Skip to main content
Top
Published in: neurogenetics 2/2007

01-04-2007 | Original Article

Nf1 expression is dependent on strain background: implications for tumor suppressor haploinsufficiency studies

Authors: Jessica J. Hawes, Robert G. Tuskan, Karlyne M. Reilly

Published in: Neurogenetics | Issue 2/2007

Login to get access

Abstract

Neurofibromatosis type 1 (NF1) is the most common cancer predisposition syndrome affecting the nervous system, with elevated risk for both astrocytoma and peripheral nerve sheath tumors. NF1 is caused by a germline mutation in the NF1 gene, with tumors showing loss of the wild type copy of NF1. In addition, NF1 heterozygosity in surrounding stroma is important for tumor formation, suggesting an additional role of haploinsufficiency for NF1. Studies in mouse models and NF1 families have implicated modifier genes unlinked to NF1 in the severity of the disease and in susceptibility to astrocytoma and peripheral nerve sheath tumors. To determine if differences in Nf1 expression may contribute to the strain-specific effects on tumor predisposition, we examined the levels of Nf1 gene expression in mouse strains with differences in tumor susceptibility using quantitative polymerase chain reaction. The data presented in this paper demonstrate that strain background has as much effect on Nf1 expression levels as mutation of one Nf1 allele, indicating that studies of haploinsufficiency must be carefully interpreted with respect to strain background. Because expression levels do not correlate entirely with the susceptibility or resistance to tumors observed in the strain, these data suggest that either variation in Nf1 levels is not responsible for the differences in astrocytoma and peripheral nerve sheath tumor susceptibility in Nf1-/+;Trp53-/+cis mice, or that certain mouse strains have evolved compensatory mechanisms for differences in Nf1 expression.
Literature
1.
go back to reference Pollack IF, Shultz B, Mulvihill JJ (1996) The management of brainstem gliomas in patients with neurofibromatosis 1. Neurology 46(6):1652–1660PubMed Pollack IF, Shultz B, Mulvihill JJ (1996) The management of brainstem gliomas in patients with neurofibromatosis 1. Neurology 46(6):1652–1660PubMed
2.
go back to reference Tonsgard JH (2006) Clinical manifestations and management of neurofibromatosis type 1. Semin Pediatr Neurol 13(1):2–7PubMedCrossRef Tonsgard JH (2006) Clinical manifestations and management of neurofibromatosis type 1. Semin Pediatr Neurol 13(1):2–7PubMedCrossRef
4.
go back to reference Ballester R et al (1990) The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63(4):851–859PubMedCrossRef Ballester R et al (1990) The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63(4):851–859PubMedCrossRef
5.
go back to reference Martin GA et al (1990) The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63(4):843–849PubMedCrossRef Martin GA et al (1990) The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63(4):843–849PubMedCrossRef
6.
go back to reference Xu GF et al (1990) The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62(3):599–608PubMedCrossRef Xu GF et al (1990) The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62(3):599–608PubMedCrossRef
7.
go back to reference Xu GF et al (1990) The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 63(4):835–841PubMedCrossRef Xu GF et al (1990) The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 63(4):835–841PubMedCrossRef
8.
go back to reference Ingram DA et al (2000) Genetic and biochemical evidence that haploinsufficiency of the Nf1 tumor suppressor gene modulates melanocyte and mast cell fates in vivo. J Exp Med 191(1):181–188PubMedCrossRef Ingram DA et al (2000) Genetic and biochemical evidence that haploinsufficiency of the Nf1 tumor suppressor gene modulates melanocyte and mast cell fates in vivo. J Exp Med 191(1):181–188PubMedCrossRef
9.
go back to reference Kemkemer R et al (2002) Increased noise as an effect of haploinsufficiency of the tumor-suppressor gene neurofibromatosis type 1 in vitro. Proc Natl Acad Sci USA 99(21):13783–13788PubMedCrossRef Kemkemer R et al (2002) Increased noise as an effect of haploinsufficiency of the tumor-suppressor gene neurofibromatosis type 1 in vitro. Proc Natl Acad Sci USA 99(21):13783–13788PubMedCrossRef
10.
