Antimicrob Agents Chemother 42:3018–3021PubMed Manavathu EK, Cutright JL, Chandrasekar PH (1998) Organism-dependent fungicidal activities of azoles. Antimicrob Agents Chemother 42:3018–3021PubMed
78.
go back to reference Johnson EM, Szekely A, Warnock DW (1998) In vitro activity of voriconazole, itraconazole and amphotericin B against filamentous fungi. J Antimicrob Chemother 42:741–745CrossRefPubMed Johnson EM, Szekely A, Warnock DW (1998) In vitro activity of voriconazole, itraconazole and amphotericin B against filamentous fungi. J Antimicrob Chemother 42:741–745CrossRefPubMed
79.
go back to reference Fung-Tomc JC, White TC, Minassian B, Huczko E, Bonner DP (1999) In vitro antifungal activity of BMS-207147 and itraconazole against yeast strains that are non-susceptible to fluconazole. Diagn Microbiol Infect Dis 35:163–167CrossRefPubMed Fung-Tomc JC, White TC, Minassian B, Huczko E, Bonner DP (1999) In vitro antifungal activity of BMS-207147 and itraconazole against yeast strains that are non-susceptible to fluconazole. Diagn Microbiol Infect Dis 35:163–167CrossRefPubMed
80.
go back to reference Burgess DS, Hastings RW (2000) A comparison of dynamic characteristics of fluconazole, itraconazole, and amphotericin B against Cryptococcus neoformans using time-kill methodology. Diagn Microbiol Infect Dis 38:87–93CrossRefPubMed Burgess DS, Hastings RW (2000) A comparison of dynamic characteristics of fluconazole, itraconazole, and amphotericin B against Cryptococcus neoformans using time-kill methodology. Diagn Microbiol Infect Dis 38:87–93CrossRefPubMed
81.
go back to reference Burgess DS, Hastings RW, Summers KK, Hardin TC, Rinaldi MG (2000) Pharmacodynamics of fluconazole, itraconazole, and amphotericin B against Candida albicans. Diagn Microbiol Infect Dis 36:13–18CrossRefPubMed Burgess DS, Hastings RW, Summers KK, Hardin TC, Rinaldi MG (2000) Pharmacodynamics of fluconazole, itraconazole, and amphotericin B against Candida albicans. Diagn Microbiol Infect Dis 36:13–18CrossRefPubMed
82.
go back to reference Zhanel GG, Saunders DG, Hoban DJ, Karlowsky JA (1999) Amphotericin B, azole, and 5-flucytosine pharmacodynamic parameters in the presence of human serum. In: Program and abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, p 23 Zhanel GG, Saunders DG, Hoban DJ, Karlowsky JA (1999) Amphotericin B, azole, and 5-flucytosine pharmacodynamic parameters in the presence of human serum. In: Program and abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, p 23
83.
go back to reference Denning DW, Radford SA, Oakley KL, Hall L, Johnson EM, Warnock DW (1997) Correlation between in vitro susceptibility testing to itraconazole and in vivo outcome of Aspergillus fumigatus infection. J Antimicrob Chemother 40:401–414CrossRefPubMed Denning DW, Radford SA, Oakley KL, Hall L, Johnson EM, Warnock DW (1997) Correlation between in vitro susceptibility testing to itraconazole and in vivo outcome of Aspergillus fumigatus infection. J Antimicrob Chemother 40:401–414CrossRefPubMed
84.
go back to reference Berenguer J, Ali NM, Allende MC, Lee J, Garrett K, Battaglia S, Piscitelli SC, Rinaldi MG, Pizzo PA, Walsh TJ (1994) Itraconazole for experimental pulmonary aspergillosis: comparison with amphotericin B, interaction with cyclosporine A, and correlation between therapeutic response and itraconazole concentrations in plasma. Antimicrob Agents Chemother 38:1303–1308PubMed Berenguer J, Ali NM, Allende MC, Lee J, Garrett K, Battaglia S, Piscitelli SC, Rinaldi MG, Pizzo PA, Walsh TJ (1994) Itraconazole for experimental pulmonary aspergillosis: comparison with amphotericin B, interaction with cyclosporine A, and correlation between therapeutic response and itraconazole concentrations in plasma. Antimicrob Agents Chemother 38:1303–1308PubMed
85.
