Skip to main content
Top
Published in: neurogenetics 3/2008

01-07-2008 | Original Article

Heterogeneous dysregulation of microRNAs across the autism spectrum

Authors: Kawther Abu-Elneel, Tsunglin Liu, Francesca S. Gazzaniga, Yuhei Nishimura, Dennis P. Wall, Daniel H. Geschwind, Kaiqin Lao, Kenneth S. Kosik

Published in: Neurogenetics | Issue 3/2008

Login to get access

Abstract

microRNAs (miRNAs) are ~21 nt transcripts capable of regulating the expression of many mRNAs and are abundant in the brain. miRNAs have a role in several complex diseases including cancer as well as some neurological diseases such as Tourette’s syndrome and Fragile x syndrome. As a genetically complex disease, dysregulation of miRNA expression might be a feature of autism spectrum disorders (ASDs). Using multiplex quantitative polymerase chain reaction (PCR), we compared the expression of 466 human miRNAs from postmortem cerebellar cortex tissue of individuals with ASD (n = 13) and a control set of non-autistic cerebellar samples (n = 13). While most miRNAs levels showed little variation across all samples suggesting that autism does not induce global dysfunction of miRNA expression, some miRNAs among the autistic samples were expressed at significantly different levels compared to the mean control value. Twenty-eight miRNAs were expressed at significantly different levels compared to the non-autism control set in at least one of the autism samples. To validate the finding, we reversed the analysis and compared each non-autism control to a single mean value for each miRNA across all autism cases. In this analysis, the number of dysregulated miRNAs fell from 28 to 9 miRNAs. Among the predicted targets of dysregulated miRNAs are genes that are known genetic causes of autism such Neurexin and SHANK3. This study finds that altered miRNA expression levels are observed in postmortem cerebellar cortex from autism patients, a finding which suggests that dysregulation of miRNAs may contribute to autism spectrum phenotype.
Appendix
Available only for authorised users
Literature
1.
go back to reference Centers for disease control (2007) Prevalence of autism spectrum disorders–autism and developmental disabilities monitoring network, 14 sites, United States, 2002. MMWR Surveill Summ 56(1):12–28 Centers for disease control (2007) Prevalence of autism spectrum disorders–autism and developmental disabilities monitoring network, 14 sites, United States, 2002. MMWR Surveill Summ 56(1):12–28
2.
go back to reference Comoletti D, De Jaco A, Jennings LL, Flynn RE, Gaietta G, Tsigelny I, Ellisman MH, Taylor P (2004) The Arg451Cys-neuroligin-3 mutation associated with autism reveals a defect in protein processing. J Neurosci 24(20):4889–4893CrossRefPubMed Comoletti D, De Jaco A, Jennings LL, Flynn RE, Gaietta G, Tsigelny I, Ellisman MH, Taylor P (2004) The Arg451Cys-neuroligin-3 mutation associated with autism reveals a defect in protein processing. J Neurosci 24(20):4889–4893CrossRefPubMed
3.
go back to reference Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg IC, Anckarsater H et al (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39(1):25–27CrossRefPubMed Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg IC, Anckarsater H et al (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39(1):25–27CrossRefPubMed
4.
go back to reference Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC, Soderstrom H, Giros B, Leboyer M, Gillberg C et al (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34(1):27–29CrossRefPubMedPubMedCentral Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC, Soderstrom H, Giros B, Leboyer M, Gillberg C et al (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34(1):27–29CrossRefPubMedPubMedCentral
5.
go back to reference Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A, Moizard MP, Raynaud M, Ronce N, Lemonnier E, Calvas P et al (2004) X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet 74(3):552–557CrossRefPubMedPubMedCentral Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A, Moizard MP, Raynaud M, Ronce N, Lemonnier E, Calvas P et al (2004) X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet 74(3):552–557CrossRefPubMedPubMedCentral