go back to reference McLaughlin ME, Jacks T (2002) Thinking beyond the tumor cell: Nf1 haploinsufficiency in the tumor environment. Cancer Cell 1(5):408–410PubMedCrossRef McLaughlin ME, Jacks T (2002) Thinking beyond the tumor cell: Nf1 haploinsufficiency in the tumor environment. Cancer Cell 1(5):408–410PubMedCrossRef
11.
go back to reference Wu M, Wallace MR, Muir D (2006) Nf1 haploinsufficiency augments angiogenesis. Oncogene 25(16):2297–2303PubMedCrossRef Wu M, Wallace MR, Muir D (2006) Nf1 haploinsufficiency augments angiogenesis. Oncogene 25(16):2297–2303PubMedCrossRef
12.
go back to reference Yang FC et al (2006) Nf1 +/− mast cells induce neurofibroma like phenotypes through secreted TGF-{beta} signaling. Hum Mol Genet 15(16):2421–2437PubMedCrossRef Yang FC et al (2006) Nf1 +/− mast cells induce neurofibroma like phenotypes through secreted TGF-{beta} signaling. Hum Mol Genet 15(16):2421–2437PubMedCrossRef
13.
go back to reference Yu X et al (2006) Neurofibromatosis type 1 gene haploinsufficiency reduces AP-1 gene expression without abrogating the anabolic effect of parathyroid hormone. Calcif Tissue Int 78(3):162–170PubMedCrossRef Yu X et al (2006) Neurofibromatosis type 1 gene haploinsufficiency reduces AP-1 gene expression without abrogating the anabolic effect of parathyroid hormone. Calcif Tissue Int 78(3):162–170PubMedCrossRef
14.
go back to reference Atit RP et al (1999) The Nf1 tumor suppressor regulates mouse skin wound healing, fibroblast proliferation, and collagen deposited by fibroblasts. J Invest Dermatol 112(6):835–842PubMedCrossRef Atit RP et al (1999) The Nf1 tumor suppressor regulates mouse skin wound healing, fibroblast proliferation, and collagen deposited by fibroblasts. J Invest Dermatol 112(6):835–842PubMedCrossRef
15.
go back to reference Jacks T et al (1994) Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet 7(3):353–361PubMedCrossRef Jacks T et al (1994) Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet 7(3):353–361PubMedCrossRef
16.
go back to reference Zhu Y et al (2005) Inactivation of NF1 in CNS causes increased glial progenitor proliferation and optic glioma formation. Development 132(24):5577–5588PubMedCrossRef Zhu Y et al (2005) Inactivation of NF1 in CNS causes increased glial progenitor proliferation and optic glioma formation. Development 132(24):5577–5588PubMedCrossRef
17.
go back to reference Bennett MR et al (2003) Aberrant growth and differentiation of oligodendrocyte progenitors in neurofibromatosis type 1 mutants. J Neurosci 23(18):7207–7217PubMed Bennett MR et al (2003) Aberrant growth and differentiation of oligodendrocyte progenitors in neurofibromatosis type 1 mutants. J Neurosci 23(18):7207–7217PubMed
18.
go back to reference Dasgupta B, Gutmann DH (2005) Neurofibromin regulates neural stem cell proliferation, survival, and astroglial differentiation in vitro and in vivo. J Neurosci 25(23):5584–5594PubMedCrossRef Dasgupta B, Gutmann DH (2005) Neurofibromin regulates neural stem cell proliferation, survival, and astroglial differentiation in vitro and in vivo. J Neurosci 25(23):5584–5594PubMedCrossRef
19.
go back to reference Powers J et al (2000) Pheochromocytoma cell lines from heterozygous neurofibromatosis knockout mice. Cell Tissue Res 302(3):309–320PubMedCrossRef Powers J et al (2000) Pheochromocytoma cell lines from heterozygous neurofibromatosis knockout mice. Cell Tissue Res 302(3):309–320PubMedCrossRef
20.
go back to reference Tischler AS et al (1995) Characterization of pheochromocytomas in a mouse strain with a targeted disruptive mutation of the neurofibromatosis gene Nf1. Endocr Pathol 6(4):323–335PubMed Tischler AS et al (1995) Characterization of pheochromocytomas in a mouse strain with a targeted disruptive mutation of the neurofibromatosis gene Nf1. Endocr Pathol 6(4):323–335PubMed
21.
go back to reference Gutmann DH et al (2001) Heterozygosity for the neurofibromatosis 1 (NF1) tumor suppressor results in abnormalities in cell attachment, spreading and motility in astrocytes. Hum Mol Genet 10(26):3009–3016PubMedCrossRef Gutmann DH et al (2001) Heterozygosity for the neurofibromatosis 1 (NF1) tumor suppressor results in abnormalities in cell attachment, spreading and motility in astrocytes. Hum Mol Genet 10(26):3009–3016PubMedCrossRef
22.