go back to reference Groll AH, Mickiene D, Petraitiene R, Petraitis V, Roussillion K, Hemmings M, Raskas S, Walsh TJ (2001) Dose escalation pharmacodynamic study of intravenous itraconazole in a neutropenic animal model of invasive pulmonary aspergillosis. In: Program and abstracts of the 41st Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, p 389 Groll AH, Mickiene D, Petraitiene R, Petraitis V, Roussillion K, Hemmings M, Raskas S, Walsh TJ (2001) Dose escalation pharmacodynamic study of intravenous itraconazole in a neutropenic animal model of invasive pulmonary aspergillosis. In: Program and abstracts of the 41st Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, p 389
86.
go back to reference Boogaerts MA, Verhoef GE, Zachee P, Demuynck H, Verbist L, De Beule K (1989) Antifungal prophylaxis with itraconazole in prolonged neutropenia: correlation with plasma levels. Mycoses 32 (Suppl 1):103–108PubMed Boogaerts MA, Verhoef GE, Zachee P, Demuynck H, Verbist L, De Beule K (1989) Antifungal prophylaxis with itraconazole in prolonged neutropenia: correlation with plasma levels. Mycoses 32 (Suppl 1):103–108PubMed
87.
go back to reference De Beule K (1996) Itraconazole: pharmacology, clinical experience and future development. Int J Antimicrobial Agents 6:175–181CrossRef De Beule K (1996) Itraconazole: pharmacology, clinical experience and future development. Int J Antimicrobial Agents 6:175–181CrossRef
88.
go back to reference Glasmacher A, Hahn C, Molitor E, Sauerbruch T, Marklein G, Schmidt-Wolf IGH (2000) Definition of itraconazole target concentration for antifungal prophylaxis. In: Programs and abstracts of the 40th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, p 363 Glasmacher A, Hahn C, Molitor E, Sauerbruch T, Marklein G, Schmidt-Wolf IGH (2000) Definition of itraconazole target concentration for antifungal prophylaxis. In: Programs and abstracts of the 40th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, p 363
89.
go back to reference Groll AH, Mickiene D, McEvoy M, Dad L, Townley E, Piscitelli S, Wood L, Walsh TJ (2002) Safety, pharmacokinetics and pharmacodynamics of cyclodextrin itraconazole in pediatric patients with oropharyngeal candidiasis. Antimicrob Agents Chemother 46:2554–2563CrossRefPubMed Groll AH, Mickiene D, McEvoy M, Dad L, Townley E, Piscitelli S, Wood L, Walsh TJ (2002) Safety, pharmacokinetics and pharmacodynamics of cyclodextrin itraconazole in pediatric patients with oropharyngeal candidiasis. Antimicrob Agents Chemother 46:2554–2563CrossRefPubMed
90.
go back to reference Clancy CJ, Nguyen MH (1998) In vitro efficacy and fungicidal activity of voriconazole against Aspergillus and Fusarium species. Eur J Clin Microbiol Infect Dis 17:573–575CrossRefPubMed Clancy CJ, Nguyen MH (1998) In vitro efficacy and fungicidal activity of voriconazole against Aspergillus and Fusarium species. Eur J Clin Microbiol Infect Dis 17:573–575CrossRefPubMed
91.
go back to reference Klepser ME, Malone D, Lewis RE, Ernst EJ, Pfaller MA (2000) Evaluation of voriconazole pharmacodynamics using time-kill methodology. Antimicrob Agents Chemother 44:1917–1920CrossRefPubMed Klepser ME, Malone D, Lewis RE, Ernst EJ, Pfaller MA (2000) Evaluation of voriconazole pharmacodynamics using time-kill methodology. Antimicrob Agents Chemother 44:1917–1920CrossRefPubMed
92.
go back to reference Garcia MT, Llorente MT, Lima JE, Minguez F, Del Moral F, Prieto J (1999) Activity of voriconazole: post-antifungal effect, effects of low concentrations and of pretreatment on the susceptibility of Candida albicans to leucocytes. Scand J Infect Dis 31:501–504CrossRefPubMed Garcia MT, Llorente MT, Lima JE, Minguez F, Del Moral F, Prieto J (1999) Activity of voriconazole: post-antifungal effect, effects of low concentrations and of pretreatment on the susceptibility of Candida albicans to leucocytes. Scand J Infect Dis 31:501–504CrossRefPubMed
93.
go back to reference Andes D, Marchillo K, Stamstad T, Conklin R (2003) In vivo pharmacokinetics and pharmacodynamics of a new triazole, voriconazole, in a murine candidiasis model. Antimicrob Agents Chemother 47:3165–3169CrossRefPubMed Andes D, Marchillo K, Stamstad T, Conklin R (2003) In vivo pharmacokinetics and pharmacodynamics of a new triazole, voriconazole, in a murine candidiasis model. Antimicrob Agents Chemother 47:3165–3169CrossRefPubMed
94.