6.
go back to reference Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, Zwaigenbaum L, Fernandez B, Roberts W, Szatmari P et al (2007) Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet 81(6):1289–1297CrossRefPubMedPubMedCentral Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, Zwaigenbaum L, Fernandez B, Roberts W, Szatmari P et al (2007) Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet 81(6):1289–1297CrossRefPubMedPubMedCentral
7.
go back to reference Strauss KA, Puffenberger EG, Huentelman MJ, Gottlieb S, Dobrin SE, Parod JM, Stephan DA, Morton DH (2006) Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N Engl J Med 354(13):1370–1377CrossRefPubMed Strauss KA, Puffenberger EG, Huentelman MJ, Gottlieb S, Dobrin SE, Parod JM, Stephan DA, Morton DH (2006) Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N Engl J Med 354(13):1370–1377CrossRefPubMed
8.
go back to reference Gupta AR, State MW (2007) Recent advances in the genetics of autism. Biol Psychiatry 61(4):429–437CrossRefPubMed Gupta AR, State MW (2007) Recent advances in the genetics of autism. Biol Psychiatry 61(4):429–437CrossRefPubMed
10.
go back to reference Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J, Liu XQ, Vincent JB, Skaug JL, Thompson AP, Senman L et al (2007) Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 39(3):319–328CrossRefPubMedPubMedCentral Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J, Liu XQ, Vincent JB, Skaug JL, Thompson AP, Senman L et al (2007) Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 39(3):319–328CrossRefPubMedPubMedCentral
11.
go back to reference Yang MS, Gill M (2007) A review of gene linkage, association and expression studies in autism and an assessment of convergent evidence. Int J Dev Neurosci 25(2):69–85CrossRefPubMed Yang MS, Gill M (2007) A review of gene linkage, association and expression studies in autism and an assessment of convergent evidence. Int J Dev Neurosci 25(2):69–85CrossRefPubMed
12.
go back to reference Vorstman JA, Staal WG, van Daalen E, van Engeland H, Hochstenbach PF, Franke L (2006) Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Mol Psychiatry 11(1):1, 18–28 Vorstman JA, Staal WG, van Daalen E, van Engeland H, Hochstenbach PF, Franke L (2006) Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Mol Psychiatry 11(1):1, 18–28
13.
go back to reference Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, Shago M, Moessner R, Pinto D, Ren Y et al (2008) Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 82(2):477–488CrossRefPubMedPubMedCentral Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, Shago M, Moessner R, Pinto D, Ren Y et al (2008) Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 82(2):477–488CrossRefPubMedPubMedCentral
14.
go back to reference Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A, Kendall J et al (2007) Strong association of de novo copy number mutations with autism. Science 316(5823):445–449CrossRefPubMedPubMedCentral Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A, Kendall J et al (2007) Strong association of de novo copy number mutations with autism. Science 316(5823):445–449CrossRefPubMedPubMedCentral
15.
go back to reference Cook EH Jr., Lindgren V, Leventhal BL, Courchesne R, Lincoln A, Shulman C, Lord C, Courchesne E (1997) Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am J Hum Genet 60(4):928–934PubMedPubMedCentral Cook EH Jr., Lindgren V, Leventhal BL, Courchesne R, Lincoln A, Shulman C, Lord C, Courchesne E (1997) Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am J Hum Genet 60(4):928–934PubMedPubMedCentral
16.
go back to reference Percy AK, Lane JB (2004) Rett syndrome: clinical and molecular update. Curr Opin Pediatr 16(6):670–677CrossRefPubMed Percy AK, Lane JB (2004) Rett syndrome: clinical and molecular update. Curr Opin Pediatr 16(6):670–677CrossRefPubMed
17.