go back to reference Bajenaru ML et al (2001) Neurofibromatosis 1 (NF1) heterozygosity results in a cell-autonomous growth advantage for astrocytes. Glia 33(4):314–323PubMedCrossRef Bajenaru ML et al (2001) Neurofibromatosis 1 (NF1) heterozygosity results in a cell-autonomous growth advantage for astrocytes. Glia 33(4):314–323PubMedCrossRef
23.
go back to reference Chesler EJ et al (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37(3):233–242PubMedCrossRef Chesler EJ et al (2005) Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet 37(3):233–242PubMedCrossRef
24.
go back to reference Cichowski K et al (1999) Mouse models of tumor development in neurofibromatosis type 1. Science 286(5447):2172–2176PubMedCrossRef Cichowski K et al (1999) Mouse models of tumor development in neurofibromatosis type 1. Science 286(5447):2172–2176PubMedCrossRef
25.
go back to reference Reilly KM et al (2000) Nf1; Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nat Genet 26(1):109–113PubMedCrossRef Reilly KM et al (2000) Nf1; Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nat Genet 26(1):109–113PubMedCrossRef
26.
go back to reference Reilly KM et al (2004) Susceptibility to astrocytoma in mice mutant for Nf1 and Trp53 is linked to chromosome 11 and subject to epigenetic effects. Proc Natl Acad Sci USA 101(35):13008–13013PubMedCrossRef Reilly KM et al (2004) Susceptibility to astrocytoma in mice mutant for Nf1 and Trp53 is linked to chromosome 11 and subject to epigenetic effects. Proc Natl Acad Sci USA 101(35):13008–13013PubMedCrossRef
27.
go back to reference Vogel KS et al (1999) Mouse tumor model for neurofibromatosis type 1. Science 286(5447):2176–2179PubMedCrossRef Vogel KS et al (1999) Mouse tumor model for neurofibromatosis type 1. Science 286(5447):2176–2179PubMedCrossRef
28.
go back to reference Reilly KM et al (2006) An imprinted locus epistatically influences Nstr1 and Nstr2 to control resistance to nerve sheath tumors in a neurofibromatosis type 1 mouse model. Cancer Res 66(1):62–68PubMedCrossRef Reilly KM et al (2006) An imprinted locus epistatically influences Nstr1 and Nstr2 to control resistance to nerve sheath tumors in a neurofibromatosis type 1 mouse model. Cancer Res 66(1):62–68PubMedCrossRef
29.
go back to reference Geist RT, Gutmann DH (1996) Expression of a developmentally-regulated neuron-specific isoform of the neurofibromatosis 1 (NF1) gene. Neurosci Lett 211(2):85–88PubMedCrossRef Geist RT, Gutmann DH (1996) Expression of a developmentally-regulated neuron-specific isoform of the neurofibromatosis 1 (NF1) gene. Neurosci Lett 211(2):85–88PubMedCrossRef
30.
go back to reference Hawes JJ et al (2005) GalR1, but not GalR2 or GalR3, levels are regulated by galanin signaling in the locus coeruleus through a cyclic AMP-dependent mechanism. J Neurochem 93(5):1168–1176PubMedCrossRef Hawes JJ et al (2005) GalR1, but not GalR2 or GalR3, levels are regulated by galanin signaling in the locus coeruleus through a cyclic AMP-dependent mechanism. J Neurochem 93(5):1168–1176PubMedCrossRef
31.
go back to reference Motulsky H (2003) Prism 4 Statistics Guide—statistical analyses for laboratory and clinical researchers. GraphPad Software, San Diego, CA Motulsky H (2003) Prism 4 Statistics Guide—statistical analyses for laboratory and clinical researchers. GraphPad Software, San Diego, CA
32.
go back to reference Park VM et al (1998) Alternative splicing of exons 29 and 30 in the neurofibromatosis type 1 gene. Hum Genet 103(4):382–385PubMedCrossRef Park VM et al (1998) Alternative splicing of exons 29 and 30 in the neurofibromatosis type 1 gene. Hum Genet 103(4):382–385PubMedCrossRef
33.
go back to reference Vandenbroucke I et al (2002) Quantification of NF1 transcripts reveals novel highly expressed splice variants. FEBS Lett 522(1–3):71–76PubMedCrossRef Vandenbroucke I et al (2002) Quantification of NF1 transcripts reveals novel highly expressed splice variants. FEBS Lett 522(1–3):71–76PubMedCrossRef
Metadata
Title
Nf1 expression is dependent on strain background: implications for tumor suppressor haploinsufficiency studies
Authors
Jessica J. Hawes
Robert G. Tuskan
Karlyne M. Reilly
Publication date
01-04-2007
Publisher
Springer-Verlag
Published in
Neurogenetics / Issue 2/2007
Print ISSN: 1364-6745
Electronic ISSN: 1364-6753
DOI
https://doi.org/10.1007/s10048-006-0078-5

Other articles of this Issue 2/2007

neurogenetics 2/2007 Go to the issue