go back to reference Pfaller MA, Messer SA, Hollis RJ, Jones RN, Doern GV, Brandt ME, Hajjeh RA (1998) In vitro susceptibilities of Candida bloodstream isolates to the new triazole antifungal agents BMS-207147, Sch 56592, and voriconazole. Antimicrob Agents Chemother 42:3242–3244PubMed Pfaller MA, Messer SA, Hollis RJ, Jones RN, Doern GV, Brandt ME, Hajjeh RA (1998) In vitro susceptibilities of Candida bloodstream isolates to the new triazole antifungal agents BMS-207147, Sch 56592, and voriconazole. Antimicrob Agents Chemother 42:3242–3244PubMed
95.
go back to reference Pfaller MA, Messer SA, Hollis RJ, Jones RN, and the SENTRY Participants Group (2002) Antifungal activities of posaconazole, ravuconazole, and voriconazole compared to those of itraconazole and amphotericin B against 239 clinical isolates of Aspergillus species and other filamentous fungi: report from SENTRY Antimicrobial Surveillance Program, 2000. Antimicrob Agents Chemother 46:1032–1037 Pfaller MA, Messer SA, Hollis RJ, Jones RN, and the SENTRY Participants Group (2002) Antifungal activities of posaconazole, ravuconazole, and voriconazole compared to those of itraconazole and amphotericin B against 239 clinical isolates of Aspergillus species and other filamentous fungi: report from SENTRY Antimicrobial Surveillance Program, 2000. Antimicrob Agents Chemother 46:1032–1037
96.
go back to reference Krieter P, Flannery B, Musick T, Courtney R, Patrick J, Laughlin M (2002) Pharmacokinetics and excretion of 14c posaconazole following oral administration in healthy male subjects. In: Program and abstracts of the 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, p 20 Krieter P, Flannery B, Musick T, Courtney R, Patrick J, Laughlin M (2002) Pharmacokinetics and excretion of 14c posaconazole following oral administration in healthy male subjects. In: Program and abstracts of the 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, p 20
97.
go back to reference Wexler D, Laughlin M, Lim J, Courtney R, Batra V (2002) Effect of posaconazole on drug metabolizing enzymes. In: Program and abstracts of the 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, p 30 Wexler D, Laughlin M, Lim J, Courtney R, Batra V (2002) Effect of posaconazole on drug metabolizing enzymes. In: Program and abstracts of the 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, p 30
98.
go back to reference Olsen SJ, Mummaneni V, Rolan P, Norton J, Grasela DM (2000) Ravuconazole: single ascending oral dose study in healthy subjects. In: Program and abstracts of the 40th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, p 22 Olsen SJ, Mummaneni V, Rolan P, Norton J, Grasela DM (2000) Ravuconazole: single ascending oral dose study in healthy subjects. In: Program and abstracts of the 40th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, p 22
99.
go back to reference Grasela DM, Olsen SJ, Rolan P, Mummaneni V, Birkhofer MJ, Christopher L, Norton J, Grasela DM, Hadjilambris OH, Marino MR (2000) Ravuconazole: multiple ascending oral dose study in healthy subjects. In: Program and abstracts of the 40th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, p 22 Grasela DM, Olsen SJ, Rolan P, Mummaneni V, Birkhofer MJ, Christopher L, Norton J, Grasela DM, Hadjilambris OH, Marino MR (2000) Ravuconazole: multiple ascending oral dose study in healthy subjects. In: Program and abstracts of the 40th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, p 22
100.
go back to reference Fung-Tomc JC, Huczko E, Minassian B, Bonner DP (1998) In vitro activity of a new oral triazole, BMS-207147 (ER-30346). Antimicrob Agents Chemother 42:313–318PubMed Fung-Tomc JC, Huczko E, Minassian B, Bonner DP (1998) In vitro activity of a new oral triazole, BMS-207147 (ER-30346). Antimicrob Agents Chemother 42:313–318PubMed
101.
go back to reference Espinel-Ingroff A (1998) Comparison of in vitro activities of the new triazole SCH56592 and the echinocandins MK-0991 (L-743,872) and LY303366 against opportunistic filamentous and dimorphic fungi and yeasts. J Clin Microbiol 36:2950–2956PubMed Espinel-Ingroff A (1998) Comparison of in vitro activities of the new triazole SCH56592 and the echinocandins MK-0991 (L-743,872) and LY303366 against opportunistic filamentous and dimorphic fungi and yeasts. J Clin Microbiol 36:2950–2956PubMed
102.