go back to reference Bolton PF, Griffiths PD (1997) Association of tuberous sclerosis of temporal lobes with autism and atypical autism. Lancet 349(9049):392–395CrossRefPubMed Bolton PF, Griffiths PD (1997) Association of tuberous sclerosis of temporal lobes with autism and atypical autism. Lancet 349(9049):392–395CrossRefPubMed
18.
go back to reference Bolton PF, Park RJ, Higgins JN, Griffiths PD, Pickles A (2002) Neuro-epileptic determinants of autism spectrum disorders in tuberous sclerosis complex. Brain 125(Pt 6):1247–1255CrossRefPubMed Bolton PF, Park RJ, Higgins JN, Griffiths PD, Pickles A (2002) Neuro-epileptic determinants of autism spectrum disorders in tuberous sclerosis complex. Brain 125(Pt 6):1247–1255CrossRefPubMed
20.
go back to reference Cianchetti C, Sannio-Fancello G, Fratta AL, Manconi F, Orano A, Pischedda MP, Pruna D, Spinicci G, Archidiacono N, Filippi G (1991) Neuropsychological, psychiatric, and physical manifestations in 149 members from 18 fragile X families. Am J Med Genet 40(2):234–243CrossRefPubMed Cianchetti C, Sannio-Fancello G, Fratta AL, Manconi F, Orano A, Pischedda MP, Pruna D, Spinicci G, Archidiacono N, Filippi G (1991) Neuropsychological, psychiatric, and physical manifestations in 149 members from 18 fragile X families. Am J Med Genet 40(2):234–243CrossRefPubMed
21.
go back to reference Klauck SM, Munstermann E, Bieber-Martig B, Ruhl D, Lisch S, Schmotzer G, Poustka A, Poustka F (1997) Molecular genetic analysis of the FMR-1 gene in a large collection of autistic patients. Hum Genet 100(2):224–229CrossRefPubMed Klauck SM, Munstermann E, Bieber-Martig B, Ruhl D, Lisch S, Schmotzer G, Poustka A, Poustka F (1997) Molecular genetic analysis of the FMR-1 gene in a large collection of autistic patients. Hum Genet 100(2):224–229CrossRefPubMed
22.
go back to reference Lombroso PJ (2003) Genetics of childhood disorders: XLVIII. Learning and memory, part 1: fragile X syndrome update. J Am Acad Child Adolesc Psychiatry 42(3):372–375CrossRefPubMed Lombroso PJ (2003) Genetics of childhood disorders: XLVIII. Learning and memory, part 1: fragile X syndrome update. J Am Acad Child Adolesc Psychiatry 42(3):372–375CrossRefPubMed
23.
24.
go back to reference Vincent JB, Thevarkunnel S, Kolozsvari D, Paterson AD, Roberts W, Scherer SW (2004) Association and transmission analysis of the FMR1 IVS10 + 14C-T variant in autism. Am J Med Genet B Neuropsychiatr Genet 125(1):54–56CrossRef Vincent JB, Thevarkunnel S, Kolozsvari D, Paterson AD, Roberts W, Scherer SW (2004) Association and transmission analysis of the FMR1 IVS10 + 14C-T variant in autism. Am J Med Genet B Neuropsychiatr Genet 125(1):54–56CrossRef
25.
go back to reference Sikora DM, Pettit-Kekel K, Penfield J, Merkens LS, Steiner RD (2006) The near universal presence of autism spectrum disorders in children with Smith–Lemli–Opitz syndrome. Am J Med Genet A 140(14):1511–1518CrossRefPubMed Sikora DM, Pettit-Kekel K, Penfield J, Merkens LS, Steiner RD (2006) The near universal presence of autism spectrum disorders in children with Smith–Lemli–Opitz syndrome. Am J Med Genet A 140(14):1511–1518CrossRefPubMed
26.
go back to reference Tierney E, Nwokoro NA, Porter FD, Freund LS, Ghuman JK, Kelley RI (2001) Behavior phenotype in the RSH/Smith–Lemli–Opitz syndrome. Am J Med Genet 98(2):191–200CrossRefPubMed Tierney E, Nwokoro NA, Porter FD, Freund LS, Ghuman JK, Kelley RI (2001) Behavior phenotype in the RSH/Smith–Lemli–Opitz syndrome. Am J Med Genet 98(2):191–200CrossRefPubMed
27.
go back to reference Freitag CM (2007) The genetics of autistic disorders and its clinical relevance: a review of the literature. Mol Psychiatry 12(1):2–22CrossRefPubMed Freitag CM (2007) The genetics of autistic disorders and its clinical relevance: a review of the literature. Mol Psychiatry 12(1):2–22CrossRefPubMed
28.
go back to reference Bauman ML, Kemper TL (2005) Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci 23(2–3):183–187CrossRefPubMed Bauman ML, Kemper TL (2005) Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci 23(2–3):183–187CrossRefPubMed
29.