go back to reference Groll AH, Mickiene D, Petraitiene R, Petraitis V, Sein T, Piscitelli SC, Walsh TJ. (2000) Pharmacokinetics and pharmacodynamics of posaconazole (SCH 56592) in a neutropenic animal model of invasive pulmonary aspergillosis. In: Program and abstracts of the 40th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, p 385 Groll AH, Mickiene D, Petraitiene R, Petraitis V, Sein T, Piscitelli SC, Walsh TJ. (2000) Pharmacokinetics and pharmacodynamics of posaconazole (SCH 56592) in a neutropenic animal model of invasive pulmonary aspergillosis. In: Program and abstracts of the 40th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, p 385
103.
go back to reference Andes D, Marchillo K, Stamstad T, Conklin R (2003) In vivo pharmacodynamics of a new triazole, ravuconazole, in a murine candidiasis model. Antimicrob Agents Chemother 47:1193–1199CrossRefPubMed Andes D, Marchillo K, Stamstad T, Conklin R (2003) In vivo pharmacodynamics of a new triazole, ravuconazole, in a murine candidiasis model. Antimicrob Agents Chemother 47:1193–1199CrossRefPubMed
104.
go back to reference Hector RF (1993) Compounds active against cell walls of medically important fungi. Clin Microbiol Rev 6:1–21PubMed Hector RF (1993) Compounds active against cell walls of medically important fungi. Clin Microbiol Rev 6:1–21PubMed
105.
go back to reference Debono M, Gordee RS (1994) Antibiotics that inhibit fungal cell wall development. Ann Rev Microbiol 48:471–497CrossRef Debono M, Gordee RS (1994) Antibiotics that inhibit fungal cell wall development. Ann Rev Microbiol 48:471–497CrossRef
106.
go back to reference Denning DW (2002) Echinocandins: a new class of antifungal agents. J Antimicrob Chemother 49:889–891CrossRefPubMed Denning DW (2002) Echinocandins: a new class of antifungal agents. J Antimicrob Chemother 49:889–891CrossRefPubMed
107.
go back to reference Georgopapadakou NH (2001) Update on antifungals targeted to the cell wall: focus on beta-1,3-glucan synthase inhibitors. Expert Opin Investig Drugs 10:269–280PubMed Georgopapadakou NH (2001) Update on antifungals targeted to the cell wall: focus on beta-1,3-glucan synthase inhibitors. Expert Opin Investig Drugs 10:269–280PubMed
108.
go back to reference Tang J, Parr TR, Turner W, Debono M, Lagrandeur L, Burkhard F, Rodriguez M, Zweifel M, Nissen J, Clingerman K (1993) LY-303366: a non-competitive inhibitor of (1,3)-b-D glucan synthases from Candida albicans and Aspergillus fumigatus. In: Program and abstracts of the 33rd Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, Abstract no. 367 Tang J, Parr TR, Turner W, Debono M, Lagrandeur L, Burkhard F, Rodriguez M, Zweifel M, Nissen J, Clingerman K (1993) LY-303366: a non-competitive inhibitor of (1,3)-b-D glucan synthases from Candida albicans and Aspergillus fumigatus. In: Program and abstracts of the 33rd Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, Abstract no. 367
109.
go back to reference Maki K, Morishita Y, Iguchi Y, Watabe E, Otomo K, Teratani M, Watanabe Y, Ikeda F, Tawara S, Goto T, Tomishima M (1998) In vitro antifungal activity of FK463, a novel water-soluble echinocandin-like lipopeptide. In: Program and abstracts of the 38th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, Abstract no. F141 Maki K, Morishita Y, Iguchi Y, Watabe E, Otomo K, Teratani M, Watanabe Y, Ikeda F, Tawara S, Goto T, Tomishima M (1998) In vitro antifungal activity of FK463, a novel water-soluble echinocandin-like lipopeptide. In: Program and abstracts of the 38th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, Abstract no. F141
110.
go back to reference Kurtz MB, Heath IB, Marrinan J, Dreikorn S, Onishi J, Douglas C (1994) Morphological effects of lipopeptides against Aspergillus fumigatus correlate with activities against (1,3)-beta-D-glucan synthase. Antimicrob Agents Chemother 38:1480–1489PubMed Kurtz MB, Heath IB, Marrinan J, Dreikorn S, Onishi J, Douglas C (1994) Morphological effects of lipopeptides against Aspergillus fumigatus correlate with activities against (1,3)-beta-D-glucan synthase. Antimicrob Agents Chemother 38:1480–1489PubMed
111.