go back to reference Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, Rutter M, Lantos P (1998) A clinicopathological study of autism. Brain 121(Pt 5):889–905CrossRefPubMed Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, Rutter M, Lantos P (1998) A clinicopathological study of autism. Brain 121(Pt 5):889–905CrossRefPubMed
30.
go back to reference Bauman ML, Kemper TL (2003) The neuropathology of the autism spectrum disorders: what have we learned? Novartis Found Symp 251:112–122 discussion 122–118, 281–197CrossRefPubMed Bauman ML, Kemper TL (2003) The neuropathology of the autism spectrum disorders: what have we learned? Novartis Found Symp 251:112–122 discussion 122–118, 281–197CrossRefPubMed
31.
go back to reference Courchesne E (1991) Neuroanatomic imaging in autism. Pediatrics 87(5 Pt 2):781–790PubMed Courchesne E (1991) Neuroanatomic imaging in autism. Pediatrics 87(5 Pt 2):781–790PubMed
32.
go back to reference Kemper TL, Bauman ML (1993) The contribution of neuropathologic studies to the understanding of autism. Neurol Clin 11(1):175–187PubMed Kemper TL, Bauman ML (1993) The contribution of neuropathologic studies to the understanding of autism. Neurol Clin 11(1):175–187PubMed
33.
go back to reference Kern JK (2003) Purkinje cell vulnerability and autism: a possible etiological connection. Brain Dev 25(6):377–382CrossRefPubMed Kern JK (2003) Purkinje cell vulnerability and autism: a possible etiological connection. Brain Dev 25(6):377–382CrossRefPubMed
34.
go back to reference Townsend J, Courchesne E, Covington J, Westerfield M, Harris NS, Lyden P, Lowry TP, Press GA (1999) Spatial attention deficits in patients with acquired or developmental cerebellar abnormality. J Neurosci 19(13):5632–5643PubMed Townsend J, Courchesne E, Covington J, Westerfield M, Harris NS, Lyden P, Lowry TP, Press GA (1999) Spatial attention deficits in patients with acquired or developmental cerebellar abnormality. J Neurosci 19(13):5632–5643PubMed
35.
go back to reference Sajdel-Sulkowska EM, Lipinski B, Windom H, Audhya T, Woody McGinnis W (2008) Oxidative stress in autism: elevated cerebellar 3-nitrotyrosine levels. American Journal of Biochemistry and Biotechnology 4(2):73–84CrossRef Sajdel-Sulkowska EM, Lipinski B, Windom H, Audhya T, Woody McGinnis W (2008) Oxidative stress in autism: elevated cerebellar 3-nitrotyrosine levels. American Journal of Biochemistry and Biotechnology 4(2):73–84CrossRef
37.
go back to reference Courchesne E (2004) Brain development in autism: early overgrowth followed by premature arrest of growth. Ment Retard Dev Disabil Res Rev 10(2):106–111CrossRefPubMed Courchesne E (2004) Brain development in autism: early overgrowth followed by premature arrest of growth. Ment Retard Dev Disabil Res Rev 10(2):106–111CrossRefPubMed
38.
go back to reference Courchesne E, Pierce K (2005) Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity. Int J Dev Neurosci 23(2–3):153–170CrossRefPubMed Courchesne E, Pierce K (2005) Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity. Int J Dev Neurosci 23(2–3):153–170CrossRefPubMed
39.
go back to reference Liu T, Papagiannakopoulos T, Puskar K, Qi S, Santiago F, Clay W, Lao K, Lee Y, Nelson SF, Kornblum HI et al (2007) Detection of a microRNA signal in an in vivo expression set of mRNAs. PLoS ONE 2(8):e804CrossRefPubMedPubMedCentral Liu T, Papagiannakopoulos T, Puskar K, Qi S, Santiago F, Clay W, Lao K, Lee Y, Nelson SF, Kornblum HI et al (2007) Detection of a microRNA signal in an in vivo expression set of mRNAs. PLoS ONE 2(8):e804CrossRefPubMedPubMedCentral
40.
go back to reference Schellenberg GD, Dawson G, Sung YJ, Estes A, Munson J, Rosenthal E, Rothstein J, Flodman P, Smith M, Coon H et al (2006) Evidence for multiple loci from a genome scan of autism kindreds. Mol Psychiatry 11(11):1049–1060, 1979CrossRefPubMed Schellenberg GD, Dawson G, Sung YJ, Estes A, Munson J, Rosenthal E, Rothstein J, Flodman P, Smith M, Coon H et al (2006) Evidence for multiple loci from a genome scan of autism kindreds. Mol Psychiatry 11(11):1049–1060, 1979CrossRefPubMed
42.