go back to reference Oakley KL, Moore CB, Denning DW (1998) In vitro activity of the echinocandin antifungal agent LY303,366 in comparison with itraconazole and amphotericin B against Aspergillus species. Antimicrob Agents Chemother 42:2726–2730PubMed Oakley KL, Moore CB, Denning DW (1998) In vitro activity of the echinocandin antifungal agent LY303,366 in comparison with itraconazole and amphotericin B against Aspergillus species. Antimicrob Agents Chemother 42:2726–2730PubMed
112.
go back to reference Rennie R, Sand C, Sherburne R (1997) Electron microscopic evidence of the effect of LY303366 on Aspergillus fumigatus. In: Abstracts of the 13th Meeting of the International Society for Human and Animal Mycology, Abstract no. P451 Rennie R, Sand C, Sherburne R (1997) Electron microscopic evidence of the effect of LY303366 on Aspergillus fumigatus. In: Abstracts of the 13th Meeting of the International Society for Human and Animal Mycology, Abstract no. P451
113.
go back to reference Bowman JC, Hicks PS, Kurtz MB, Rosen H, Schmatz DM, Liberator PA, Douglas CM (2002) The antifungal echinocandin caspofungin acetate kills growing cells of Aspergillus fumigatus in vitro. Antimicrob Agents Chemother 46:3001–3012CrossRefPubMed Bowman JC, Hicks PS, Kurtz MB, Rosen H, Schmatz DM, Liberator PA, Douglas CM (2002) The antifungal echinocandin caspofungin acetate kills growing cells of Aspergillus fumigatus in vitro. Antimicrob Agents Chemother 46:3001–3012CrossRefPubMed
114.
go back to reference Petraitiene R, Petraitis V, Groll AH, Candelario M, Sein T, Bell A, Lyman CA, McMillian CL, Bacher J, Walsh TJ (1999) Antifungal activity of LY303366, a novel echinocandin B, in experimental disseminated candidiasis in rabbits. Antimicrob Agents Chemother 43:2148–2155PubMed Petraitiene R, Petraitis V, Groll AH, Candelario M, Sein T, Bell A, Lyman CA, McMillian CL, Bacher J, Walsh TJ (1999) Antifungal activity of LY303366, a novel echinocandin B, in experimental disseminated candidiasis in rabbits. Antimicrob Agents Chemother 43:2148–2155PubMed
115.
go back to reference Petraitis V, Petraitiene R, Groll AH, Roussillon K, Hemmings M, Lyman CA, Sein T, Bacher J, Bekersky I, Walsh TJ (2002) Comparative antifungal activities and plasma pharmacokinetics of micafungin (FK463) against disseminated candidiasis and invasive pulmonary aspergillosis in persistently neutropenic rabbits. Antimicrob Agents Chemother 46:1857–1869CrossRefPubMed Petraitis V, Petraitiene R, Groll AH, Roussillon K, Hemmings M, Lyman CA, Sein T, Bacher J, Bekersky I, Walsh TJ (2002) Comparative antifungal activities and plasma pharmacokinetics of micafungin (FK463) against disseminated candidiasis and invasive pulmonary aspergillosis in persistently neutropenic rabbits. Antimicrob Agents Chemother 46:1857–1869CrossRefPubMed
116.
go back to reference Petraitis V, Petraitiene R, Groll AH, Bell A, Callender DP, Sein T, Schaufele RL, McMillian CL, Bacher J, Walsh TJ (1998) Antifungal efficacy, safety, and single-dose pharmacokinetics of LY303366, a novel echinocandin B, in experimental pulmonary aspergillosis in persistently neutropenic rabbits. Antimicrob Agents Chemother 42:2898–2905 Petraitis V, Petraitiene R, Groll AH, Bell A, Callender DP, Sein T, Schaufele RL, McMillian CL, Bacher J, Walsh TJ (1998) Antifungal efficacy, safety, and single-dose pharmacokinetics of LY303366, a novel echinocandin B, in experimental pulmonary aspergillosis in persistently neutropenic rabbits. Antimicrob Agents Chemother 42:2898–2905
117.
go back to reference Petraitiene R, Petraitis V, Groll AH, Sein T, Schaufele RL, Francesconi A, Bacher J, Avila NA, Walsh TJ (2002) Antifungal efficacy of caspofungin (MK-0991) in experimental pulmonary aspergillosis in persistently neutropenic rabbits: pharmacokinetics, drug disposition, and relationship to galactomannan antigenemia. Antimicrob Agents Chemother 46:12–23CrossRefPubMed Petraitiene R, Petraitis V, Groll AH, Sein T, Schaufele RL, Francesconi A, Bacher J, Avila NA, Walsh TJ (2002) Antifungal efficacy of caspofungin (MK-0991) in experimental pulmonary aspergillosis in persistently neutropenic rabbits: pharmacokinetics, drug disposition, and relationship to galactomannan antigenemia. Antimicrob Agents Chemother 46:12–23CrossRefPubMed
118.