go back to reference Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA, Parker JS, Jin J, Hammond SM (2007) microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol 8(2):R27CrossRefPubMedPubMedCentral Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA, Parker JS, Jin J, Hammond SM (2007) microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol 8(2):R27CrossRefPubMedPubMedCentral
43.
go back to reference Bacchelli E, Maestrini E (2006) Autism spectrum disorders: molecular genetic advances. Am J Med Genet C Semin Med Genet 142(1):13–23CrossRef Bacchelli E, Maestrini E (2006) Autism spectrum disorders: molecular genetic advances. Am J Med Genet C Semin Med Genet 142(1):13–23CrossRef
44.
47.
go back to reference Locke DP, Sharp AJ, McCarroll SA, McGrath SD, Newman TL, Cheng Z, Schwartz S, Albertson DG, Pinkel D, Altshuler DM et al (2006) Linkage disequilibrium and heritability of copy-number polymorphisms within duplicated regions of the human genome. Am J Hum Genet 79(2):275–290CrossRefPubMedPubMedCentral Locke DP, Sharp AJ, McCarroll SA, McGrath SD, Newman TL, Cheng Z, Schwartz S, Albertson DG, Pinkel D, Altshuler DM et al (2006) Linkage disequilibrium and heritability of copy-number polymorphisms within duplicated regions of the human genome. Am J Hum Genet 79(2):275–290CrossRefPubMedPubMedCentral
48.
go back to reference Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W et al (2006) Global variation in copy number in the human genome. Nature 444(7118):444–454CrossRefPubMedPubMedCentral Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W et al (2006) Global variation in copy number in the human genome. Nature 444(7118):444–454CrossRefPubMedPubMedCentral
52.
go back to reference Lao K, Xu NL, Yeung V, Chen C, Livak KJ, Straus NA (2006) Multiplexing RT-PCR for the detection of multiple miRNA species in small samples. Biochem Biophys Res Commun 343(1):85–89CrossRefPubMed Lao K, Xu NL, Yeung V, Chen C, Livak KJ, Straus NA (2006) Multiplexing RT-PCR for the detection of multiple miRNA species in small samples. Biochem Biophys Res Commun 343(1):85–89CrossRefPubMed
53.
go back to reference Li C, Hung Wong W (2001) Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol 2(8):RESEARCH0032PubMedPubMedCentral Li C, Hung Wong W (2001) Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol 2(8):RESEARCH0032PubMedPubMedCentral
54.
go back to reference Chen GK, Kono N, Geschwind DH, Cantor RM (2006) Quantitative trait locus analysis of nonverbal communication in autism spectrum disorder. Mol Psychiatry 11(2):214–220CrossRefPubMed Chen GK, Kono N, Geschwind DH, Cantor RM (2006) Quantitative trait locus analysis of nonverbal communication in autism spectrum disorder. Mol Psychiatry 11(2):214–220CrossRefPubMed
55.
go back to reference Lauritsen MB, Als TD, Dahl HA, Flint TJ, Wang AG, Vang M, Kruse TA, Ewald H, Mors O (2006) A genome-wide search for alleles and haplotypes associated with autism and related pervasive developmental disorders on the Faroe Islands. Mol Psychiatry 11(1):37–46CrossRefPubMed Lauritsen MB, Als TD, Dahl HA, Flint TJ, Wang AG, Vang M, Kruse TA, Ewald H, Mors O (2006) A genome-wide search for alleles and haplotypes associated with autism and related pervasive developmental disorders on the Faroe Islands. Mol Psychiatry 11(1):37–46CrossRefPubMed
56.
go back to reference Broman KW, Murray JC, Sheffield VC, White RL, Weber JL (1998) Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am J Hum Genet 63(3):861–869CrossRefPubMedPubMedCentral Broman KW, Murray JC, Sheffield VC, White RL, Weber JL (1998) Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am J Hum Genet 63(3):861–869CrossRefPubMedPubMedCentral
Metadata
Title
Heterogeneous dysregulation of microRNAs across the autism spectrum
Authors
Kawther Abu-Elneel
Tsunglin Liu
Francesca S. Gazzaniga
Yuhei Nishimura
Dennis P. Wall
Daniel H. Geschwind
Kaiqin Lao
Kenneth S. Kosik
Publication date
01-07-2008
Publisher
Springer Berlin Heidelberg
Published in
Neurogenetics / Issue 3/2008
Print ISSN: 1364-6745
Electronic ISSN: 1364-6753
DOI
https://doi.org/10.1007/s10048-008-0133-5

Other articles of this Issue 3/2008

neurogenetics 3/2008 Go to the issue