go back to reference Ernst EJ, Klepser ME, Ernst ME, Messer SA, Pfaller MA (1999) In vitro pharmacodynamic properties of MK-0991 determined by time-kill methods. Diagn Microbiol Infect Dis 33:75–80CrossRefPubMed Ernst EJ, Klepser ME, Ernst ME, Messer SA, Pfaller MA (1999) In vitro pharmacodynamic properties of MK-0991 determined by time-kill methods. Diagn Microbiol Infect Dis 33:75–80CrossRefPubMed
119.
go back to reference Klepser ME, Ernst EJ, Ernst ME, Pfaller MA (1997) Growth medium effect on the antifungal activity of LY303366. Diagn Microbiol Infect Dis 29:227–231CrossRefPubMed Klepser ME, Ernst EJ, Ernst ME, Pfaller MA (1997) Growth medium effect on the antifungal activity of LY303366. Diagn Microbiol Infect Dis 29:227–231CrossRefPubMed
120.
go back to reference Green LJ, Marder P, Mann LL, Chio LC, Current WL (1999) LY303366 exhibits rapid and potent fungicidal activity in flow cytometric assays of yeast viability. Antimicrob Agents Chemother 43:830–835PubMed Green LJ, Marder P, Mann LL, Chio LC, Current WL (1999) LY303366 exhibits rapid and potent fungicidal activity in flow cytometric assays of yeast viability. Antimicrob Agents Chemother 43:830–835PubMed
121.
go back to reference Zhanel G, Zelenitsky S, Laing N, Balko T, Karlowsky J, Hoban D (1998) Correlation between LY303366 area under the concentration curve (AUC) and regrowth of fluconazole sensitive (flu-s) and fluconazole-resistant (flu-r) Candida albicans, using an in vitro pharmacodynamic model. In: Program and abstracts of the 38th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, Abstract no. J-14 Zhanel G, Zelenitsky S, Laing N, Balko T, Karlowsky J, Hoban D (1998) Correlation between LY303366 area under the concentration curve (AUC) and regrowth of fluconazole sensitive (flu-s) and fluconazole-resistant (flu-r) Candida albicans, using an in vitro pharmacodynamic model. In: Program and abstracts of the 38th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, Abstract no. J-14
122.
go back to reference Groll AH, Mickiene D, Petraitiene R, Petraitis V, Lyman CA, Bacher JS, Piscitelli SC, Walsh TJ (2001) Pharmacokinetic and pharmacodynamic modeling of anidulafungin (LY303366): reappraisal of its efficacy in neutropenic animal models of opportunistic mycoses using optimal plasma sampling. Antimicrob Agents Chemother 45:2845–2855CrossRefPubMed Groll AH, Mickiene D, Petraitiene R, Petraitis V, Lyman CA, Bacher JS, Piscitelli SC, Walsh TJ (2001) Pharmacokinetic and pharmacodynamic modeling of anidulafungin (LY303366): reappraisal of its efficacy in neutropenic animal models of opportunistic mycoses using optimal plasma sampling. Antimicrob Agents Chemother 45:2845–2855CrossRefPubMed
123.
go back to reference Matsumoto S, Warabe E, Wakai Y, Koide Y, Ushitani T, Teratani N, Ohtomo K, Hatano K, Ikeda F, Goto T, Matsumoto F, Kuwahara S (2000) Pharmacodynamics of FK463 in a thigh infection model with Candida albicans. In: Program and abstracts of the 40th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, Abstract no. 1687 Matsumoto S, Warabe E, Wakai Y, Koide Y, Ushitani T, Teratani N, Ohtomo K, Hatano K, Ikeda F, Goto T, Matsumoto F, Kuwahara S (2000) Pharmacodynamics of FK463 in a thigh infection model with Candida albicans. In: Program and abstracts of the 40th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, Abstract no. 1687
124.
go back to reference Louie A, Deziel M, Liu W, Drusano M, Gumbo T, Drusano GL (2003) AUC/MIC is the pharmacodynamic variable for caspofungin as determined in a non-neutropenic mouse model of candidiasis. In: Program and abstracts of the 43rd International Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, Abstract no. A-1572 Louie A, Deziel M, Liu W, Drusano M, Gumbo T, Drusano GL (2003) AUC/MIC is the pharmacodynamic variable for caspofungin as determined in a non-neutropenic mouse model of candidiasis. In: Program and abstracts of the 43rd International Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington DC, Abstract no. A-1572
125.
go back to reference Andes D, Marchillo K, Lowther J, Bryskier A, Stamstad T, Conklin R (2003) In vivo pharmacodynamics of HMR 3270, a glucan synthase inhibitor, in a murine candidiasis model. Antimicrob Agents Chemother 47:1187–1192CrossRefPubMed Andes D, Marchillo K, Lowther J, Bryskier A, Stamstad T, Conklin R (2003) In vivo pharmacodynamics of HMR 3270, a glucan synthase inhibitor, in a murine candidiasis model. Antimicrob Agents Chemother 47:1187–1192CrossRefPubMed
126.
go back to reference Lewis RE, Kontoyiannis DP (2001) Rationale for combination antifungal therapy. Pharmacotherapy 21 (Suppl):149–164PubMed Lewis RE, Kontoyiannis DP (2001) Rationale for combination antifungal therapy. Pharmacotherapy 21 (Suppl):149–164PubMed
127.
go back to reference Sugar AM (2001) Antifungal combination therapy. Curr Opin Invest Drugs 2:1364–1365 Sugar AM (2001) Antifungal combination therapy. Curr Opin Invest Drugs 2:1364–1365
128.
go back to reference Medoff G, Comfort M, Kobayashi GS (1971) Synergistic action of amphotericin B and 5-fluorocytosine against yeast-like organisms. Proc Soc Exp Biol Med 138:571–574PubMed Medoff G, Comfort M, Kobayashi GS (1971) Synergistic action of amphotericin B and 5-fluorocytosine against yeast-like organisms. Proc Soc Exp Biol Med 138:571–574PubMed
129.
go back to reference Bennett JE, Dismukes WE, Haywood M, Duma R, Medoff G (1979) A comparison of amphotericin B alone and in combination with flucytosine in the treatment of cryptococcal meningitis. N Engl J Med 301:126-131PubMed Bennett JE, Dismukes WE, Haywood M, Duma R, Medoff G (1979) A comparison of amphotericin B alone and in combination with flucytosine in the treatment of cryptococcal meningitis. N Engl J Med 301:126-131PubMed
130.
go back to reference van der Horst CM, Saag MS, Cloud GA, et al (1997) Treatment of cryptococcal meningitis associated with the acquired immunodeficiency syndrome. N Engl J Med 337:15–21CrossRef van der Horst CM, Saag MS, Cloud GA, et al (1997) Treatment of cryptococcal meningitis associated with the acquired immunodeficiency syndrome. N Engl J Med 337:15–21CrossRef
131.
go back to reference Schaffner A, Bohler A (1993) Amphotericin B refractory aspergillosis after itraconazole: evidence for significant antagonism. Mycoses 36:421–424PubMed Schaffner A, Bohler A (1993) Amphotericin B refractory aspergillosis after itraconazole: evidence for significant antagonism. Mycoses 36:421–424PubMed
132.
go back to reference Sugar AM, Hitchcock CA, Troke PF, Picard M (1995) Combination therapy of murine invasive candidiasis with fluconazole and amphotericin B. Antimicrob Agents Chemother 39:598–601PubMed Sugar AM, Hitchcock CA, Troke PF, Picard M (1995) Combination therapy of murine invasive candidiasis with fluconazole and amphotericin B. Antimicrob Agents Chemother 39:598–601PubMed
133.
go back to reference Sugar AM, Liu XP (1998) Interactions of itraconazole with amphotericin B in the treatment of murine invasive candidiasis. J Infect Dis 177:1660–1663PubMed Sugar AM, Liu XP (1998) Interactions of itraconazole with amphotericin B in the treatment of murine invasive candidiasis. J Infect Dis 177:1660–1663PubMed
134.
go back to reference Rex JH, Pappas PG, Karchmer AW, Sobel J, Edwards JE, Hadley S, Brass C, Vazquez JA, et al, the National Institute of Allergy and Infectious Diseases Mycoses Study Group (2003) A randomized and blinded multicenter trial of high-dose fluconazole plus placebo versus fluconazole plus amphotericin B as therapy for candidemia and its consequences in nonneutropenic subjects. Clin Infect Dis 36:1221–1228CrossRefPubMed Rex JH, Pappas PG, Karchmer AW, Sobel J, Edwards JE, Hadley S, Brass C, Vazquez JA, et al, the National Institute of Allergy and Infectious Diseases Mycoses Study Group (2003) A randomized and blinded multicenter trial of high-dose fluconazole plus placebo versus fluconazole plus amphotericin B as therapy for candidemia and its consequences in nonneutropenic subjects. Clin Infect Dis 36:1221–1228CrossRefPubMed
135.
go back to reference Groll AH, Walsh TJ (2001) Caspofungin: pharmacology, safety and therapeutic potential in superficial and invasive fungal infections. Expert Opin Invest Drugs 10:1545–1558 Groll AH, Walsh TJ (2001) Caspofungin: pharmacology, safety and therapeutic potential in superficial and invasive fungal infections. Expert Opin Invest Drugs 10:1545–1558
136.
go back to reference Groll AH, Walsh TJ (2000) FK-463. Curr Opin Anti-Infect Invest Drugs 2:405–412 Groll AH, Walsh TJ (2000) FK-463. Curr Opin Anti-Infect Invest Drugs 2:405–412
137.
go back to reference Kirkpatrick WR, Perea S, Coco BJ, Patterson TF (2002) Efficacy of caspofungin alone and in combination with voriconazole in a guinea pig model of invasive aspergillosis. Antimicrob Agents Chemother 46:2564–2568CrossRefPubMed Kirkpatrick WR, Perea S, Coco BJ, Patterson TF (2002) Efficacy of caspofungin alone and in combination with voriconazole in a guinea pig model of invasive aspergillosis. Antimicrob Agents Chemother 46:2564–2568CrossRefPubMed
138.
go back to reference Petraitis V, Petraitiene R, Sarafandi AA, Kelaher AM, Lyman CA, Casler HE, Sein T, Groll AH, Bacher J, Avila NA, Walsh TJ (2003) Combination therapy in treatment of experimental pulmonary aspergillosis: synergistic interaction between an antifungal triazole and an echinocandin. J Infect Dis 187:1834–1843 Petraitis V, Petraitiene R, Sarafandi AA, Kelaher AM, Lyman CA, Casler HE, Sein T, Groll AH, Bacher J, Avila NA, Walsh TJ (2003) Combination therapy in treatment of experimental pulmonary aspergillosis: synergistic interaction between an antifungal triazole and an echinocandin. J Infect Dis 187:1834–1843
139.
go back to reference Rubin MA, Carroll KC, Cahill BC (2002) Caspofungin in combination with itraconazole for the treatment of invasive aspergillosis in humans. Clin Infect Dis 34:1160–1161 Rubin MA, Carroll KC, Cahill BC (2002) Caspofungin in combination with itraconazole for the treatment of invasive aspergillosis in humans. Clin Infect Dis 34:1160–1161
140.
go back to reference Aliff TB, Maslak PG, Jurcic JG, Heaney ML, Cathcart KN, Sepkowitz KA, Weiss MA (2003) Refractory Aspergillus pneumonia in patients with acute leukemia: successful therapy with combination caspofungin and liposomal amphotericin. Cancer 97:1025–1032CrossRefPubMed Aliff TB, Maslak PG, Jurcic JG, Heaney ML, Cathcart KN, Sepkowitz KA, Weiss MA (2003) Refractory Aspergillus pneumonia in patients with acute leukemia: successful therapy with combination caspofungin and liposomal amphotericin. Cancer 97:1025–1032CrossRefPubMed
141.
go back to reference Wheat LJ (2003) Combination therapy for aspergillosis: is it needed, and which combination? J Infect Dis 187:1831–1833CrossRefPubMed Wheat LJ (2003) Combination therapy for aspergillosis: is it needed, and which combination? J Infect Dis 187:1831–1833CrossRefPubMed
142.
go back to reference Groll AH, De Lucca AJ, Walsh TJ (1998) Emerging targets for the development of novel antifungal therapeutics. Trends Microbiol 6:117–124CrossRefPubMed Groll AH, De Lucca AJ, Walsh TJ (1998) Emerging targets for the development of novel antifungal therapeutics. Trends Microbiol 6:117–124CrossRefPubMed
Metadata
Title
Antifungal Agents: In Vitro Susceptibility Testing, Pharmacodynamics, and Prospects for Combination Therapy
Authors
A. H. Groll
H. Kolve
Publication date
01-04-2004
Publisher
Springer-Verlag
Published in
European Journal of Clinical Microbiology & Infectious Diseases / Issue 4/2004
Print ISSN: 0934-9723
Electronic ISSN: 1435-4373
DOI
https://doi.org/10.1007/s10096-004-1108-6

Other articles of this Issue 4/2004

European Journal of Clinical Microbiology & Infectious Diseases 4/2004 Go to the issue

Announcements

April 2004

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine